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ON THE ALMOST CONVERGENCE OF DOUBLE

SEQUENCES

Davor Butković

University of Zagreb, Croatia

Abstract. We find necessary and sufficient conditions for transfor-
mations of double sequences almost convergent in the sense of G. H. Hardy
to double sequences convergent in the sense of F. Pringsheim. The results
extend the work of F. Móricz and B. E. Rhoades on transformations of
sequences almost convergent in the Pringsheim’s sense.

The first definitions and investigations of the convergence of double se-
quences are usually atributted to F. Pringsheim, who studied such sequences
and series more than hundred years ago (see [1, p. 78]). Pringsheim defined
what we call the P limit and gave examples of convergence (P convergence) of
double sequences with and without the usual convergence of rows and columns
([13, pp. 104–112]). G. H. Hardy ([6]) considered in more details the case of
convergence of double sequences where, besides the existence of the P limit,
rows and columns converge. F. Móricz discovered an alternative approach to
the Hardy convergence, which significantly influenced the whole theory ([9]–
[11]; cf. [2]). Moreover, following G. G. Lorentz ([7]), F. Móricz and B. E.
Rhoades found necessary and sufficient (N.S.) conditions under which P al-
most convergent double sequences are transformed into P convergent double
sequences ([12, Theorem 1, p. 285]).

In a previous paper [3] the author of this article found conditions un-
der which double sequences almost convergent in the Hardy (H ) sense are
transformed into P convergent double sequences. The results were not com-
pletely satisfactory because they were obtained under a uniformity condition
inherited from the usual H convergence (cf. [3, p. 252] and [14, p. 14]).
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In this paper we have N.S. conditions for transformations of double se-
quences that H almost converge without any further restriction. These con-
ditions are the same as the Móricz-Rhoades conditions for transformations
of P almost convergent double sequences. Uniformities of row or column
convergence now give various particular cases. Moreover, we have results on
transformations of double sequences that H almost converge only by columns
or only by rows. For some results that can be reduced to results at [12] and
[3] our approach here gives alternative proofs.

1. The Hardy convergence

Let us denote the set of all double sequences x = (xij), i, j ∈ N, of
complex (or real) numbers by s. We consider (xij) as the function on the
ij-coordinate plane: (xij)i∈N is the j-th row, and (xij)j∈N is the i-th column
of x. Let b be the set of all bounded double sequences from s. A double
sequence x from s converges to L if, for every ε > 0 there exists Nε ∈ N such
that

(1.1) |xij − L| < ε if i, j ≥ Nε.

After [1, p. 78] and [6, p. 88] this kind of convergence we call the convergence
in the sense of Pringsheim (P convergence). The limit L is denoted by limij

and is called the P limit (see [13, p. 103]). The set of all convergent double
sequences from s is the class c. Bounded and convergent double sequences
form the class bc.

Starting from double series, both G. H. Hardy and later F. Móricz studied
convergent double sequences with convergent rows and convergent columns.
Such double sequences besides the P limit L = limij xij have row limits
L′
j = limi xij for every j and column limits L′′

i = limj xij for every i. If (L′
j)

and L exist we say that (xij) converges in the Hardy (H ) sense by rows. If
(L′′

i ) and L exist we have the H convergence by columns. The class of double
sequences that H converges by rows and by columns form the class of H
convergent double sequences. It is denoted by rc (regularly convergent, after
Hardy [6, p. 88] and Hamilton [4, p. 30]). The P limit of double sequences
from rc is also called the principal limit.

Double sequences from rc are bounded: rc ⊆ bc ([4, p. 33]). Double
sequences from rc with equal row and column limits we denote by rcr. For
these double sequences L′

j = L′′
i = L. Subclasses of c of double sequences

that converge to 0 are denoted by an n at the end: we have bcn, rcn and
rcrn. The last class has all row limits and all column limits as well as the P
limit equal to 0.

By the definition of rc,

(1.2) limij xij = limi limj xij = limj limi xij .
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The convergence of rows to L′
j and the convergence of columns to L′′

i is uniform

with respect to j’s, resp. to i’s (see [14, Theorem 9, p. 14] and [4, Theorem
003, p. 34]). The convergence of rows and columns means that for every ε > 0
there exist N ′

ε, N
′′
ε ∈ N such that for every j

(1.3) |xij − L′
j | < ε if i ≥ N ′

ε,

and for every i

(1.4) |xij − L′′
i | < ε if j ≥ N ′′

ε .

