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FINITE p-GROUPS WHICH ARE NOT GENERATED BY
THEIR NON-NORMAL SUBGROUPS

ZVONIMIR JANKO

University of Heidelberg, Germany

ABSTRACT. Here we classify finite non-Dedekindian p-groups which
are not generated by their non-normal subgroups. (Theorem 1).

The purpose of this paper is to classify non-Dedekindian finite p-groups
which are not generated by their non-normal subgroups. It is surprising that
such p-groups must be of class 2 with a cyclic commutator subgroup.

We consider here only finite p-groups and our notation is standard (see
[1]). We prove the following result.

THEOREM 1. Let G be a non-Dedekindian p-group and let Gy be the
subgroup generated by all nonnormal subgroups of G, where we assume
Go < G. Then G is of class 2, G/Gy is cyclic and for each g € G — G,
{1} # (9) N Go <G and G/({g) N Go) is abelian so that G’ is cyclic.

PROOF. Since our group G has at least p (non-normal) conjugate cyclic
subgroups, it follows that the subgroup Gy is noncyclic. Let x € G—Gy. Then
(x) <G, by hypothesis, and so G’ centralizes (x). It follows from (G—Gy) = G
that G’ < Z(G) and so cl(G) = 2.

Let g € G — Gy. Then Z = (g) <« G. Write Zy = Z N Gyp; then Zj, being
the intersection of two G-invariant subgroups, is G-invariant. We claim that
G/Zy is Dedekindian. Indeed, let X/Zy be any proper subgroup in G/Z.
We have to show that X <« G. If X £ Gy, then X < G. Now assume that
X < Gy (the subgroup Gy is G-invariant). Then XZ = ZX is normal in G
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since X Z £ Gy. By the product formula, one has

Z||G
X ZGo| = | 2G| = ZIG0l.
| Zo|
On the other hand,
| XZ||Go| _ |X]|Z] |Gol | X
| ol XZNGo| |2 |XZn0Zo | o 1XZ NGl

which implies X = XZ N Gy < G, and we are done. We have proved that
G/Zy is Dedekindian. In particular, Zy # {1} since G is non-Dedekindian,
by hypothesis. If p > 2, then G/Zj is abelian and so G’ < Z; and G’ is
cyclic. If p = 2, then G/Zj is either abelian or Hamiltonian (= nonabelian
Dedekindian).

It follows from the above that Q1 (G) < Gp.

Now assume that p > 2. Amongst all elements in the set G—Gg, we choose
an element a of the smallest possible order. Then a? € Gy and G’ < (aP) (see
the previous paragraph). We set |G’| = p?, d > 1. Suppose that G/Gy is
not cyclic. Then there is b € G — (Go(a)) such that b» € G,. We have
(a) N (b) > G’ and o(b) > o(a) by the minimality of o(a). Set

l{a)/({a) N (B))| = p°, where s > 1 and o(a) > p?*.

Hence there is b’ € (b) — (a) such that a?" = (b')"P". In that case, since
cl(G) = 2, one obtains

(ab/)ps _ aps (b/)ps [bl, a]( » ) _ [bl, a] (P;)7
where s > 1,0(a) > p®** and ([b',a](p’j)> < G’ so that 0([b',a](p’;)) <pd Tt
follows that
o(ab’) < p®™* and so o(ab’) < o(a).

If b € (b?) < Go, then ab’ € G — Go. If (V') = (b, then ab’ € G — (Go{a))
and so again ab’ € G — Go. But this contradicts the minimality of o(a). We
have proved that in case p > 2, G/Gy is cyclic.

