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Abstract. Here we classify finite non-Dedekindian p-groups which
are not generated by their non-normal subgroups. (Theorem 1).

The purpose of this paper is to classify non-Dedekindian finite p-groups
which are not generated by their non-normal subgroups. It is surprising that
such p-groups must be of class 2 with a cyclic commutator subgroup.

We consider here only finite p-groups and our notation is standard (see
[1]). We prove the following result.

Theorem 1. Let G be a non-Dedekindian p-group and let G0 be the

subgroup generated by all nonnormal subgroups of G, where we assume

G0 < G. Then G is of class 2, G/G0 is cyclic and for each g ∈ G − G0,

{1} 6= 〈g〉 ∩G0 EG and G/(〈g〉 ∩G0) is abelian so that G′ is cyclic.

Proof. Since our group G has at least p (non-normal) conjugate cyclic
subgroups, it follows that the subgroup G0 is noncyclic. Let x ∈ G−G0. Then
〈x〉EG, by hypothesis, and so G′ centralizes 〈x〉. It follows from 〈G−G0〉 = G
that G′ ≤ Z(G) and so cl(G) = 2.

Let g ∈ G −G0. Then Z = 〈g〉 ⊳ G. Write Z0 = Z ∩ G0; then Z0, being
the intersection of two G-invariant subgroups, is G-invariant. We claim that
G/Z0 is Dedekindian. Indeed, let X/Z0 be any proper subgroup in G/Z0.
We have to show that X ⊳ G. If X 6≤ G0, then X E G. Now assume that
X < G0 (the subgroup G0 is G-invariant). Then XZ = ZX is normal in G
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since XZ 6≤ G0. By the product formula, one has

|XZG0| = |ZG0| =
|Z||G0|

|Z0|
.

On the other hand,

|XZG0| =
|XZ||G0|

|XZ ∩G0|
=

|X ||Z|

|Z0|
·

|G0|

|XZ ∩ Z0|
= |XZG0| ·

|X |

|XZ ∩G0|

which implies X = XZ ∩ G0 ⊳ G, and we are done. We have proved that
G/Z0 is Dedekindian. In particular, Z0 6= {1} since G is non-Dedekindian,
by hypothesis. If p > 2, then G/Z0 is abelian and so G′ ≤ Z0 and G′ is
cyclic. If p = 2, then G/Z0 is either abelian or Hamiltonian (= nonabelian
Dedekindian).

It follows from the above that Ω1(G) ≤ G0.
Now assume that p > 2. Amongst all elements in the setG−G0, we choose

an element a of the smallest possible order. Then ap ∈ G0 and G′ ≤ 〈ap〉 (see
the previous paragraph). We set |G′| = pd, d ≥ 1. Suppose that G/G0 is
not cyclic. Then there is b ∈ G − (G0〈a〉) such that bp ∈ G0. We have
〈a〉 ∩ 〈b〉 ≥ G′ and o(b) ≥ o(a) by the minimality of o(a). Set

|〈a〉/(〈a〉 ∩ 〈b〉)| = ps, where s ≥ 1 and o(a) ≥ pd+s.

Hence there is b′ ∈ 〈b〉 − 〈a〉 such that ap
s

= (b′)−ps

. In that case, since
cl(G) = 2, one obtains

(ab′)p
s

= ap
s

(b′)p
s

[b′, a](
p
s

2
) = [b′, a](

p
s

2
),

where s ≥ 1, o(a) ≥ pd+s and 〈[b′, a](
p
s

2
)〉 < G′ so that o([b′, a](

p
s

2
)) < pd. It

follows that

o(ab′) < pd+s and so o(ab′) < o(a).

If b′ ∈ 〈bp〉 ≤ G0, then ab′ ∈ G−G0. If 〈b
′〉 = 〈b〉, then ab′ ∈ G− (G0〈a〉)

and so again ab′ ∈ G−G0. But this contradicts the minimality of o(a). We
have proved that in case p > 2, G/G0 is cyclic.

Suppose p = 2 and G/G0 is nonabelian. Then for each g ∈ G − G0,
G/(〈g〉 ∩ G0) is Hamiltonian (i.e., Dedekindian nonabelian). Let Q/G0 be
a subgroup of G/G0 which is isomorphic to Q8 and let R/G0 be a unique
subgroup of order 2 in Q/G0. Then for each x ∈ Q − R, x2 ∈ R − G0. Let
a, b ∈ Q−R be such that 〈a, b〉 covers Q/R ∼= E4. Note that 〈a〉EG, 〈b〉EG
and since 〈a〉 ∩ G0 6= {1} and 〈b〉 ∩ G0 6= {1}, we get o(a) = 2s, s ≥ 3, and
o(b) ≥ 23. Because

[a, b] ∈ R−G0 and [a, b] ∈ 〈a〉 ∩ 〈b〉,

we have

〈a〉 ∩ 〈b〉 = 〈a2〉 = 〈b2〉 = 〈[a, b]〉.
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But then C = 〈a, b〉 is a 2-group of maximal class and order 2s+1, s ≥ 3, and
in this case 〈a〉 is a unique cyclic subgroup of order 2s in C, contrary to the
fact that o(b) = 2s. We have proved that in case p = 2, G/G0 must be abelian
and so G′ ≤ G0.