A double sequence x from s is almost convergent (a-convergent) to L if

(1.5) σmn
pq =

1

pq

m+p−1
∑

i=m

n+q−1
∑

j=n

xij ,

for p, q → ∞ converges to L uniformly with respect to m and n. This means
that for every ε > 0 there exists Nε ∈ N such that, for every m, n ∈ N,

(1.6) |σmn
pq − L| < ε if p, q ≥ Nε.

We denote L by Lim ijxij and consider it as the P a-limit of x. The set of all
a-convergent double sequences we denote by ac.

A single sequence (xi) a-converges if
1
p

∑p+m−1
i=m xi converges when p → ∞

uniformly with respect to m ∈ N. This notion was introduced by G. G.
Lorentz ([7]). It was extended to double sequences i. e. to the class ac by F.
Móricz and B. E. Rhoades ([12]). Among others, they proved bc ⊂ ac ⊂ b

([12, pp. 283–4]).
The double sequence x H a-converges by rows if every row a-converges

to L′
j = Lim ixij and the P a-limit L of x exists (cf. Lemma 1.1). In such a

case L is the principal a-limit, and L′
j are row a-limits. Column a-limits and

the H a-convergence by columns are similarly defined. The double sequence
x H a-converges if it is H a-convergent by rows and columns to the P a-limit.
The class of H a-convergent sequences are denoted by rac. The racn is the
subclass of rac with the P a-limit 0. The racr is a subclass of rac with equal
L, L′

j and L′′
i for every i, j. If L = L′

j = L′′
i = 0 we have the class racrn.

Lemma 1.1 ([2, Theorem 1, p. 132]).Let (xij) P a-converge to Lim ijxij=
L, and, moreover, let every row (xij)i∈N a-converge to Lim ixij = L′

j. Then
(L′

j) a-converges and

(1.7) Lim jLim ixij = Lim ijxij .

Similarly, if the P a-limit and all column a-limits exist,

(1.8) Lim iLim jxij = Lim ijxij .

Corollary 1.2 ([2, p. 132]). Let a-limits of rows, a-limits of columns
and the principal a-limit of the double sequence x exist. Then

(1.9) Lim ijxij = Lim jLim ixij = Lim iLim jxij .
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This corollary excludes the existence of the P a-limit if a-limits of L′
j and

of L′′
i exist and are unequal (for P limits cf. [13, p. 107]).
By row-column uniformities we have a partial inverse of Lemma 1.1.

Lemma 1.3. Let rows of x = (xij) a-converge to L′
j uniformly, and let the

sequence (L′
j) a-converge. Then the P a-limit of x exists and x H a-converges

by rows. Similarly for uniform a-convergence of columns.

Proof. By the uniform a-convergence of rows

(1.10)

∣

∣

∣

∣

∣

1

p

m+p−1
∑

i=m

xij − L′
j

∣

∣

∣

∣

∣

≤
ε

2
if p ≥ N ′

ε

2

for every j ∈ N. By the a-convergence of row a-limits,

(1.11)

∣

∣

∣

∣

∣

∣

1

q

n+q−1
∑

j=n

L′
j − Lim jL

′
j

∣

∣

∣

∣

∣

∣

≤
ε

2
if q ≥ N ′

ε

2

.

Therefore,

(1.12)

∣

∣

∣

∣

∣

∣

1

q

n+q−1
∑

j=n

1

p

m+p−1
∑

i=m

xij − Lim jL
′
j

∣

∣

∣

∣

∣

∣

≤
1

q

n+q−1
∑

j=n

∣

∣

∣

∣

∣

1

p

m+p−1
∑

i=m

xij − L′
j

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

q

n+q−1
∑

j=n

L′
j − Lim jL

′
j

∣

∣

∣

∣

∣

∣

≤
ε

2
+

ε

2
= ε.

This means that

(1.13) Lim jLim ixij = Lim ijxij .