Suppose p = 2 and G/Gy is nonabelian. Then for each ¢ € G — Gy,
G/({g) N Go) is Hamiltonian (i.e., Dedekindian nonabelian). Let Q/G¢ be
a subgroup of G/Gy which is isomorphic to Qs and let R/G( be a unique
subgroup of order 2 in Q/Go. Then for each # € Q — R, 22> € R — Go. Let
a,b € Q — R be such that {(a,b) covers Q/R = E4. Note that (a) <G, (b) IG
and since {(a) N Gy # {1} and (b) N Gy # {1}, we get o(a) = 2%, s > 3, and
o(b) > 23. Because

[a,b] € R — Gy and [a,b] € (a) N (D),

we have

(a) N (b) = (a®) = (*) = ([a, b))
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But then C' = (a,b) is a 2-group of maximal class and order 2571 s > 3, and
in this case (a) is a unique cyclic subgroup of order 2° in C, contrary to the
fact that o(b) = 2°. We have proved that in case p = 2, G/Gp must be abelian
and so G' < Gy.

Suppose that G’ is noncyclic. By the above, p = 2 and for each g €
G —Go, {1} # (9)NGy <G, where G/({g) NGy) is Hamiltonian (=nonabelian
Dedekindian). Set D = (g) N Gy and R/D = (G/D)’ = Cy, where R = G'D.
We know that G < Gy (since G/Gp is abelian) and so R < Gy and G/R
is elementary abelian. In particular, G/Gg # {1} is elementary abelian and
(¢>) = D. Note that all quaternion subgroups in a Hamiltonian 2-group
X generate X. Hence there is a quaternion subgroup K/D = Qg in the
Hamiltonian group G/D such that K £ Gy. We have K > R and K/R >~ E,4
so that for each € K — R, 22 € R — D. We may choose some elements
a,b € K — Gy such that Q@ = (a,b) covers K/R and so  also covers K/D.
Note that (a) <G, (b) <G and [a,b] € R — D. Also,

[a,b] € (a) N (b) and so ([a,b]) = (a?) = (b*) = (a) N (b).

This gives |@ : Q'| = 4 and so (by a well known result of O. Taussky) @ is a 2-
group of maximal class with two distinct cyclic subgroups (a) and (b) of index
2. By inspection of 2-groups of maximal class (and noting that G is of class 2),
we get o(a) = o(b) = 4 and Q = Qg with Q' = (a®) = (b?). Hence K = Q x D
since @ <G and @ covers K/D = Qg. Also, (9) <G and Q@ N (g) = {1} and
so @ centralizes (g). The factor-group G/(a?) is Hamiltonian and so

o(g) =4, D= (g*) = Cy and G’ = (a?,¢*) 2 E4
since G’ covers (a2, g?)/(a?) and G’ is noncyclic. For each x € G,
z* € (a®) N (g?) = {1} and so exp(G) = 4.

Let K1/{a?) = Qg with K; £ Go. Then choose a;,b; € K; — G such
that (a1,b1) covers K1 /{a?). We get

Ql = <a1,b1> = Qg with Q ﬂQl = {1} and Qll = (a%> = <b%>,

s0 (@, Q1) = Q x Q1.
Set a2 =t, a? =t; and let x € Q — (t), z1 € Q1 — (t1) so that zz; is one of
36 elements of order 4 with (xx1)? = 2222 = tt;. We claim that (zz;) is not
normal in @ x Q1 and so zz1 € Gy. Indeed, let y € @ — (x) so that

1

(xx1)Y = 27 21 = (x21)t, where (zx1)t € (xw1).

But all these 36 elements of order 4 generate @ x Qi (of order 64) and so
Q x Q1 < Gy, a contradiction. We have proved that also in case p = 2, G’ is
cyclic.