Suppose that G′ is noncyclic. By the above, p = 2 and for each g ∈
G−G0, {1} 6= 〈g〉∩G0EG, where G/(〈g〉∩G0) is Hamiltonian (=nonabelian
Dedekindian). Set D = 〈g〉 ∩G0 and R/D = (G/D)′ ∼= C2, where R = G′D.
We know that G′ ≤ G0 (since G/G0 is abelian) and so R ≤ G0 and G/R
is elementary abelian. In particular, G/G0 6= {1} is elementary abelian and
〈g2〉 = D. Note that all quaternion subgroups in a Hamiltonian 2-group
X generate X . Hence there is a quaternion subgroup K/D ∼= Q8 in the
Hamiltonian group G/D such that K 6≤ G0. We have K > R and K/R ∼= E4

so that for each x ∈ K − R, x2 ∈ R − D. We may choose some elements
a, b ∈ K − G0 such that Q = 〈a, b〉 covers K/R and so Q also covers K/D.
Note that 〈a〉EG, 〈b〉EG and [a, b] ∈ R−D. Also,

[a, b] ∈ 〈a〉 ∩ 〈b〉 and so 〈[a, b]〉 = 〈a2〉 = 〈b2〉 = 〈a〉 ∩ 〈b〉.

This gives |Q : Q′| = 4 and so (by a well known result of O. Taussky) Q is a 2-
group of maximal class with two distinct cyclic subgroups 〈a〉 and 〈b〉 of index
2. By inspection of 2-groups of maximal class (and noting that G is of class 2),
we get o(a) = o(b) = 4 and Q ∼= Q8 with Q′ = 〈a2〉 = 〈b2〉. Hence K = Q×D
since Q EG and Q covers K/D ∼= Q8. Also, 〈g〉EG and Q ∩ 〈g〉 = {1} and
so Q centralizes 〈g〉. The factor-group G/〈a2〉 is Hamiltonian and so

o(g) = 4, D = 〈g2〉 ∼= C2 and G′ = 〈a2, g2〉 ∼= E4

since G′ covers 〈a2, g2〉/〈a2〉 and G′ is noncyclic. For each x ∈ G,

x4 ∈ 〈a2〉 ∩ 〈g2〉 = {1} and so exp(G) = 4.

Let K1/〈a
2〉 ∼= Q8 with K1 6≤ G0. Then choose a1, b1 ∈ K1 − G0 such

that 〈a1, b1〉 covers K1/〈a
2〉. We get

Q1 = 〈a1, b1〉 ∼= Q8 with Q ∩Q1 = {1} and Q′

1 = 〈a21〉 = 〈b21〉,

so 〈Q,Q1〉 = Q ×Q1.

Set a2 = t, a21 = t1 and let x ∈ Q − 〈t〉, x1 ∈ Q1 − 〈t1〉 so that xx1 is one of
36 elements of order 4 with (xx1)

2 = x2x2
1 = tt1. We claim that 〈xx1〉 is not

normal in Q ×Q1 and so xx1 ∈ G0. Indeed, let y ∈ Q− 〈x〉 so that

(xx1)
y = x−1x1 = (xx1)t, where (xx1)t 6∈ 〈xx1〉.

But all these 36 elements of order 4 generate Q × Q1 (of order 64) and so
Q×Q1 ≤ G0, a contradiction. We have proved that also in case p = 2, G′ is
cyclic.

In the following five paragraphs we assume that G/G0 is noncyclic. By
the above, p = 2 and G/G0 is abelian.
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Assume that there are a1, a2 ∈ G − G0 such that 〈a1〉 ∩ 〈a2〉 = {1}. We
know that G/(〈a1〉 ∩ G0) and G/(〈a2〉 ∩ G0) are Dedekindian and [a1, a2] ∈
〈a1〉 ∩ 〈a2〉 = {1} and so 〈a1, a2〉 is abelian. If both G/(〈a1〉 ∩ G0) and
G/(〈a2〉 ∩G0) are abelian, then

G′ ≤ (〈a1〉 ∩G0) ∩ (〈a2〉 ∩G0) = {1},

a contradiction. Assume for a moment that both G/(〈a1〉∩G0) and G/(〈a2〉∩
G0) are Hamiltonian. Then for each x ∈ G,

x4 ∈ (〈a1〉 ∩G0) ∩ (〈a2〉 ∩G0) = {1} and so exp(G) = 4.