2. Transformation conditions

Let A =
[

aklij

]

, i, j, k, l ∈ N, be a doubly infinite matrix of complex (or

real) numbers. A double sequence x = (xij) ∈ s is transformed into a double
sequence Ax = y = (ykl) ∈ s by

(2.1) ykl =
∞
∑

i=1

∞
∑

j=1

aklijxij

if the double series (2.1) P converges for every k, l ∈ N. It means that the
partial sums

∑r

i=1

∑s

j=1 have the P limit if r, s → ∞ ([13, (3) p. 113]).

The partial sums for A are called A-means ([12, p. 284]). The matrix A
is bounded-regular if every bounded and P convergent double sequence (xij)
is transformed by the bounded set of A-means to the P convergent double
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sequence (ykl) with the limit equal to the limit of (xij). The matrix A is
strongly regular if every P a-convergent double sequence (xij) is transformed
to the P convergent (ykl) with the limit equal to the a-limit of (xij), and the
A-means are also bounded (y P converges boundedly). The above definitions
extends to double sequences the notion of regularity and of strong regularity
of single sequences (see [7, pp. 171, 176]).

We consider bounded transformations of classes which are between rcrn

and b. Necessary conditions that rcrn transforms to b include the existence
of C such that

(2.2)

∞
∑

i=1

∞
∑

j=1

|aklij | ≤ C < +∞

for every k, l ∈ N ([4, 5., p. 42]). This implies that for every bounded y
the series (2.1) which defines (ykl) converges absolutely. Because our y are
at least bounded, conditions on A always include (with the notation (2.4)
below), (v) ∈ b.

We use the notation

(2.3)
△10a

kl
ij = aklij − akli+1,j , △01a

kl
ij = aklij − akli,j+1,

� aklij = aklij − akli+1,j − akli,j+1 + akli+1,j+1.

Series are denoted by
∑

i =
∑∞

i=1,
∑

j =
∑∞

j=1. Also, we give notations for

sequences derived from
[

aklij

]

. The list is a slightly enlarged list ([3, p. 254]).

The only change is that instead of (ii′
△
) we write (ii△). Also, we have aij for

aklij .

(i) (∀ i, j) aij(2.4)

(ii)

{

(∀j)
∑

i aij

(∀i)
∑

j aij
(ii△)

{

(∀j)
∑

i △01aij

(∀i)
∑

j △10aij

(iii)

{

∑

j

∑

i aij
∑

i

∑

j aij

(iv)

{

(∀j)
∑

i |aij |

(∀i)
∑

j |aij |

(iv△)

{

(∀j)
∑

i |△10aij |

(∀i)
∑

j |△01aij |

(iv′
△
)

{

(∀j)
∑

i |△01aij |

(∀i)
∑

j |△10aij |

(iv�)

{

(∀j)
∑

i |� aij |

(∀i)
∑

j |� aij |

(v)
∑

i

∑

j |aij | (v△)

{

∑

i

∑

j |△01aij |
∑

i

∑

j |△10aij |
(v�)

∑

i

∑

j |� aij |
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(vi)

{

∑

j |
∑

i aij |
∑

i |
∑

j aij |
(vi△)

{

∑

j |
∑

i △01aij |
∑

i |
∑

j △10aij |
(vi�)

{

∑

j |
∑

i � aij |
∑

i |
∑

j � aij |

For members of (2.4) which have { and two lines, the first and the second line
are denoted by ( )1 and ( )2. E. g., (vi△)2 ∈ bcn means

∑

i |
∑

j △10a
kl
ij | ∈

bcn; (vi△) ∈ bcn means that (vi△)1 and (vi△)2 belong to bcn.

Lemma 2.1. (cf. [5, (17) p. 279]). Let (v) ∈ b. Then

(2.5)

∞
∑

i=1

∣

∣△10a
kl
it

∣

∣ ≤

∞
∑

i=1

∞
∑

j=t

|� aklij |,

∞
∑

j=1

∣

∣△01a
kl
tj

∣

∣ ≤

∞
∑

i=t

∞
∑

j=1

|� aklij |.

Proof. The (v) ∈ b implies (v�) ∈ b and

(2.6)

∞
∑

i=1

∣

∣

∣

∞
∑

j=t

� aklij

∣

∣

∣
=

∞
∑

i=1

∣

∣

∣

∞
∑

j=t

(△10a
kl
ij −△10a

kl
i,j+1)

∣

∣

∣
=

∞
∑

i=1

|△10a
kl
it |.