In the following five paragraphs we assume that G/Gy is noncyclic. By
the above, p = 2 and G/G) is abelian.
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Assume that there are ai,a2 € G — Gy such that (a1) N (az) = {1}. We
know that G/({a1) N Gp) and G/({az2) N Gy) are Dedekindian and [a1,as] €
(a1) N {az2) = {1} and so (aj,az) is abelian. If both G/({a1) N Gp) and
G/({a2) N Gy) are abelian, then

G < ({a1) N Go) N ((az) N Go) = {1},

a contradiction. Assume for a moment that both G/({a1)NGo) and G/({az)N
Gy) are Hamiltonian. Then for each z € G,

z* € ((a1) N Go) N ({az) N Go) = {1} and so exp(G) = 4.
In particular,
o(a1) = o(ag) = 4, (a?,a2) = By with (a?,a3) < Z(G).
We have

G’ < (a2, a2), G’ covers (a?,a3)/(a?) and (a?,a3)/(a2) and G’ is cyclic

and so G’ = (a%a3). For each

x €@, lag,z] € (az) NG = {1} and so as < Z(G).

But then in the Hamiltonian 2-group G/(a?) the element ({az2)(a?))/(a?) =
Cy4 of order 4 lies in its center, a contradiction. We have proved that if
ai,az € G — Go are such that (a1) N {az) = {1}, then one of G/({a1) N Gy)
and G/({az2) N Gp) is abelian and the other one is Hamiltonian.

Assume in addition that (Go (a1, az2))/Go is noncyclic. Set Q1 ({a1)) = (t1)
and Q1 ((az)) = (t2) so that (t1,t2) = E4 and (t1,t2) < Z(G). Without loss of
generality we may suppose that G/({a1) N Gp) is abelian and G/({az2) N Gy)
is Hamiltonian. Since G/Gy is elementary abelian, we get

o(a;) =4, G’ = (a?) = Cy and 1 # a3 € Gy,

It follows that (Go{a1,a2))/Go = E4. Let a} be an element of order 4 in (as)
so that

(arab)? = a?(ah)? = t1ty and araly € G — Gy.
But then (a1), (a2), (a1ah) are three cyclic subgroups in G which are not
contained in Gy and they have pairwise a trivial intersection. By the previous
paragraph, this is not possible. We have proved that whenever a1,a2 € G—Gy
are such that ((a1, a2)Go)/Go is noncyclic, then (a1) N {(a2) # {1}.

Let E/Gy be a four-subgroup in the noncyclic abelian group G/Gy.
Amongst all elements in F — Gy choose an element a of the smallest pos-
sible order 2°. We have s > 2 since a? # 1. Set F = Gp{a) and let b be any
element in F — F' so that o(b) > 2°. By the above, D = (a) N (b) # {1}. Let
b’ be an element of order 2° in (b) such that

a®" = ()%, where |(a) : D| = |(t/) : D| = 2", n > 1,

n

and D = (a®") = ((1)?").
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We compute
(ab/)Qn = a2” (b/)Q” [b/, a](2;) _ [b/, a]2”71(2n71),
where ab’ € B — G and [, a] € D.

Since a was an element of the smallest possible order in the set of all elements
in £ — Gy, we get

n=1, a*> € D, and ([t/,a]) = D # {1}.
On the other hand,
[b,a]* = [b,a®] = 1 and so [b?,a] = [b,a)? = 1.

Hence, if b’ € (b?) (in case o(b) > o(a) = 2°), we get [’,a] = 1 and so D = {1},
a contradiction. It follows that

o(a) = o(b) = 2* and ([b,a]) = D = Cy. where D = (a®) = (b?).

Hence
s=2, ola) =0(b) =4, and Q = (a,b) = Qs.

We have proved that all elements in £ — F' are of order 4 and each such element
has the same square a?. We know that G’ is cyclic, G’ < Gy, G’ < Z(G) and
G' > (a®) = (a,b)’. Suppose that G’ > (a?) and let z € G’ — (a?®) be such
that 22 = a2, where [z,a] = 1. But then za is an involution in E — Gy, a
contradiction. Hence G’ = (a?) = Cy. Since all elements in E — F are of
order 4 and they generate E and E' = (a?) = C,, we get exp(G) = 4. In
particular, all elements in F' — Gy are of order 4 and let y € F — Gy. Then
y is also of the smallest possible order 4 in F — Gy. By repeating the above
argument with the element y (instead of a),we get that for each b € E — F,
b? = y? and so y? = a®. We have proved that for each € E — Gg, 2% = a>.
For any z,y € G,

[2%,y] = [z,y]* = 1 since G’ = (a?) = Cs.