In particular,

o(a1) = o(a2) = 4, 〈a21, a
2
2〉

∼= E4 with 〈a21, a
2
2〉 ≤ Z(G).

We have

G′ ≤ 〈a21, a
2
2〉, G′ covers 〈a21, a

2
2〉/〈a

2
1〉 and 〈a21, a

2
2〉/〈a

2
2〉 and G′ is cyclic

and so G′ = 〈a21a
2
2〉. For each

x ∈ G, [a2, x] ∈ 〈a2〉 ∩G′ = {1} and so a2 ≤ Z(G).

But then in the Hamiltonian 2-group G/〈a21〉 the element (〈a2〉〈a
2
1〉)/〈a

2
1〉

∼=
C4 of order 4 lies in its center, a contradiction. We have proved that if
a1, a2 ∈ G − G0 are such that 〈a1〉 ∩ 〈a2〉 = {1}, then one of G/(〈a1〉 ∩ G0)
and G/(〈a2〉 ∩G0) is abelian and the other one is Hamiltonian.

Assume in addition that (G0〈a1, a2〉)/G0 is noncyclic. Set Ω1(〈a1〉) = 〈t1〉
and Ω1(〈a2〉) = 〈t2〉 so that 〈t1, t2〉 ∼= E4 and 〈t1, t2〉 ≤ Z(G). Without loss of
generality we may suppose that G/(〈a1〉 ∩ G0) is abelian and G/(〈a2〉 ∩ G0)
is Hamiltonian. Since G/G0 is elementary abelian, we get

o(a1) = 4, G′ = 〈a21〉
∼= C2 and 1 6= a22 ∈ G0.

It follows that (G0〈a1, a2〉)/G0
∼= E4. Let a

′

2 be an element of order 4 in 〈a2〉
so that

(a1a
′

2)
2 = a21(a

′

2)
2 = t1t2 and a1a

′

2 ∈ G−G0.

But then 〈a1〉, 〈a2〉, 〈a1a
′

2〉 are three cyclic subgroups in G which are not
contained in G0 and they have pairwise a trivial intersection. By the previous
paragraph, this is not possible. We have proved that whenever a1, a2 ∈ G−G0

are such that (〈a1, a2〉G0)/G0 is noncyclic, then 〈a1〉 ∩ 〈a2〉 6= {1}.
Let E/G0 be a four-subgroup in the noncyclic abelian group G/G0.

Amongst all elements in E − G0 choose an element a of the smallest pos-
sible order 2s. We have s ≥ 2 since a2 6= 1. Set F = G0〈a〉 and let b be any
element in E − F so that o(b) ≥ 2s. By the above, D = 〈a〉 ∩ 〈b〉 6= {1}. Let
b′ be an element of order 2s in 〈b〉 such that

a2
n

= (b′)−2n , where |〈a〉 : D| = |〈b′〉 : D| = 2n, n ≥ 1,

and D = 〈a2
n

〉 = 〈(b′)2
n

〉.



FINITE p-GROUPS 113

We compute

(ab′)2
n

= a2
n

(b′)2
n

[b′, a](
2
n

2
) = [b′, a]2

n−1(2n−1),

where ab′ ∈ E −G0 and [b′, a] ∈ D.

Since a was an element of the smallest possible order in the set of all elements
in E −G0, we get

n = 1, a2 ∈ D, and 〈[b′, a]〉 = D 6= {1}.

On the other hand,

[b, a]2 = [b, a2] = 1 and so [b2, a] = [b, a]2 = 1.

Hence, if b′ ∈ 〈b2〉 (in case o(b) > o(a) = 2s), we get [b′, a] = 1 and soD = {1},
a contradiction. It follows that

o(a) = o(b) = 2s and 〈[b, a]〉 = D ∼= C2. where D = 〈a2〉 = 〈b2〉.

Hence

s = 2, o(a) = o(b) = 4, and Q = 〈a, b〉 ∼= Q8.

We have proved that all elements in E−F are of order 4 and each such element
has the same square a2. We know that G′ is cyclic, G′ ≤ G0, G

′ ≤ Z(G) and
G′ ≥ 〈a2〉 = 〈a, b〉′. Suppose that G′ > 〈a2〉 and let x ∈ G′ − 〈a2〉 be such
that x2 = a2, where [x, a] = 1. But then xa is an involution in E − G0, a
contradiction. Hence G′ = 〈a2〉 ∼= C2. Since all elements in E − F are of
order 4 and they generate E and E′ = 〈a2〉 ∼= C2, we get exp(G) = 4. In
particular, all elements in F − G0 are of order 4 and let y ∈ F − G0. Then
y is also of the smallest possible order 4 in E − G0. By repeating the above
argument with the element y (instead of a),we get that for each b ∈ E − F ,
b2 = y2 and so y2 = a2. We have proved that for each x ∈ E −G0, x

2 = a2.
For any x, y ∈ G,

[x2, y] = [x, y]2 = 1 since G′ = 〈a2〉 ∼= C2.