Therefore,

(2.7) (∀t)
∞
∑

i=1

|△10a
kl
it | ≤

∞
∑

i=1

∞
∑

j=t

∣

∣� aklij
∣

∣ .

Similarly for △01.

By this Lemma, if (v) ∈ b,

(2.8) (v�) ∈ bcn ⇒

{

(iv△)1 ∈ bcn

(iv△)2 ∈ bcn
.

Lemma 2.2 (cf. [8, p. 806, (8) and (3)]). Let (v) ∈ b. Then

(2.9)

∣

∣

∣

∣

∣

∞
∑

i=1

aklij

∣

∣

∣

∣

∣

≤

∞
∑

j=1

∣

∣

∣

∣

∣

∞
∑

i=1

△01a
kl
ij

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∞
∑

j=1

aklij

∣

∣

∣

∣

∣

∣

≤

∞
∑

i=1

∣

∣

∣

∣

∣

∣

∞
∑

j=1

△10a
kl
ij

∣

∣

∣

∣

∣

∣

.

Proof. With aij = aklij and C from (2.2),

(2.10)

∞
∑

j=1

∣

∣

∣

∞
∑

i=1

(aij − ai,j+1)
∣

∣

∣
≤ 2

∞
∑

i=1

∞
∑

j=1

|aij | ≤ 2C.

Let

(2.11)

∞
∑

j=1

∣

∣

∣

∞
∑

i=1

(aij − ai,j+1)
∣

∣

∣
= D.

By

(2.12)
∣

∣

∣

∞
∑

i=1

ai1 −

∞
∑

i=1

ai2

∣

∣

∣
+ · · ·+

∣

∣

∣

∞
∑

i=1

ait −

∞
∑

i=1

ai,t+1

∣

∣

∣
≤ D
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we have

(2.13)

∣

∣

∣

(

∞
∑

i=1

ai1 −
∞
∑

i=1

ai2
)

+ · · ·+
(

∞
∑

i=1

ait −
∞
∑

i=1

ai,t+1

)

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

i=1

ai1 −

∞
∑

i=1

ai,t+1

∣

∣

∣

∣

∣

≤ D.

If t → ∞, |
∑

i ai1| ≤ D. Starting with
∑∞

j=s we have |
∑

i ais| ≤ D for
s = 2, 3, . . . . Therefore

(2.14) (∀j)
∣

∣

∣

∞
∑

i=1

aklij

∣

∣

∣
≤

∞
∑

j=1

∣

∣

∣

∞
∑

i=1

△01a
kl
ij

∣

∣

∣

and similarly for △10. By the notation (2.4), if (v) ∈ b,

(2.15) (vi△)1 ∈ bcn ⇒ (ii)1 ∈ bcn, (vi△)2 ∈ bcn ⇒ (ii)2 ∈ bcn

(cf. also Remark 2.8).

Lemma 2.3. Let (v) ∈ b. Then

(2.16)

(∀i, j) |aklij | ≤

∞
∑

j=1

∣

∣

∣
△01a

kl
ij

∣

∣

∣
,

(∀i, j) |aklij | ≤
∞
∑

i=1

∣

∣

∣
△10a

kl
ij

∣

∣

∣

and therefore

(2.17)
(iv△)2 ∈ bcn ⇒ (i) ∈ bcn,

(iv△)1 ∈ bcn ⇒ (i) ∈ bcn.

Proof. By the proof of Lemma 2.2 with aklij instead of
∑

i a
kl
ij for every

i we have the first inequality. The second inequality is obtained in the same
way.

The next corollary follows from Lemma 2.1 and Lemma 2.3.

Corollary 2.4. Let (v) ∈ b. Then

(2.18) (v�) ∈ bcn ⇒ (i) ∈ bcn.

By Lemma 2.3
(2.19)

(∀j)
∞
∑

i=1

|aklij | ≤
∞
∑

i=1

∞
∑

j=1

∣

∣

∣
△01a

kl
ij

∣

∣

∣
, (∀i)

∞
∑

j=1

|aklij | ≤
∞
∑

i=1

∞
∑

j=1

∣

∣

∣
△10a

kl
ij

∣

∣

∣
,

which gives
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Corollary 2.5. Let (v) ∈ b. Then

(2.20) (v△)1 ∈ bcn ⇒ (iv)1 ∈ bcn, (v△)2 ∈ bcn ⇒ (iv)2 ∈ bcn.

