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Vol. 51(71)(2016), 23 – 44
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SELBERG ORTHOGONALITY
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Abstract. Let E be Galois extension of Q of finite degree and let π

and π′ be two irreducible automorphic unitary cuspidal representations of
GLm(EA) and GLm′ (EA), respectively. We prove an asymptotic formula
for computation of coefficients γπ,π′ (k) in the Laurent (Taylor) series ex-
pansion around s = 1 of the logarithmic derivative of the Rankin-Selberg
L−function L(s, π × π̃′) under assumption that at least one of represen-
tations π, π′ is self-contragredient and show that coefficients γπ,π′ (k) are
related to weighted Selberg orthogonality. We also replace the assumption
that at least one of representations π and π′ is self-contragredient by a
weaker one.

1. Introduction

The classical Euler constant

γ = lim
x→∞

(
∑

n<x

1

n
− log x

)
= 0.57721 . . .

discovered and computed correctly up to five decimal places by L. Euler ([7])
in 1731 is the constant term in the Laurent series expansion of the Riemann
zeta function at s = 1

ζ(s) =
1

s− 1
+ γ +

∞∑

k=1

γk(s− 1)k =
1

s− 1
+

∞∑

k=0

γk(s− 1)k.
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In 1885, T. J. Stieltjes ([14]) proved that

γk =
(−1)k

k!
lim
x→∞

(
∑

n<x

logk n

n
− logk+1 x

k + 1

)
.

Therefore, the constants γk (k ≥ 0) with γ0 = γ are named the Stieltjes
constants, the generalized Euler constants or the Euler-Stieltjes constants.

The Euler-Stieltjes constants γk can be expressed in terms of coefficients
ηk of the Laurent series expansion of the logarithmic derivative of the Riemann
zeta function at s = 1

ζ′

ζ
(s) = − 1

s− 1
+

∞∑

k=0

ηk(s− 1)k, |s− 1| < 3.

Constants ηk can be evaluated as

ηk =
(−1)k−1

k!
lim
x→∞

(
∑

n<x

Λ(n) logk n

n
− logk+1 x

k + 1

)
,

where Λ(n) is the von Mangoldt function, see e.g. [37]. Often, constants γk
are called the Euler-Stieltjes constants of the first kind, while constants ηk
are called the Euler-Stieltjes constants of the second kind.

Throughout this paper, we will slightly abuse the notation and denote
the Euler-Stieltjes constants of the second kind (i.e. constants appearing in
the Laurent (Taylor) series representation of the logarithmic derivative of the
corresponding L−series) by letter γ instead of η.

The Euler-Stieltjes constants of the first and the second kind are im-
portant in both theoretical and computational analytic number theory, since
they appear in various estimations and as a result of asymptotic analysis.
For example, the Euler-Stieltjes constants of the second kind can be used to
determine a zero-free region of the zeta function near the real axis in the cri-
tical strip. Moreover, they are related to the Li (positivity) criterion for the
Riemann hypothesis ([20]), since they appear in arithmetic formula for the
non-archimedean part of the Li coefficient, see [23] for numerical evaluation
and estimation. The Euler-Stieltjes constants of the first and the second kind
and their relation to the Li criterion for the Riemann hypothesis were further
investigated by M. Coffey in [4, 5] and by C. Knessl and M. Coffey in [19].

The generalized Euler-Stieltjes constants of the second kind, i.e. the co-
efficients in the Laurent (Taylor) series expansion of logarithmic derivative of
zeta or L−function at s = 1 were subject of study in many different settings,
see e.g. [3] for the Hurwitz zeta function, [13] for the Dedekind zeta func-
tion and the Selberg zeta function attached to a co-compact Fuchisian group,
[1] for the general setting of a non-co-compact Fuchsian group with unitary
representation, [12] for a class of functions that have an Euler product rep-
resentation converging in some half-plane and a simple pole on the real axes.
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For functions F that belong to a large subclass S♭ of the Selberg class it is
proved that the coefficients γF (k) in the Laurent (Taylor) series expansion of
F ′

F (s) at s = 1 can be expressed as

γF (k) =
(−1)k−1

k!
lim
x→∞

(
∑

n<x

ΛF (n) log
k n

n
− mF logk+1 x

k + 1

)
,

where ΛF (n) is generalized von Mangoldt function defined in terms of the
coefficients in the Euler product of F and mF is the order of (eventual) pole
of F ∈ S♭ at s = 1, see [36, Corollary 6.3.].

Let E be a Galois extension of Q of a finite degree and let π and π′

be irreducible unitary cuspidal representations of GLm(EA) and GLm′(EA),
respectively. The generalized Euler-Stieltjes constants of the second kind
γπ,π′(k) attached to the Rankin-Selberg L−function L(s, π × π̃′) are defined
as coefficients in the Laurent series representation of the logarithmic derivative
of L(s, π × π̃′) at s = 1:

(1.1)
L′

L
(s, π × π̃′) =

∞∑

k=−1

γπ,π′(k)(s− 1)k.

In this paper we derive an asymptotic formula for evaluation of constants
γπ,π′(k), under assumption that at least one of representations π or π′ is
self-contragredient.

The Rankin-Selberg L−function L(s, π × π̃′) does not always belong to
the Selberg class (nor to the class of functions considered in [12]) since, in the

case when m = m′ and π′ ∼= π⊗|det|it0 , for some t0 ∈ R\{0} it possesses pole
at s = 1+ it0 6= 1. In this setting, it is possible to normalize representations π
and π′ so that the ”normalized” Rankin-Selberg L−function possesses a pole
at s = 1, hence computation of coefficients in the Laurent series expansion of
its logarithmic derivative at s = 1 reduces to a slight modification of the case
treated in [36].