Hence ℧1(G) ≤ Z(G).
Let c be an element of order 4 in G0. Then

ac ∈ E −G0 and so a2 = (ac)2 = a2c2[c, a]

implying c2 = [a, c] ∈ 〈a2〉 and c2 = a2.

But then 〈c〉EG and so there is b ∈ E −G0 which centralizes 〈c〉. It follows
that bc is an involution in E−G0, a contradiction. We have proved that G0 is
elementary abelian. If G0 6≤ Z(E), then there are t ∈ G0−〈a2〉 and x ∈ E−G0

such that [t, x] = a2 = x2. But then 〈t, x〉 ∼= D8 and so there are involutions
in 〈t, x〉 −G0, a contradiction. We have proved that E is Hamiltonian and so
E 6= G because G is not Dedekindian.

Let v ∈ G − E be such that v2 ∈ E. Since ℧1(G) ≤ Z(G), we get
1 6= v2 ∈ Z(E) = G0. Then, by the above, 〈v〉 ∩ 〈a〉 6= {1} and so v2 = a2.
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Let a, b ∈ E − G0 be such that 〈a, b〉 covers E/G0. Because there are no
involutions in G−G0, we have

[v, a] = [v, b] = [a, b] = a2 and [v, ab] = [v, a] = [v, b] = a2a2 = a4 = 1.

But then (ab)2 = v2 = a2 implies that (ab)v is an involution in G−G0, a final
contradiction. We have proved that also in case p = 2, G/G0 is cyclic.

Suppose that p = 2 and there is g ∈ G − G0 such that G/(〈g〉 ∩ G0) is
Hamiltonian. We set D = 〈g〉∩G0 6= {1} and note that G′ ≤ G0 implies that
G/G0 is elementary abelian. But G/G0 is also cyclic and so |G : G0| = 2. We
get g2 ∈ G0 and so D = 〈g2〉 6= {1}. Since the Hamiltonian group G/D is
generated by its quaternion subgroups, there is a quaternion subgroup K/D
in G/D such that K 6≤ G0. Let a, b ∈ K −G0 be such that Q = 〈a, b〉 covers
K/D, where ab ∈ G0. Let R/D be a unique subgroup of order 2 in K/D so
that R ≤ G0 and G′ covers R/D. We have

a2 ∈ R−D, b2 ∈ R−D, (ab)2 ∈ R−D, and [a, b] ∈ R−D.

On the other hand,

[a, b] ∈ 〈a〉 ∩ 〈b〉 and so 〈a〉 ∩ 〈b〉 = 〈a2〉 = 〈b2〉 = 〈[a, b]〉.

Since Q/Q′ ∼= E4, Q is of maximal class (by O. Taussky) and since Q has two
distinct cyclic subgroups 〈a〉 and 〈b〉 of index 2, we get

Q ∼= Q8, o(a) = o(b) = 4, 〈[a, b]〉 ∼= C2, Q ∩ 〈g2〉 = {1}

and so 〈Q, 〈g〉〉 = Q× 〈g〉.

Also,
G′ ≤ R and G′ ≥ 〈[a, b]〉 ∼= C2,

and so the fact that G′ is cyclic implies G′ ∩ 〈g2〉 = {1}. It follows

G′ = 〈[a, b]〉 = 〈a2〉 ∼= C2

and for any x, y ∈ G,

[x2, y] = [x, y]2 = 1 implying ℧1G) ≤ Z(G).

Since G′ ∩ 〈g〉 = {1}, we have 〈g〉 ≤ Z(G) and so G = G0 ∗ 〈g〉 gives that G0

is nonabelian. We have ab ∈ G0 and so abg 6∈ G0 which implies 〈abg〉 E G.
We compute

(abg)2 = (ab)2g2 = a2g2.

If g4 6= 1, then

(abg)4 = g4 6= 1 and so G′ = 〈a2〉 6≤ 〈abg〉.

If g4 = 1,then a2g2 is an involution distinct from a2 and so again G′ 6≤ 〈abg〉.
It follows that in any case G′ 6≤ 〈abg〉 and so 〈abg〉 ≤ Z(G). But then

ab ∈ Z(G) giving C4
∼= 〈ab〉 ≤ Z(Q),

a contradiction. We have proved that for each g ∈ G − G0, G/(〈g〉 ∩ G0) is
abelian. Our theorem is proved.
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