Remark 2.6. By Corollary 2.5, (v) ∈ b and the Móricz-Rhoades (v△) ∈
bcn are N.S. for transformations of double sequences from racrn to double
P convergent null-sequences. These conditions include (i), (iv) ∈ bcn (cf.
[12, pp. 286–287]).

Lemma 2.7. Let (v) ∈ b. Then

(2.21)

∞
∑

i=1

∞
∑

j=1

|�aklij | ≤ 2

∞
∑

i=1

∞
∑

j=1

∣

∣

∣
△01a

kl
ij

∣

∣

∣
,

∞
∑

i=1

∞
∑

j=1

|�aklij | ≤ 2

∞
∑

i=1

∞
∑

j=1

∣

∣

∣
△10a

kl
ij

∣

∣

∣
.

Therefore

(2.22)
(v△)1 ∈ bcn ⇒ (v�) ∈ bcn,

(v△)2 ∈ bcn ⇒ (v�) ∈ bcn.

The results of lemmas are summarized in (2.23). Arrows give implications
if members of (2.23) belong to bcn and if to every initial condition the (v) ∈ b

is added. E. g. (v△)2 → (vi△)2 means that
∑

i

∑

j |△10a
kl
ij | ∈ bcn and

∑

i

∑

j |a
kl
ij | ∈ b imply

∑

i |
∑

j △10a
kl
ij | ∈ bcn.

(2.23)

Remark 2.8. The schema (2.23) neglects uniformities that in some cases
follow from lemmas above. For example, by (2.20) we have that (v△)1 ∈ bcn

implies (iv)1 ∈ bcn for every j, but also that the convergence by (k, l) is
uniform with respect to j. Similarly for estimates by (v), (vi△), (v�), etc.
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Remark 2.9. Instead of (v) ∈ b, many papers start with (v�) ∈ b

(and the notation △11 for our �). Hardy ([6, 4.(2), p. 89–90]) has a bounded
variation for bounded (v�) and (iv△). Mears ([8, p. 805]) defines absolutely
convergent sequences by (v�) ∈ b, with classes ac, arc, etc. Hamilton ([5, p.
276]) has bounded

∑∞

i,j=1 |� aij | jointly with other conditions.

3. Almost convergence by rows and columns

The a-convergence by rows and columns can be described by σmn
pq because

of

(3.1)
1

p

m+p−1
∑

i=m

xij = σmj
p1 ,

1

q

n+q−1
∑

j=n

xij = σin
1q .

The j-th row a-converges to L′
j if, for every ε > 0 there exists N ′

ε(j) such
that, for p ≥ N ′

ε(j) and every m,

(3.2) |σmj
p1 − L′

j| ≤ ε.

The i-th column a-converges to L′′
i if, for every ε > 0 there exists N ′′

ε (i) such
that, for q ≥ N ′′

ε (i) and every n,

(3.3) |σin
1q − L′′

i | ≤ ε.

If x H a-converges by rows, L′
j a-converges to the P a-limit L, and for

every ε > 0, there exists N ′
ε such that, for q ≥ N ′

ε,

(3.4)

∣

∣

∣

∣

∣

∣

1

q

n+q−1
∑

j=n

L′
j − L

∣

∣

∣

∣

∣

∣

≤ ε.

If x H a-converges by columns there exists N ′′
ε such that, for p ≥ N ′′

ε ,

(3.5)

∣

∣

∣

∣

∣

1

p

m+p−1
∑

i=m

L′′
i − L

∣

∣

∣

∣

∣

≤ ε.

Lemma 3.1. Let x H a-converges to L. Then, with Nε from (1.6),

(3.6) N ′
ε, N

′′
ε ≤ Nε.

Proof. Because of (1.6),

(3.7) p, q ≥ Nε ⇒

∣

∣

∣

∣

∣

∣

1

pq

m+p−1
∑

i=m

n+q−1
∑

j=n

xij − L

∣

∣

∣

∣

∣

∣

≤ ε.