However, in the case when m = m′ and π′ ∼= π ⊗ |det|it0 , for some
t0 ∈ R \ {0}, it is actually of interest to compute coefficients γπ,π′(k) (of the
Taylor series expansion (1.1) of L(s, π × π̃′) at s = 1), since they appear in
various arithmetic formulas. For example, coefficients γπ,π′(k) appear in the
arithmetic formula for the Li coefficients attached to L(s, π× π̃′) that is used
to formulate the Li criterion for the generalized Riemann hypothesis for the
Rankin-Selberg convolution in [27]. Expressing coefficients γπ,π′(k) in terms of
the Satake and Langlands parameters related to π and π′ enables one to relate
the generalized Riemann hypothesis to non-negativity of sequence of numbers
expressed only in terms of arithmetic parameters related to corresponding
representations, see Corollary 3.5. below.

Furthermore, the coefficients γπ,π′(k), k ≥ 0 are closely related to the
weighted Selberg orthogonality, since γπ,π′(k), k ≥ 0 are constant terms in
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the asymptotic expansion of the sum

∑

n≤x

Λπ,π′(n) logk n

n

as x→ ∞, where Λπ,π′(n) are coefficients in the Dirichlet series representation
of logarithmic derivative of L(s, π × π̃′), see formula (2.1) below.

As a corollary, assuming generalized form of the Hypothesis H of Rudnick
and Sarnak ([28]) posed in [10] in the case when m or m′ is greater than
four, we deduce the Selberg orthogonality conjecture for irreducible unitary
cuspidal representations π and π′ of GLm(EA) and GLm′(EA).

In the last section, we show that the main result of the paper holds true
if we replace the assumption that at least one of representations π or π′ is
self-contragredient by a weaker one.

2. Preliminaries

2.1. Rankin-Selberg L-functions. Let E be a Galois extension of Q of
degree l, and let EA denote the ring of adeles over E. For a finite place
v, let fp denote the modular degree of Ev over Qp for v|p. The automorphic
L−function attached to the irreducible cuspidal representation π of GLm(EA)
with unitary central character is defined for Res > 1 as the absolutely con-
vergent product of its local factors L(s, π) =

∏
v<∞

Lv(s, πv). In the case when

πv is unramified

Lv(s, πv) =

m∏

j=1

(1− απ(v, j)p
−fps)−1,

where απ(v, j) denote Satake parameters. The local factors at ramified places
v can be written in the same form, with the convention that some of απ(v, j)
may be zero.

For Res > 1, the logarithmic derivative of L(s, π) can be written as a
Dirichlet series

L′

L
(s, π) = −

∞∑

n=1

Λ(n)απ(n)

ns
,

where Λ(n) is the von Mangoldt function and

απ(p
kfp) =

∑

v|p

fp

m∑

j=1

απ(v, j)
k.

The local factors at infinite places are

Lv (s, πv) =

m∏

j=1

Γv(s+ µπ(v, j)),
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where {µπ(v, j)}mj=1 are the Langlands parameters associated to πv and

Γv(s) = π−s/2Γ(s/2), if v is real and Γv(s) = 2 (2π)−s Γ(s), if v is complex.
Analogously, the (finite part) Rankin-Selberg L-function attached to

the product π × π̃′ of irreducible cuspidal representations of GLm(EA) and
GLm′(EA) with unitary central character, respectively, is given, for Res > 1,
by the absolutely convergent Euler product of local factors L (s, π × π̃′) =∏

v<∞ Lv(s, πv × π̃′
v), see e.g. [15], where

Lp(s, π× π̃′) =
∏

v|p

Lv(s, πv × π̃′
v) =

∏

v|p

m∏

j=1

m′∏

k=1

(
1− απ(v, j)απ′(v, k)p−fps

)−1

and π̃ denotes the contragredient representation of π.
The logarithmic derivative of L (s, π × π̃′), for Res > 1, can be written as

the absolutely convergent series

(2.1) −L
′

L
(s, π × π̃′) = −

∞∑

n=1

Λ(n)απ×π̃′(n)

ns
= −

∞∑

n=1

Λπ,π′(n)

ns
,

where

απ×π̃′(prfp) =
∑

v|p

fp




m∑

j=1

απ(v, j)
r






m′∑

k=1

απ′(v, k)
r


 ,

and απ×π̃′(pr) = 0 if fp ∤ r.
Similarly, at the infinite place v ∈ S∞, the archimedean local factor

Lv(s, πv × π̃′
v) can be written as a product

Lv(s, πv × π̃′
v) =

m∏

j=1

m′∏

k=1

Γv(s+ µπ×π̃′(v, j, k)),

where µπ×π̃′(v, j, k) = µπ(v, j) + µπ′(v, k), at the infinite places v unramified
for both π and π′. In the case when infinite place v is ramified for π or
π′, parameters µπ×π̃′(v, j, k) are described in [28, Appendix], where it is also
proved that µπ×π̃′(v, j, k), j = 1, . . . ,m, k = 1, . . . ,m′ satisfy the trivial
bound Reµπ×π̃′(v, j, k) > −1.

As proved in [9,15,16,24,32–35] (see also [6, Th. 9.1. and Th. 9.2.]), the
completed Rankin-Selberg L-function

Λ(s, π × π̃′) = L(s, π × π̃′)
∏

v∈S∞

Lv(s, πv × π̃′
v)

extends to a meromorphic function of order 1 on the whole complex plane,
bounded (away from its possible poles) in vertical strips. It has simple poles
at s = 1 + it0 and s = it0, arising from L(s, π × π̃′) if and only if m = m′

and π′ ∼= π ⊗ |det|it0 , for some t0 ∈ R. Otherwise, it is an entire function.
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The functional equation satisfied by the Rankin-Selberg L−function can be
written as

(2.2) L(s, π × π̃′)Ψπ,π′(s) = L(1− s, π × π̃′),

where

Ψπ,π′(s) =
Q

s− 1
2

π×π̃′

ǫ (π × π̃′)

∏

v∈S∞

m∏

j=1

m′∏

k=1

Γv(s+ µπ×π̃′(v, j, k))

Γv

(
1− s+ µπ×π̃′(v, j, k)

) ,

Qπ×π̃′ > 0 is the arithmetic conductor, ǫ (π × π̃′) is a complex number of

modulus 1 and L(s, π × π̃′) = L(s, π × π̃′).
The zeros of Λ(s, π × π̃′) are called the non-trivial zeros of L(s, π × π̃′).

