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ON TWO DIOPHANTINE EQUATIONS OF
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Abstract. In this paper, we prove two conjectures of Ulas ([21]) on
two Diophantine equations of Ramanujan-Nagell type. In fact, we show
that the following equations

x2 + (2m+1 + 1)2n = 24(m+1) + 23(m+1) + 22m + 2m+1 + 1,

x2 +
1

3

(

22m+6 − 1
)

2n =
1

9

(

49 · 42m+5 − 11 · 4m+3 + 1
)

have exactly four solutions.

1. Introduction

The Diophantine equation

(1.1) x2 + 7 = 2n+2.

is called the Ramanujan-Nagell equation. In 1960, Nagell ([16]) proved that
the following solutions:

(x, n) = (1, 1), (3, 2), (5, 3), (11, 5), (181, 13)

are the only solutions to equation (1.1). A generalized Ramanujan-Nagell

equation is the Diophantine equation

(1.2) x2 +D = kn in integers x ≥ 1, n ≥ 1.

The literature on the generalized Ramanujan-Nagell equation is very rich.
One can see for examples [1]–[21]. One aspect of the study of equation (1.2)
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is to determine the integer solutions (x, k, n). In 1850, Lebesgue ([13]) proved
that the above equation has no solutions when D = 1. In 1965, Chao Ko ([11])
proved that the only solution of equation (1.2) with D = −1 is x = 3, k = 2.
J.H.E. Cohn ([9]) solved the above equation for several values of the parameter
D in the range 1 ≤ D ≤ 100. A couple of the remaining values of D in
the above range were covered by Mignotte and De Weger in [15], and the
remaining ones in the recent paper [7]. Recently, several authors become
interested in the case when only the prime factors of D are specified. For
example, the case when D =

∏
i p

ai

i with a fixed prime numbers pi was studied
for p = 2, 3, 5, 7, 13 . . .. See [1, 3, 14] for the recent surveys on this type of
equation.

Many mathematicians studied also a more generalized Ramanujan-Nagell
type of the form

(1.3) x2 = Akn +B, k ∈ Z≥2, A,B ∈ Z \ {0}.

In 1996, Stiller ([19]) considered the equation

x2 + 119 = 15 · 2n

and proved that this equation has exactly 6 solutions. This motivated Ulas
([21]) to search for equations of the type (1.3) having five or more solutions.
Besides proving many results, he also set many conjectures.

The aim of this paper is to consider [21, Conjectures 4.2 and 4.3] and to
prove the following two theorems.

Theorem 1.1. For each positive integer m, the Diophantine equation

(1.4) x2 + (2m+1 + 1)2n = 24(m+1) + 23(m+1) + 22m + 2m+1 + 1

has exactly four solutions in integers (x, n) with n = 0,m+2, 2m+3, 3m+3.

Theorem 1.2. For each positive integer m, the Diophantine equation

(1.5) x2 +
1

3
(22m+6 − 1)2n =

1

9
(49 · 42m+5 − 11 · 4m+3 + 1)

has exactly four solutions in integers (x, n) with n = 0, 3, 2m+ 7, 2m+ 8.

The next two sections will be devoted to the proofs of the above theorems.
After giving the four solutions of each of equations (1.4), (1.5), we will use an
elementary method to prove that these equations have no other solutions. The
technique consists in considering different intervals and showing that there is
no value of x in those intervals verifying equations (1.4), (1.5). For the sake
of completeness, we will give all details for solving each of these equations.

2. Proof of Theorem 1.1

Let p be a prime and n an integer, we denote by vp(n) the p-adic valuation
of n. Assume x ≥ 0. Then, it is easy to check that

(x, n) = (22m+2 +2m, 0), (22m+2 +2m − 1,m+2), (22m+2 − 2m − 1, 2m+3),
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(2m + 1, 3m+ 3)

are solutions of equation (1.4). We will prove that these solutions are the only
solutions of equation (1.4), with x ≥ 0.

(i) n ≥ 3m+ 4: one has

x2 +(2m+1+1)2n ≥ (2m+1 +1)23m+4 > 24(m+1)+23(m+1)+22m+2m+1+1,

which is impossible.
(ii) 1 ≤ n ≤ m+1: we get 22m+2+2m− 1 < x < 22m+2+2m. We deduce

also that this is impossible.
(iii) m+ 3 ≤ n ≤ 2m+ 2: let x = 22m+2 − 1 + α, n = m + 2 + δ. Then,

we see that −2m < α < 2m, 1 ≤ δ ≤ m. One has

(2m+1 + 1)2m+2(2δ − 1) = (22m+2 − 1 + 2m)2 − (22m+2 − 1 + α)2

= (22m+3 − 2 + 2m + α)(2m − α).