Increasing p we obtain (3.4), and increasing q we obtain (3.5). As a result,
we have (3.6).
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For x ∈ racrn, which has at least one xij 6= 0, it follows thatN ′
ε = N ′′

ε = 0
and Nε > 0. If x has equal rows convergent to 0 and at least one xij 6= 0, we
have N ′

ε = Nε > 0, N ′′
ε = 0.

In what follows we use abbreviations

(3.8)

Σ
kl

RC =

∞
∑

m=1

∞
∑

n=1

aklmn

1

pq

m+p−1
∑

i=m

n+q−1
∑

j=n

xij =

∞
∑

m=1

∞
∑

n=1

aklmnσ
mn
pq ,

Σ
kl

R =
∞
∑

m=1

∞
∑

j=1

aklmj

1

p

m+p−1
∑

i=m

xij =
∞
∑

m=1

∞
∑

j=1

aklmjσ
mj
p1 ,

Σ
kl

C =

∞
∑

i=1

∞
∑

n=1

aklin
1

q

n+q−1
∑

j=n

xij =

∞
∑

i=1

∞
∑

n=1

aklinσ
in
1q .

With L as a P a-limit of x,

(3.9)
ykl − L =

(

Σ
kl

RC − ykl
)

−
(

Σ
kl

R − ykl
)

−
(

Σ
kl

C − ykl
)

−
(

Σ
kl

RC − L
)

+
(

Σ
kl

R − L
)

+
(

Σ
kl

C − L
)

.

For L = 0 as well as for L 6= 0,

(3.10) ykl+Σ
kl

RC−Σ
kl

R−Σ
kl

C =
(

Σ
kl

RC−ykl
)

−
(

Σ
kl

R−ykl
)

−
(

Σ
kl

C−ykl
)

.

The subclass of rac with uniformly a-convergent rows and columns is
denoted by rac un. This means that (3.2) holds uniformly with respect of
j, as well as (3.3) with respect of i. The class racrn un has uniform a-
convergent rows and columns to 0. These classes are in [3] denoted by arc,
resp. by arcrn.

Lemma 3.2. Let x be bounded. For every p, q ∈ N, ε > 0 and k, l → ∞
sufficient conditions on A = [aklij ] such that

(3.11) Y kl =
(

Σ
kl

RC − ykl
)

−
(

Σ
kl

R − ykl
)

−
(

Σ
kl

C − ykl
)

is by absolute value less of ε are

(3.12) (v) ∈ b; (v�) ∈ bcn.

Proof. We change the order of summation of the left-hand-side of (3.10).
Instead of aklij we write aij . If the sum runs over an index that does not
appear among indexes, the argument of the sum is constant. For example,
∑i

m=i−p+1 aij = paij .

ykl =

p−1
∑

i=1

q−1
∑

j=1

xijaij +
1

p

∞
∑

i=p

q−1
∑

j=1

xij

i
∑

m=i−p+1

aij(3.13)
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+
1

q

p−1
∑

i=1

∞
∑

j=q

xij

j
∑

n=j−q+1

aij

+
1

pq

∞
∑

i=p

∞
∑

j=q

xij

i
∑

m=i−p+1

j
∑

n=j−q+1

aij ,

Σ
kl

R =
1

p

p−1
∑

i=1

q−1
∑

j=1

xij

i
∑

m=1

amj +
1

p

∞
∑

i=p

q−1
∑

j=1

xij

i
∑

m=i−p+1

amj(3.14)

+
1

pq

p−1
∑

i=1

∞
∑

j=q

xij

i
∑

m=1

j
∑

n=j−q+1

amj

+
1

pq

∞
∑

i=p

∞
∑

j=q

xij

i
∑

m=i−p+1

j
∑

n=j−q+1

amj,

Σ
kl

C =
1

q

p−1
∑

i=1

q−1
∑

j=1

xij

j
∑

n=1

ain +
1

pq

∞
∑

i=p

q−1
∑

j=1

xij

i
∑

m=i−p+1

j
∑

n=1

ain(3.15)