They lie in the strip 0 < Res < 1, see [31]. Function L(s, π × π̃′) may also
have trivial zeros, which arise from the poles of the local L−factors at infinite
places. There are finitely many of them inside the critical strip 0 ≤ Res ≤ 1,
at points s = −µπ×π̃′(v, j, k), for those v ∈ S∞, j ∈ {1, . . . ,m} and k ∈
{1, . . . ,m′} such that Reµπ×π̃′(v, j, k) ≤ 0.

Additionally, if at least one of representations π and π′ is self-contra-
gredient, function L(s, π × π̃′) possesses a Landau-type zero-free region

(2.3) Res > 1− C

log(QπQπ′(|t|+ 2))
, |t| ≥ 1,

where C is an explicit constant depending only on m and m′ and Qπ, Qπ′ are
analytic conductors of representations π and π′, respectively (see [8, 25, 29]).

2.2. The Prime Number Theorem for the Rankin-Selberg L−function.

The analogue of the Prime Number Theorem for the Rankin-Selberg L-func-
tion is a theorem which describes the asymptotic behavior of the sum

ψπ,π′(x) =
∑

n≤x

Λ(n)απ×π̃′(n) =
∑

n≤x

Λπ,π′(n)

as x→ ∞. It is the following theorem.

Theorem 2.1 ([10]). Let E be a Galois extension of Q of degree l. Let

π and π′ be irreducible cuspidal unitary representations of GLm(EA) and

GLm′(EA), respectively. Then,

(2.4) ψπ,π′(x) = δπ,π′(t0)
x1+it0

1 + it0
+ gπ,π′(x),

where

δπ,π′(t0) =

{
1, if m = m′ and π′ ∼= π ⊗ |det|it0 , for some t0 ∈ R;
0, otherwise,

and gπ,π′(x) = o(x), as x → ∞, if π′ ∼= π and gπ,π′(x) = O(x), as x → ∞,

otherwise. If we additionally assume that at least one of representations π
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or π′ is self-contragredient, then gπ,π′(x) = O
(
x exp

(
−c

√
log x

))
, for some

constant c > 0, as x→ ∞.

Proof. If π′ ∼= π, then ψπ,π′ ∼ x, by [10, Lemma 3.3.]. Application
of the Hölder inequality yields that |ψπ,π′(x)|2 ≤ |ψπ,π(x)||ψπ′,π′(x)| ≤ x2,
hence gπ,π′(x) = O(x), as x → ∞. If one of representations π and π′ is
self-contragredient the statement of theorem is proved in [10] by generalizing
result of Liu and Ye ([21]).

2.3. The Selberg orthogonality conjecture and Hypothesis H. The Sel-
berg orthogonality conjecture for automorphic L−functions on GLm(QA) was
posed by A. Selberg in [30]. It is the following conjecture.

The Selberg orthogonality conjecture for automorphic L−functions. For
any two automorphic irreducible cuspidal representations π and π′ ofGLm(QA)
and GLm′(QA)

∑

p≤x

απ(p)ᾱπ′(p)

p
= δπ,π′(0) log log x+O(1), as x→ ∞.

Z. Rudnick and P. Sarnak ([28]) have proved the Selberg orthogonality
conjecture in the case when π and π′ are equivalent, under the following
hypothesis on convergence of series of prime powers.

Hypothesis H. For any automorphic irreducible cuspidal representation π
of GLm(QA) and any fixed k ≥ 2

∑

p

|απ(p
k)|2 log2 p
pk

<∞.

The Hypothesis H was posed in order to deduce the behavior of a certain
sum over primes arising in the proof of the Selberg orthogonality conjecture
from the asymptotic formula for the sum over all integers.

The Hypothesis H was generalized to the setting of Galois extensions E
of degree l over Q by J. Liu and Y. Ye in [22]. We will refer to this hypothesis
as Hypothesis H over E.

Hypothesis H over E. For any automorphic irreducible cuspidal represen-
tation π of GLm(EA) with unitary central character and any fixed k ≥ 2

(2.5)
∑

p

log2 p

pkfp

∑

v|p

∣∣∣∣∣∣

m∑

j=1

αk
π(v, j)

∣∣∣∣∣∣

2

<∞.

Hypothesis H over E is trivial when m = 1, for m = 2 it is a consequence
of the bound |απ(v, j)| ≤ pfp/9 proved in [18]. When m = 3, Hypothesis H
over E is proved in [22, Appendix], and in the case m = 4, it is a consequence
of [17], as pointed out by Kim and Sarnak in [17, Appendix]. An immediate
consequence of equation (2.5) and the definition of Λπ,π′(n) is the following
lemma.
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Lemma 2.2. Let E be Galois extension of Q of finite degree l and let

π and π′ be two irreducible automorphic unitary cuspidal representations of

GLm(EA) and GLm′(EA), respectively. Then, for m,m′ ≤ 4 or under Hy-

pothesis H over E if m > 4 or m′ > 4

∑

n≤x

Λπ,π′(n)

n
=
∑

p≤x

fp log p

pfp

∑

v|p




m∑

j=1

απ(v, j)






m′∑

j=1

απ′(v, j)


+O(1),

as x→ ∞.

2.4. The Li coefficients for the Rankin-Selberg L−function. Generalized
Li coefficients for the Rankin-Selberg L−function L(s, π × π̃′) are defined as

λπ,π′(n) =
∑

ρ6=0

∗
(
1−

(
1− 1

ρ

)n)
,

where the sum is taken over all non-trivial zeros of the function L(s, π × π̃′)
and ∗means that the above sum is taken in the sense of the limit lim

T→∞

∑
|Imρ|≤T

.

In a general case of a number field E of degree l = [E : Q] , it is proved in
[27] that coefficients λπ,π′(n) are well defined for all integers n and that the
generalized Riemann hypothesis for the Rankin-Selberg L−function L(s, π ×
π̃′) is equivalent to non-negativity of numbers Reλπ,π′(n), for all n ∈ N.
Furthermore, an arithmetic expression for λπ,π′(n) is obtained, as stated in
the following theorem.