Hence U1(G) < Z(G).
Let ¢ be an element of order 4 in Gy. Then

ac € E — Gy and so a* = (ac)? = a*c*[c, d]

implying ¢ = [a, c] € (a®) and ¢* = a®.

But then (¢) < G and so there is b € E — G which centralizes (c). It follows
that bc is an involution in E — Gy, a contradiction. We have proved that G is
elementary abelian. If Gy £ Z(E), then there are t € Go—(a?) and 2 € E—G)
such that [t,x] = a® = 2%. But then (¢,7) = Dg and so there are involutions
in (¢,z) — Gy, a contradiction. We have proved that E is Hamiltonian and so
E # G because G is not Dedekindian.

Let v € G — E be such that v? € E. Since U1(G) < Z(G), we get
1 # v? € Z(E) = Go. Then, by the above, (v) N {a) # {1} and so v? = a?.
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Let a,b € E — Gy be such that (a,b) covers E/Gy. Because there are no
involutions in G — Gy, we have

[v,a] = [v,b] = [a,b] = a® and [v,ab] = [v,a] = [v,b] = a®a® = a* = 1.
But then (ab)? = v? = a? implies that (ab)v is an involution in G — Gy, a final
contradiction. We have proved that also in case p = 2, G/Gj is cyclic.

Suppose that p = 2 and there is ¢ € G — G such that G/({g) N Gy) is
Hamiltonian. We set D = (g) NGy # {1} and note that G’ < G implies that
G /G is elementary abelian. But G/Gy is also cyclic and so |G : Go| = 2. We
get g2 € Go and so D = (g2) # {1}. Since the Hamiltonian group G/D is
generated by its quaternion subgroups, there is a quaternion subgroup K/D
in G/D such that K £ Gy. Let a,b € K — Gy be such that Q = (a, b) covers
K/D, where ab € Gy. Let R/D be a unique subgroup of order 2 in K/D so
that R < Gy and G’ covers R/D. We have

a>€ R—D, b’ R—D, (ab)> € R— D, and [a,b] € R — D.

On the other hand,

[a,b] € (a) N (b) and so (a) N (b) = (a?) = (b*) = ([a, ]]).
Since Q/Q’ = Ey4, @ is of maximal class (by O. Taussky) and since @ has two
distinct cyclic subgroups (a) and (b) of index 2, we get

Q = Qs, o(a) = o(b) =4, ([a,b]) = C2, QN (g%) = {1}

and so (@, (g)) = Q x (g).
Also,

G' < R and G’ > {[a,b]) = Cy,

and so the fact that G’ is cyclic implies G’ N (g?) = {1}. It follows

)=
G' = ([a,b]) = (a®) = Gy
and for any z,y € G,
[2%,y] = [z, y)* = 1 implying T,G) < Z(G).
Since G’ N {g) = {1}, we have (g) < Z(G) and so G = Gy * (g) gives that Gg

is nonabelian. We have ab € Gy and so abg ¢ Gy which implies (abg) < G.
We compute

(abg)® = (ab)?¢* = a*g”.
If g* # 1, then
(abg)* = g* # 1 and so G’ = (a?) £ (abg).
If g* = 1,then a?¢? is an involution distinct from a? and so again G’ £ (abg).
It follows that in any case G’ £ (abg) and so (abg) < Z(G). But then

ab € Z(G) giving Cy = {ab) < Z(Q),

a contradiction. We have proved that for each g € G — Gy, G/({9) N Gyp) is
abelian. Our theorem is proved. O
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