+
1

q

p−1
∑

i=1

∞
∑

j=q

xij

j
∑

n=j−q+1

ain

+
1

pq

∞
∑

i=p

∞
∑

j=q

xij

i
∑

m=i−p+1

j
∑

n=j−q+1

ain,

Σ
kl

RC =
1

pq

p−1
∑

i=1

q−1
∑

j=1

xij

i
∑

m=1

j
∑

n=1

amn +
1

pq

∞
∑

i=p

q−1
∑

j=1

xij

i
∑

m=i−p+1

j
∑

n=1

amn(3.16)

+
1

pq

p−1
∑

i=1

∞
∑

j=q

xij

i
∑

m=1

j
∑

n=j−q+1

amn

+
1

pq

∞
∑

i=p

∞
∑

j=q

xij

i
∑

m=i−p+1

j
∑

n=j−q+1

amn.
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Grouping the corresponding terms of (3.13)–(3.16) we get

(3.17)

ykl −Σ
kl

R −Σ
kl

C +Σ
kl

RC

=

p−1
∑

i=1

q−1
∑

j=1

xijaij −
1

p

p−1
∑

i=1

q−1
∑

j=1

xij

i
∑

m=1

amj

−
1

q

p−1
∑

i=1

q−1
∑

j=1

xij

j
∑

n=1

ain +
1

pq

p−1
∑

i=1

q−1
∑

j=1

xij

i
∑

m=1

j
∑

n=1

amn

+

∞
∑

i=p

q−1
∑

j=1

xij

[1

p

i
∑

m=i−p+1

(aij−amj)−
1

pq

i
∑

m=i−p+1

j
∑

n=1

(ain−amn)
]

+

p−1
∑

i=1

∞
∑

j=q

xij

[1

q

j
∑

n=j−q+1

(aij−ain)−
1

pq

i
∑

m=1

j
∑

n=j−q+1

(amj−amn)
]

+
∞
∑

i=p

∞
∑

j=q

xij

[ 1

pq

i
∑

m=i−p+1

j
∑

n=j−q+1

(aij−amj−ain+amn)
]

.

Differences of terms of A are finite sums of aµν , △10aµν , △01aµν and � aµν
by

(3.18)

amn − ain =

i−1
∑

µ=m

△10aµn, amn − amj =

j−1
∑

ν=n

△01amν ,

amj − aij =

i−1
∑

µ=m

△10aµj , ain − aij =

j−1
∑

ν=n

△01aiν ,

amn − ain − amj + aij =

i−1
∑

µ=m

j−1
∑

ν=n

� aµν .

Therefore, increasing k and l for every ε > 0 the estimate

(3.19)
∣

∣

∣
ykl −Σ

kl

R −Σ
kl

C +Σ
kl

RC

∣

∣

∣
≤ ε

is possible reducing the left-hand-side to the linear combination of

(3.20) |aklij |,

∞
∑

i=1

|△10a
kl
ij |,

∞
∑

j=1

|△01a
kl
ij |,

∞
∑

i=1

∞
∑

j=1

|� aklij |.

By Corollary 2.4 and Lemma 2.1 (v) ∈ b, (v� ) ∈ bcn imply (i), (iv△) ∈ bcn.
Estimates by using

∑

ij |� aij | are given in [3]. For a fixed ν

(3.21)
1

pq

i−2
∑

m=i−p+1

j−1
∑

n=j−q+1

i−1
∑

µ=m

j−1
∑

ν=n

|� aµν |
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is a sum over a triangle with vertices

(3.22) (i− p+ 1, i− p+ 1), (i− 1, i− p+ 1), (i − 1, i− 1).

It is dominated by the sum over the rectangle with vertices (3.22) plus (i −
p+ 1, i− 1):

(3.23)

i−1
∑

m=i−p+1

i−1
∑

µ=1−p+1

|� aµν | = (p− 1)

i−1
∑

µ=1−p+1

|� aµν |.

The same operation on the plane (ν, n) extends (3.23) to

(3.24) (p− 1)(q − 1)

i−1
∑

µ=1−p+1

j−1
∑

ν=j−q+1

|� aµν |.

As the result, the corresponding term of (3.17) is dominated by

(3.25)

(p− 1)(q − 1)

pq
supij |xij |

∞
∑

i=p

∞
∑

j=q

i−1
∑

µ=i−p+1

j−1
∑

ν=j−q+1

|� aµν |

≤
(p− 1)2(q − 1)2

pq
supij |xij |

∞
∑

i=1

∞
∑

j=1

|� aij |

as it is in [3, p. 259, (30)].