Theorem 2.3 ([27]). Let π and π′ be two automorphic unitary cuspidal

representations of GLm(EA) and GLm′(EA), respectively. Then, for all n ∈ N
and t0 ∈ R\{0}

λπ,π′(−n) =

n∑

j=1

(
n

j

)
γπ,π′(j − 1) +Dπ,π′(t0) + S∞(n, π, π′),(2.6)

where

Dπ,π′(t0) = δπ,π′(t0)

(
2−

(
1 +

1

it0

)n

−
(
1− 1

1− it0

)n)

and S∞(n, π, π′) denotes the archimedean contribution to the generalized Li

coefficient given by

S∞(n, π, π′) = δπ,π′(0) +
n

2
(logQπ×π̃′ − lmm′ log π)

− lmm′ +

lmm′∑

i=1

(
µπ×π̃′(i)

1 + µπ×π̃′(i)

)n

+

n∑

j=1

(
n

j

)
ηπ,π′(j − 1),
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where

ηπ,π′(0) =
1

2

lmm′∑

i=1

Γ′

Γ

(
3 + µπ×π̃′(i)

2

)

and

ηπ,π′(j − 1) =
(−1)j

2j

lmm′∑

i=1

∞∑

t=0

(
t+

3 + µπ×π̃′(i)

2

)−j

, for j ≥ 2.

Here, r1 is the number of real places, r2 is the number of complex places
and we put µπ×π̃′(i) = µπ×π̃′(v, j, k) for r1+r2 places v ∈ S∞ and µπ×π̃′(i) =
µπ×π̃′(v, j, k)+1 for the rest of r2 places v ∈ S∞ (j = 1, . . . ,m, k = 1, . . . ,m′).

An asymptotic expression for the archimedean contribution S∞(n, π, π′)
to the generalized Li coefficient λπ,π′(−n) is obtained in [27, Theorem 2], up
to a term O(n−k), for arbitrary k ∈ N, as n → ∞, where it was proved that
S∞(n, π, π′) grows as 1

2 lmm
′n logn, as n → ∞. Derivation of asymptotic

behavior as n→ ∞ of the non-archimedean (finite) contribution

(2.7) SNA(n, π, π
′) =

n∑

j=1

(
n

j

)
γπ,π′(j − 1) +Dπ,π′(t0)

to the generalized Li coefficient λπ,π′(−n) is an important open problem.
Combining Theorem 2 and Theorem 4 from [27] it is easy to see that, under
the generalized Riemann hypothesis SNA(n, π, π

′) = o(n), as n → ∞. In
general, it is very difficult to control the growth of SNA(n, π, π

′). Based on
numerical computations in some special cases (see e.g. [23]) it is conjectured
that the non-archimedean contribution oscillates with a small amplitude.

3. Main results

3.1. An arithmetic formula for the generalized Euler-Stieltjes constants.

Our main theorem gives an arithmetic formula for computation of coefficients

γπ,π′(k) in the Laurent series expansion (1.1) of the function L′

L (s, π × π̃′)
around s = 1.

In the proof we will need following lemmas.

Lemma 3.1. The following identity holds true

(3.1)

k∑

j=0

(−1)j+1 x
it0

it0

j∑

a=0

(−1)j−a

(it0)j−a

loga x

a!

logk−j x

(k − j)!
+

xit0

(it0)k+1
= 0,

for any x > 0, t0 ∈ R \ {0} and every non-negative integer k.

Proof. We compute coefficients that correspond to different powers of
logarithm, that range from 0 to k. For k − j + a = k, i.e. when a = j, the
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sum in (3.1) reduces to zero, by binomial theorem, since

k∑

j=0

(−1)j+1 x
it0

it0

logk x

j!(k − j)!
= −x

it0

it0

logk x

k!

k∑

j=0

(−1)j
k!

j!(k − j)!
= 0.

Therefore, the coefficient multiplying logk x is zero. Arguing in a similar
manner, we deduce that coefficients multiplying logk−j+a x in (3.1) are equal
to 0 for all k− j + a ranging from 1 to k. In the case when k− j + a = 0, the

corresponding coefficient in (3.1) is equal to − xit0

(it0)k+1 , which cancels with the

last term on the left hand side of (3.1). The proof is complete.

Lemma 3.2. Let E be Galois extension of Q of finite degree l and let

π and π′ be two irreducible automorphic unitary cuspidal representations of

GLm(EA) and GLm′(EA), respectively. Let ρ denote the non-trivial zeros

of L(s, π × π̃′), counted according to their multiplicities. Then, for positive

integers j and k

(i)

logj x
∑

ρ

∣∣∣∣
xρ−1

(ρ− 1)k+1

∣∣∣∣ = o(1), logj x
∑

ρ

∣∣∣∣
xρ−1

ρ(ρ− 1)

∣∣∣∣ = o(1),

as x→ ∞.

(ii) If, additionally at least one of representations π and π′ is self-contra-

gredient, then for T ∼ exp(
√
log x) such that T is not an imaginary

part of any non-trivial zero of L(s, π × π̃′) we have

max





∑

|Imρ|≤T

∣∣∣∣
xρ−1

(ρ− 1)k+1

∣∣∣∣ ,
∑

|Imρ|≤T

∣∣∣∣
xρ−1

ρ(ρ− 1)

∣∣∣∣




 = O(exp(−C
√
(log x))),

as x→ ∞, for some constant C > 0 independent of x.

Proof. (i) Non-vanishing of L(s, π× π̃′) on the line Res = 1 implies that

lim
x→∞

(logj x)
∣∣xρ−1

∣∣ = 0, hence to prove (i) it suffices to show that we may pass

to the limit inside the sums. Function L(s, π × π̃′) is of order one, hence the
series

∑
ρ
(ρ− 1)−(k+1) and

∑
ρ
(ρ(ρ− 1))−1 converge absolutely and dominate

the series

(3.2)
∑

ρ

∣∣xρ−1
∣∣ logj x

|ρ− 1|k+1
and

∑

ρ

∣∣xρ−1
∣∣

|ρ(ρ− 1)| .