If α = 0, then 22m+3−2+2m = (2m+3+4)(2δ−1) and we obtain 4|2m−2.
We deduce that m = 1. We come to a contradiction. Thus, we assume α 6= 0
and let α = 2ta, 2 ∤ a, 0 ≤ t < m. Then,

(2.1) (2m+1 + 1)2m+2(2δ − 1) = (22m+3 − 2 + 2m + 2ta)(2m − 2ta).

Obviously, t ≥ 1 and m ≥ 2 since m > t ≥ 1. Equation (2.1) becomes

(2m+1 + 1)2m+1−t(2δ − 1) = (22m+2 − 1 + 2m−1 + 2t−1a)(2m−t − a).

One has v2(2
2m+2 − 1+ 2m−1 +2t−1a) = m+1− t ≥ 2 and then 2|2t−1a− 1.

This implies that t = 1. We obtain v2(2
2m+2 − 1 + 2m−1 + a) = m ≥ 2, i.e.

v2(2
m−1 + a − 1) = m. This yields v2(a − 1) = m − 1. On the other hand,

−2m < α = 2a < 2m, so −2m−1 − 1 < a − 1 < 2m−1 − 1. Thus, we get
a = −2m−1 +1. Therefore, v2(2

2m+2 − 1+ 2m−1 + a) = v2(2
2m+2) = 2m+2.

This gives a contradiction.
(iv) 2m+4 ≤ n ≤ 3m+2,m ≥ 2: let x = 22m+1−2m−1+α, n = 2m+3+δ.

Then, we have −22m+1 + 2m+1 + 2 < α < 22m+1, 1 ≤ δ < m. One can see
that

(2m+1 + 1)22m+3(2δ − 1) = (22m+2 − 2m − 1)2 − (22m+1 − 2m − 1 + α)2

= (3 · 22m+1 − 2m+1 − 2 + α)(22m+1 − α).

If α = 0, then v2((3 · 2
2m+1 − 2m+1 − 2+α)(22m+1 −α)) = 2m+ 2. This

is impossible. Thus, we assume α 6= 0 and let α = 2ta, 2 ∤ a, 0 < t < 2m+ 1
as α is even. Then, we obtain

(2.2) (2m+1 +1)22m+3(2δ − 1) = (3 · 22m+1 − 2m+1 − 2+ 2ta)(22m+1 − 2ta).

Then, v2(3 · 22m − 2m − 1 + 2t−1a) = 2m + 2 − t ≥ 2. We deduce that
v2(2

t−1a − 1) ≥ 1, which is a contradiction. This completes the proof of
Theorem 1.1.
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3. Proof of Theorem 1.2

Assume x ≥ 0. Then, it is easy to check that

(x, n) = (
1

3
(14 · 4m+2 − 2), 0), (

1

3
(14 · 4m+2 − 5), 3),

(
1

3
(10 · 4m+2 − 1), 2m+ 7), (

1

3
(2 · 4m+2 + 1), 2m+ 8)

are solutions of equation (1.5). We will prove that these solutions are the only
solutions of equation (1.5), with x ≥ 0.

(i) n ≥ 2m+ 9: one has

x2 +
1

3
(22m+6 − 1)2n ≥

1

3
(22m+6 − 1)22m+9 >

1

9
(49 · 42m+5 − 11 · 4m+3 + 1).

We deduce a contradiction.
(ii) 1 ≤ n ≤ 2: in this case, we obtain 1

3 (14 · 4m+2 − 5) < x < 1
3 (14 ·

4m+2 − 2), which is impossible.
(iii) 4 ≤ n ≤ 2m + 6: let x = 1

3 (12 · 4
m+2 − 3 + α), with 3|α. Then, we

get −2 · 4m+2 + 2 < α < 2 · 4m+2 − 2. Therefore, we have

1

3
(22m+6 − 1)2n(22m+7−n − 1) =

1

9
(12 · 4m+2 − 3 + α)2 −

1

9
(10 · 4m+2 − 1)2

=
1

9
(22 · 4m+2 − 4 + α)(2 · 4m+2 − 2 + α).