Therefore, by Weierstrass theorem, the series (3.2) converge uniformly in x,
hence we may pass to the limit as x → ∞ inside the sums in (i). This
completes the proof.

(ii) Additional assumption that at least one of the representations π and
π′ is self-contagredient enables us to use Landau type zero free region and thus
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improve the error term in (i). Namely, (2.3) implies that for T ∼ exp
(√

log x
)

and Imρ ≤ T

∣∣xρ−1
∣∣≪ exp

(
−C log x

logT

)
≪ exp(−C

√
log x),

as x→ ∞, for some constant C > 0 independent on x and T . The statement
now follows from the absolute convergence of the series

∑
ρ
(ρ − 1)−(k+1) for

k ≥ 1 and the series
∑
ρ
(ρ(ρ− 1))−1.

Lemma 3.3. Let E be Galois extension of Q of finite degree l and let

π and π′ be two irreducible automorphic unitary cuspidal representations of

GLm(EA) and GLm′(EA), respectively. Let k be a positive integer.

(i) Let η denote trivial zeros of L(s, π × π̃′), counted according to their

multiplicities. Then

∑

0<Reη<1

xη−1

(η − 1)k+1
= O(x−δ),

∑

0<Reη<1

xη−1

η(η − 1)
= O(x−δ),

for some constant δ ∈ (0, 1), as x→ ∞.

(ii) For any ǫ > 0 and T > 1

−1−ǫ+iT∫

−1−ǫ−iT

(
−L

′

L
(s+ 1, π × π̃′)

xs

sk+1

)
ds = O

(
x−1−ǫ

)
,

as x→ ∞.

Proof. Since representations π and π′ are arbitrarily chosen, but fixed
in the sequel we denote the function L(s, π × π̃′) simply by L(s).

(i) The trivial zeros η of L(s) such that 0 < Reη < 1 are located at points
η = −µπ×π̃′(v, j, k), for µπ×π̃′(v, j, k) such that Reµπ×π̃′(v, j, k) ≤ 0. The
inequality Reµπ×π̃′(v, j, k) > −1 implies that Reη < 1, hence, there exists
δ > 0, such that Re(η − 1) ≤ −δ < 0. This completes the proof, since the
sums over trivial zeros are finite.

(ii) The functional equation (2.2) and the fact that Γ′

Γ (s) = O(log |s|), as
|s| → ∞ yields

−L
′

L
(−ǫ+ it) = O(log t) +O(1) = O(log t),
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as t→ ∞. Therefore, for k ≥ 1, one has

−1−ǫ+iT∫

−1−ǫ−iT

(
−L

′

L
(s+ 1)

xs

sk+1

)
ds ≪

T∫

−T

∣∣∣∣−
L′

L
(−ǫ+ it)

∣∣∣∣
x−1−ǫ

(−1− ǫ+ it)k+1
dt

≪ x−1−ǫ

T∫

1

log t

t2
dt = O

(
x−1−ǫ

)
,

as x→ ∞. The proof is complete.

Theorem 3.4. Let E be Galois extension of Q of finite degree l and let

π and π′ be two irreducible automorphic unitary cuspidal representations of

GLm(EA) and GLm′(EA), respectively and such that at least one of π or π′

is self-contragredient. Then for all integers k ≥ 0

(3.3)

γπ,π′(k) =
(−1)k+1

k!

(
∑

n≤x

Λπ,π′(n)

n
logk n− δπ,π′(0)

logk+1 x

k + 1

− δπ,π′(t0)Aπ,π′,k(t0, x)

)
+O

(
logk x exp

(
−C
√
log x

))
,

for some C > 0, as x→ ∞, where t0 ∈ R \ {0} and

Aπ,π′,k(t0, x) = k!



x
it0

it0

k∑

j=0

(−1)k−j

(it0)k−j

logj x

j!



 .

Proof. We denote the function L(s, π×π̃′) by L(s) and use the induction
in k.

In the special case when representations π and π′ are attached to
GLm(QA) and GLm′(QA), respectively, formula (3.3) with k = 0 is obtained
in [2, Proposition 4.1.]. The proof of (3.3) when k = 0, given in [2] is based
on evaluation of the integral

1

2πi

c+iT∫

c−iT

L′

L
(s+ 1)

xs

s(s+ 1)
ds,

for some positive constant c and T > 1 in two different ways combined
with the properties of the L-function appearing in the integrand. The L-
function attached to irreducible automorphic unitary cuspidal representations
of GLm(EA) and GLm′(EA) possesses all properties needed in the proof of
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[2, Theorem 2.1.], hence, repeating the steps of the proof we get

(3.4)

∑

n≤x

(
1− n

x

) Λπ,π′(n)

n
= δπ,π′(0)(log x− 1)− γπ,π′(0)

+ δπ,π′(t0)
xit0

it0(1 + it0)
+

∑

|Imρ|≤T

xρ−1

ρ(1− ρ)

+
∑

0<Reη<1

xη−1

η(1 − η)
+O

(
max

{
log x

x
,
xc

T

})
,

as T, x→ ∞, where c > 0 is arbitrary. Here, ρ denotes non-trivial zeros of L
and η denotes trivial zeros of L, all counted according to their multiplicities.
Application of the formula (2.4) and Lemma 3.3 (i) yields that

(3.5)

O



max




x
−δ,

xc

T
,
gπ,π′(x)

x
,
∑

|Imρ|≤T

∣∣∣∣
xρ−1

ρ(1− ρ)

∣∣∣∣










=
∑

n≤x

Λπ,π′(n)

n
− δπ,π′(0) log x+ γπ,π′(0)− δπ,π′(t0)

xit0

it0
,

as x→ ∞. Formula (3.5) holds true for representations π and π′ that are not
necessarily self-contragredient, since it is obtained by repeating the arguments
of [2, Theorem 2.1.] and using estimates that hold true for general π and π′.

Taking c = 1/ logx, T ∼ exp(
√
log x), applying Lemma 3.2 (ii) and The-

orem 2.1 to (3.5) we deduce that
(3.6)

O
(
exp(−C

√
log x)

)
=
∑

n≤x

Λπ,π′(n)

n
− δπ,π′(0) log x+γπ,π′(0)− δπ,π′(t0)

xit0

it0
,

as x→ 0, for some C > 0, which is exactly formula (3.3), for k = 0.
Let us now assume that k ≥ 1. We start with the integral

(3.7)
1

2πi

c+i∞∫

c−i∞

(
−L

′

L
(s+ 1)

xs

sk+1

)
ds,

that we evaluate in two different ways. Here, c is a positive real number and
x > 1 is not an integer.
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First, using series representation (2.1), integration by parts and integral
given in [37, p. 107] we write (3.7) as

(3.8)

1

2πi

c+i∞∫

c−i∞

(
−L

′

L
(s+ 1)

xs

sk+1

)
ds =

∑

n≤x

Λπ,π′(n)

n

1

k!

(
log

x

n

)k

=

k∑

j=0

(−1)j

j!(k − j)!




∑

n≤x

Λπ,π′(n)

n
logj n



 logk−j x.

On the other hand, integral (3.7) can be evaluated using contour integra-
tion. Namely,
(3.9)

1

2πi

c+i∞∫

c−i∞

(
−L

′

L
(s+ 1)

xs

sk+1

)
ds =

1

2πi

c+iT∫

c−iT

(
−L

′

L
(s+ 1)

xs

sk+1

)
ds+O

(
xc

T k

)
,

as x, T → ∞. The last integral is computed by integration along the bound-
aries of the rectangle Rc,T,ǫ with vertices c−iT , c+iT ,−1−ǫ+iT ,−1−ǫ−iT ,
where c, ǫ > 0 and T > 1 are chosen such that L(s + 1) has no zeros on
the boundaries and such that trivial zeros η of the function L(s) such that
0 < Reη < 1 are all trivial zeros of L inside the rectangle Rc,T,ǫ.

Let ρ and η denote non-trivial and trivial zeros of L(s), such that |Imρ| ≤
T and 0 < Reη < 1, respectively. Then, (ρ− 1) and (η− 1) are poles, counted
according to their multiplicities, of the integrand in (3.9) inside the rectangle
Rc,T,ǫ.

If π′ ∼= π, then s = 0 is a pole of order k + 2 and s = −1 is a simple pole

of the integrand in (3.9). If π′ ∼= π⊗|det|it0 , for some t0 ∈ R\{0}, then s = 0
is pole of order k + 1, while s = it0 and s = −1 + it0 are simple poles. When

π′ ≇ π⊗ |det|it0 , t0 ∈ R, point s = 0 is pole of order k+1 of the integrand in
(3.9).

If s = 0 is a pole of order k+1, its residue is easily found from the series
representation

−L
′

L
(s+ 1)

xs

sk+1
= −

(
∞∑

l=0

γπ,π′(l)sl

)(
∞∑

m=0

logm x

m!
sm

)
s−k−1

= −
∞∑

j=0

j∑

l=0

γπ,π′(l)
logj−l x

(j − l)!
sj−k−1

and thus

Res
s=0

(
−L

′

L
(s+ 1)

xs

sk+1

)
= −

k∑

l=0

γπ,π′(l)
logk−l x

(k − l)!
.
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In the case when s = 0 is a pole of order k + 2, i.e. in the case when π′ ∼= π,
there is an additional term in the residue that comes from the fact that in
this case

L′

L
(s+ 1) =

−1

s
+

∞∑

l=0

γπ,π′(l)sl,

therefore

Res
s=0

(
−L

′

L
(s+ 1)

xs

sk+1

)
= −

k∑

l=0

γπ,π′(l)
logk−l x

(k − l)!
+

logk+1 x

(k + 1)!
.

Application of the argument principle now yields

(3.10)

− 1

2πi

∫

Rc,T,ǫ

L′

L
(s+ 1)

xs

sk+1
ds

= −
∑

|Imρ|≤T

xρ−1

(ρ− 1)k+1
−

∑

0<Reη<1

xη−1

(η − 1)k+1
−

k∑

j=0

γπ,π′(j)
logk−j x

(k − j)!

+ δπ,π′(0)

(
logk+1 x

(k + 1)!
− (−1)k

x

)

+ δπ,π′(t0)

(
xit0

(it0)k+1
+

x−1+it0

(−1 + it0)k+1

)
.

It is easy to obtain that integrals over horizontal lines of the rectangle
Rc,T,ǫ are O(x

c/T ), as x, T → ∞, hence Lemma 3.3, together with (3.10) and
(3.9) yields that

(3.11)

1

2πi

c+i∞∫

c−i∞

(
−L

′

L
(s+ 1)

xs

sk+1

)
ds

= −
k∑

j=0

γπ,π′(j)
logk−j x

(k − j)!
+ δπ,π′(0)

logk+1 x

(k + 1)!
+ δπ,π′(t0)

xit0

(it0)k+1

+O


max





xc

T
, x−δ,

∑

|Imρ|≤T

∣∣∣∣
xρ−1

(ρ− 1)k+1

∣∣∣∣









as x, T → ∞. Equation (3.11) holds true for π and π′ that are not necessarily
self-contragredient.

Taking c = 1/ logx and T ∼ exp
(√

log x
)
and applying Lemma 3.2 (ii) to

(3.11) yields that there exists unique constant C independent of x and such
that the error term on the right hand side of (3.11) is O

(
exp

(
−C

√
log x

))
.
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Now, comparing (3.11) and (3.8) we get, for k ≥ 1

(3.12)

O
(
exp

(
−C
√
log x

))
= −δπ,π′(0)

logk+1 x

(k + 1)!
− δπ,π′(t0)

xit0

(it0)k+1

+

k∑

j=0

logk−j x

(k − j)!



γπ,π′(j) +
(−1)j

j!