If α = 0, then v2((22 · 4
m+2 − 4 + α)(2 · 4m+2 − 2 + α)) = 3 = n. This

contradicts the condition 4 ≤ n ≤ 2m + 6. Thus, we assume α 6= 0 and put
α = 2ta, 2 ∤ a, 1 ≤ t ≤ 2m+ 4. We see that

(3.1)
1

3
(22m+6−1)2n(22m+7−n−1) =

1

9
(22·4m+2−4+2ta)(2·4m+2−2+2ta).

We will study equation (3.1) according to the values of t.
If t ≥ 3, then v2((22 · 4

m+2 − 4+ 2ta)(2 · 4m+2 − 2+ 2ta)) = 3 < n, which
is impossible.

If t = 1, then v2(22·4
m+2−4+2ta) = 1. So we have v2(2·4

m+2−2+2ta) =
n−1. Therefore, we deduce that v2(2

2m+4−1+a) = n−2. On the other hand,
−22m+4 < a− 1 < 22m+4 − 2. Since 3|a, one gets n− 2 < 2m+ 4, a− 1 6= 0.
Therefore, we have v2(a−1) = n−2. Put a = 2n−2u+1, 2 ∤ u, 4 ≤ n ≤ 2m+5.
Then, we obtain α = 2n−1u+ 2, 2 ∤ u, 4 ≤ n ≤ 2m+ 5.

Substituting t = 1, a = 2n−2u+1, 2 ∤ u into equation (3.1) and simplifying
one has

(3.2) 13·24m+10 = (6·2n−1u+6·2n−1+5)·22m+6+(2n−1u)2−2·2n−1u−3·2n.

Since (2n−1u)2 − 2 · 2n−1u− 3 · 2n < (22m+5)2 +2 · 22m+5 = 24m+10 + 22m+6,
one gets

(6 · 2n−1u+ 6 · 2n−1 + 6) · 22m+6 > 12 · 24m+10,
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i.e.

2n−1u+ 2n−1 + 1 > 22m+5.

So u ≥ 22m+6−n−1. On the other hand, from α = 2n−1u+2 < 22m+5−2, we
have u < 22m+6−n. Therefore, u = 22m+6−n − 1. We replace this into (3.2)
and simplify to obtain

22m+4 + 1 = 22m+7−n + 2n−3.

This is impossible since 2m+ 7− n > 0, n− 3 > 0.
If t = 2, then v2(2 · 4m+2 − 2 + 2ta) = 1. One can see that v2(22 ·

4m+2 − 4 + 2ta) = n − 1. Therefore, we get v2(11 · 2
2m+3 − 1 + a) = n − 3.

On the other hand, −22m+3 − 1 < a − 1 < 22m+3 − 1. Since 3|a, one has
n − 3 < 2m + 3, a − 1 6= 0,−22m+3. Therefore, we have v2(a − 1) = n − 3.
Put a = 2n−3u + 1, 2 ∤ u, 4 ≤ n ≤ 2m + 5. Then, we get α = 2n−1u + 4, 2 ∤
u, 4 ≤ n ≤ 2m+ 5.

Replacing t = 2, a = 2n−3u + 1, 2 ∤ u into equation (3.1) and simplifying,
we obtain

(3.3) 13·24m+10 = (6·2n−1u+6·2n−1+17)·22m+6+(2n−1u)2+2·2n−1u−3·2n.

Since (2n−1u)2 +2 · 2n−1u− 3 · 2n ≤ (22m+5 + 1)2 +2 · (22m+5 − 5)− 3 · 2n <

24m+10 + 2 · 22m+6, one has

(6 · 2n−1u+ 6 · 2n−1 + 19) · 22m+6 > 12 · 24m+10,

i.e.

2n−1u+ 2n−1 + 4 > 22m+5.

As n ≥ 4 we deduce that u ≥ 22m+6−n − 1. On the other hand, from α =
2n−1u + 4 < 22m+5 − 2, one has u < 22m+6−n. Therefore, u = 22m+6−n − 1.
Thus, equation (3.3) implies

(3.4) 9 · 22m+5−n + 2n−4 = 1 + 22m+3.

So, we get n = 4 or n = 2m+5 . If n = 4, then (3.4) becomes 9 · 22m+1+1 =
1 + 22m+3, which is impossible. If n = 2m + 5, then equation (3.4) gives
9+ 22m+1 = 1+22m+3, i. e. 1+ 22m−2 = 22m, which is also impossible. This
completes the proof of Theorem 1.2.
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