∑

n≤x

Λπ,π′(n)

n
logj n



 ,

as x → ∞. Notice that the above formula reduces to relation (3.6) when
k = 0. Therefore, (3.12) holds true for all integers k ≥ 0.

Now, we proceed inductively in k. For k = 0 formula (3.6) is equivalent
to (3.3), hence the statement of theorem holds true for k = 0. Let k ≥ 1 and
assume that γπ,π′(j) for all j = 0, . . . , k − 1 are given by (3.3), as x → ∞.
Inserting (3.3) for j = 0, ..., k − 1 into (3.12) we get

(3.13)

O
(
logk x exp

(
−C
√
log x

))
= γπ,π′(k) +

(−1)k

k!

∑

n≤x

Λπ,π′(n)

n
logk n

+ δπ,π′(0)




k−1∑

j=0

logk−j x

(k − j)!

(−1)j logj+1 x

(j + 1)!
− logk+1 x

(k + 1)!





+ δπ,π′(t0)




k−1∑

j=0

logk−j x

(k − j)!
(−1)j

xit0

it0

j∑

l=0

(−1)j−l logl x

(it0)j−ll!
− xit0

(it0)k+1



,

as x→ ∞. Expressions multiplying δπ,π′(0) and δπ,π′(t0) can be considerably
simplified. Namely, since

1

(k + 1)!
=

k∑

j=0

(−1)j

(j + 1)!(k − j)!

we deduce that
k−1∑

j=0

logk−j x

(k − j)!

(−1)j logj+1 x

(j + 1)!
− logk+1 x

(k + 1)!
=

(−1)k+1 logk+1 x

(k + 1)!
,

while Lemma 3.1 implies that

k−1∑

j=0

logk−j x

(k − j)!
(−1)j

xit0

it0

j∑

l=0

(−1)j−l logl x

(it0)j−ll!
− xit0

(it0)k+1
=

(−1)k+1

k!
Aπ,π′,k(t0, x).

Therefore, formula (3.13) reduces to (3.3), thus, we conclude that (3.3) holds
true for all integers k ≥ 0. The proof is completed.

Inserting formula (3.3) into the formula for the non-archimedean contri-
bution to the nth generalized Li coefficient immediately yields the following
corollary.
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Corollary 3.5. Under assumptions of Theorem 3.4 the non-archimedean

contribution (2.7) to the generalized Li coefficient possesses the following,

arithmetic representation

SNA =

n∑

k=1

(
n

k

)
(−1)k

(k − 1)!

(
∑

n≤x

Λπ,π′(n)

n
logk−1 n− δπ,π′(0)

logk x

k

− δπ,π′(t0)Aπ,π′,k−1(t0, x)

)

+Dπ,π′(t0) +O

(
(log x+ 1)n

log x
exp

(
−C
√
log x

))
,

as x→ ∞, for some constant C > 0, n ∈ N and t0 ∈ R \ {0}.

Remark 3.6. Representations π and π′ in Theorem 2.1 and Theorem
3.4 are assumed to be arbitrary, but fixed. As t0 → 0, the representation
| det |it0 formally tends to a trivial representation, hence, the condition π′ ∼=
π ⊗ | det |it0 becomes π′ ∼= π. The statement of Theorem 2.1 agrees with
this formal observation as the statement in the case when t0 → 0 and π′ ∼=
π ⊗ | det |it0 reduces to the statement when t0 = 0 (i.e. π′ ∼= π).

Therefore, a question of behavior of constant γπ,π′(k) as t0 → 0 (in a
formal sense) arises naturally in this context.

When we formally let t0 → 0 in formula (3.3), when π′ ∼= π ⊗ | det |it0 we
may observe that

lim
t0→0

Aπ,π′,k(t0, x) = ∞,

hence (formally speaking) the constant γπ,π′(k) in the case when π′ ∼= π ⊗
| det |it0 does not tend to the constant γπ,π′(k) in the case when π′ ∼= π.

This might come as a surprise, specially, since the Prime Number Theorem
behaves continuously with respect to the formal limit t0 → 0 and yields that

lim
t0→0

(
Aπ,π′,j(t0, x)− j!

(−1)j

(it0)j+1

)
=

logj+1 x

j + 1
,

for all positive integers j.
On the other hand, in the case when π′ ∼= π ⊗ | det |it0 , for some t0 ∈

R\{0} we may normalize the Rankin-Selberg L−function L(s, π× π̃′) so that
it possesses a pole at s = 1, by a simple translation by it0. Namely, the
function Lt0(s, π× π̃′) := L(s+ it0, π× π̃′) in this case has a pole at s = 1; the
real parts of its zeros remain the same as real parts of zeros of the function
L(s, π× π̃′) and the Dirichlet series representation of its logarithmic derivative
for Res > 1 is

−L
′
t0

Lt0

(s, π × π̃′) =

∞∑

n=1

Λπ,π′(n)

ns+it0
.
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Therefore, repeating the steps of the proof of Theorem 3.4 with Lt0(s) instead
of L(s), we immediately deduce that constants γπ,π′,t0(k) in the Laurent series
expansion of Lt0(s, π × π̃′) around its pole s = 1 (or, equivalently, constants
arising in the Laurent series expansion of L(s, π × π̃′) around its pole s =
1 + it0) are given by

(3.14) γπ,π′,t0(k) =
(−1)k+1

k!
lim
x→∞



∑

n≤x

Λπ,π′(n)

n1+it0
logk n− logk+1 x

k + 1


 .

When we formally let t0 → 0 in (3.14), we see that the formal limit as
t0 → 0 of the kth constant term in the Laurent series expansion of L′(s)/L(s)
around its pole s = 1+ it0 (in the case when π′ ∼= π⊗| det |it0 , t0 ∈ R\{0}) is
equal to the kth constant term in the Laurent series expansion of L′(s)/L(s)
around its pole s = 1 (case π′ ∼= π).

3.2. Weighted Selberg orthogonality. In this section, we give precise state-
ments of results related to Selberg orthogonality that are immediate conse-
quence of our main result and its proof.

First, Theorem 3.4 and the evaluation of the constant γπ,π′(0) given in
the proof of Theorem 3.4 immediately imply the following corollary.

Corollary 3.7. Let E be Galois extension of Q of finite degree l and let

π and π′ be two irreducible automorphic unitary cuspidal representations of

GLm(EA) and GLm′(EA), respectively.

(i) Then

(3.15)

∑

n≤x

Λπ,π′(n)

n
= δπ,π′(0)(log x− 1)− γπ,π′(0)

+ δπ,π′(t0)
xit0

it0(1 + it0)
+
ψπ,π′(x)

x
+ o(1),

as x→ ∞.

(ii) Assume, additionally that at least one of π or π′ is self-contragredient.

Then, for all integers k ≥ 0

(3.16)

∑

n≤x

Λπ,π′(n)

n
logk n = (−1)k+1k!γπ,π′(k) + δ(0)

logk+1 x

k + 1

+ δπ,π′(t0)Aπ,π′,k(t0, x)

+O(logk x exp(−C
√
log x)),

as x→ ∞, where t0 ∈ R \ {0}.
Proof. (i) Letting c = 1/ logx and T → ∞ in (3.4) and applying Lemma

3.2 (i) and Lemma 3.3 (i) immediately yields formula (3.15).
(ii) Straightforward from (3.3).
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Remark 3.8. Statement (i) of the Corollary 3.7 is a generalization of
Theorem 2.1. from [2] to the setting of finite Galois extensions of Q.

In the case when k = 1 formula (3.16) is generalization of [11, Proposition
2.2], and therefore a generalization of the main result from [11] in two ways.
First, our method of proof enables us to obtain a unique formula for the sum
in (3.16) for all k ≥ 0 (while the result of [11] is given only for k = 1). Second,
our setting is slightly more general.

Furthermore, formula (3.15) enables us to remove the assumption that at
least one of representations π or π′ is self-contragredient in the proof of Selberg
orthogonality for irreducible automorphic unitary cuspidal representations of
GLm(EA) and GLm′(EA). Namely, the following proposition holds true.

Proposition 3.9. Let E be Galois extension of Q of finite degree l and
let π and π′ be two irreducible automorphic unitary cuspidal representations of

GLm(EA) and GLm′(EA), respectively. Assume additionally that m,m′ ≤ 4
or, otherwise assume Hypothesis H over E. Then

(i)

∑

p≤x

fp log p

pfp

∑

v|p




m∑

j=1

απ(v, j)






m′∑

l=1

απ′(v, l)


 = δπ,π′(0) log x+O(1),

as x→ ∞.

(ii)

∑

p≤x

fp
pfp

∑

v|p




m∑

j=1

απ(v, j)








m′∑

l=1

απ′(v, l)



 = δπ,π′(0) log log x+O(1),

as x→ ∞.

Proof. (i) When π′ ≡ π, then ψπ,π(x) ∼ x, as x → ∞ by [10, Lemma
3.3]. This, together with Hölder inequality yields the bound ψπ,π′(x)/x =
O(1), as x→ ∞. Therefore, (3.15) implies

∑

n≤x

Λπ,π′(n)

n
= δπ,π′(0) log x+O(1),

as x→ ∞. Now, the statement (i) follows from Lemma 2.2.
(ii) Application of Abel partial summation to (i) yields (ii).

4. Weakening conditions on π and π′

In this section we will prove that a weaker form of Theorem 3.4 holds true
if the assumption that one of representations π and π′ is self-contragredient
is replaced by the following assumption.
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Assumption PNT : The Prime Number Theorem (Theorem 2.1) holds true
with the error term gπ,π′(x) such that

gπ,π′(x) = O

(
x

logj x

)
, as x→ ∞,

for all j ∈ N.
We will prove the following theorem.

Theorem 4.1. Let E be Galois extension of Q of finite degree l and let

π and π′ be two irreducible automorphic unitary cuspidal representations of

GLm(EA) and GLm′(EA), respectively such that Assumption PNT holds true.

Then, for all integers k ≥ 0

(4.1)

γπ,π′(k) =
(−1)k+1

k!

(
∑

n<x

Λπ,π′(n)

n
logk n− δπ,π′(0)

logk+1 x

k + 1

− δπ,π′(t0)Aπ,π′,k(t0, x)

)
+O

(
x

logm x

)
,

for all positive integers m, as x→ ∞.

Proof. The assumption that one of representations π and π′ is self-
contragredient was used in the proof of Theorem 3.4 two times. First, we
used it in the case when k = 0 in order to deduce that the error term on
the left hand side of (3.6) is O(exp(−C√log x)), by applying Lemma 3.2 (ii)
to (3.5). In the case when π and π′ are not self-contragredient, we take
c = 1/ logx, let T → ∞, apply Assumption PNT, together with Lemma 3.2
(i) to the left hand side of (3.5) and deduce that the error term on the left

hand side of (3.6) is O(1/ logj x), for any positive integer j, which is exactly
the formula (4.1) for k = 0.

Second, the assumption that one of representations π and π′ is self-contra-
gredient was used in the case when k ≥ 1 in order to deduce that the error
term in (3.12) is O(exp(−C√log x)), by applying Lemma 3.2 (ii) to (3.11).
Taking c = 1/ logx, letting T → ∞ and applying Lemma 3.2 (i) to (3.11)
we get that formula (3.12) holds true with the left hand side replaced by

O(1/ logj x), for any positive integer j.
Now, it is easy to see that formula (3.13) holds true with the error term

on the left hand side replaced by O(logk x/ logj x), for any positive integer j.
Therefore, taking j = k+m, from the new form of equation (3.13) we deduce
that (4.1) holds true. The proof is complete.
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[1] M. Avdispahić and L. Smajlović, Euler constants for a Fuchsian group of the first

kind, Acta Arith. 131 (2008), 125–143.
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Department of Mathematics
University of Sarajevo
Zmaja od Bosne 35, 71 000 Sarajevo
Bosnia and Herzegovina
E-mail : almasa@pmf.unsa.ba

L. Smajlović
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