Remark 3.3. The proof of [3, Theorem 1, p. 256] has few obvious mis-
prints. E.g., at p. 257⌊1(24) the bracket must be (amj − aij); p. 258⌈4(25)

instead of 1
p
must be 1

q
; p. 261⌈1 instead of ∈ must be /∈; ⌈9(33) after akr ,lr

ij

must stay xij , the sum ⌈10 must be 2
∑∞

i=1

∑2nr−1

j=1 , and instead of = must

be ≥. Similarly, at p. 263, (40)(d) must start with lim
k,l

∑

j |△αkl
j |; the words

rows at ⌈22 and columns at ⌈24 must be canceled. Instead of [12]⌈15, [11]⌈16
at p. 255 must be [13], [12].

Lemma 3.4. Assume that (xij) a-converges to 0. Then, sufficient condi-

tions for
∣

∣

∣
Σ

kl

R

∣

∣

∣
≤ ε for a given ε > 0 as p, q, k, l → ∞ are

(3.26) (v) ∈ b; (v△)1 ∈ bcn.

Similarly, a sufficient condition for
∣

∣

∣
Σ

kl

C

∣

∣

∣
≤ ε as p, q, k, l → ∞ in case that

(xij) a-converges to 0 is

(3.27) (v) ∈ b; (v△)2 ∈ bcn.

Proof. We start with

(3.28) Σ
kl

R =Σ
kl

RC −
(

Σ
kl

RC −Σ
kl

R

)

.
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The part of (3.28) in the brackets is

(3.29) Σ
kl

RC −Σ
kl

R =
1

pq

∞
∑

n=1

∞
∑

m=1

aklmn

(

n+q−1
∑

j=n

m+p−1
∑

i=m

xij − q

m+p−1
∑

i=m

xin

)

.

The
∑kl

RC in (3.29) we transform as follows:

Σ
kl

RC =
1

pq

∞
∑

m=1

∞
∑

n=1

aklmn

(

m+p−1
∑

i=m

xin + · · ·+

m+p−1
∑

i=m

xi,n+q−1

)

=
1

pq

∞
∑

m=1

aklm1

(

m+p−1
∑

i=m

xi1 + · · ·+

m+p−1
∑

i=m

xi,q−1 +

m+p−1
∑

i=m

xiq

)

(3.30)

+ · · ·

+
1

pq

∞
∑

m=1

aklmq

(

m+p−1
∑

i=m

xiq + · · ·+

m+p−1
∑

i=m

xi,2q−1

)

+ · · ·

=
1

q

∞
∑

m=1

aklm1

1

p

m+p−1
∑

i=m

xi1 +
1

q

∞
∑

m=1

(

aklm1 + aklm2

)1

p

m+p−1
∑

i=m

xi2 + · · ·

+
1

q

∞
∑

m=1

(

aklm1 + · · ·+ aklm,q−1

)1

p

m+p−1
∑

i=m

xi,q−1

+
1

q

∞
∑

m=1

∞
∑

n=1

(

aklmn + · · ·+ aklm,n+q−1

)1

p

m+p−1
∑

i=m

xi,n+q−1.

Denoting the sum of the first q− 1 lines above by Σ
kl

RC(I), and the last line
by

(3.31) Σ
kl

RC(II) =
1

pq

∞
∑

m=1

∞
∑

n=1

(

aklmn + · · ·+ aklm,n+q−1

)

m+p−1
∑

i=m

xi,n+q−1

we obtain

(3.32) Σ
kl

RC =Σ
kl

RC(I) +Σ
kl

RC(II).

Splitting the sum with respect to j ofΣ
kl

R in (3.29) for the part with j ≤ q−1
and the part with j ≥ q it follows that

(3.33)

Σ
kl

R (I) =
1

pq

∞
∑

m=1

q−1
∑

j=1

aklmjq

m+p−1
∑

i=m

xij ,

Σ
kl

R (II) =
1

pq

∞
∑

m=1

∞
∑

j=q

aklmjq

m+p−1
∑

i=m

xij .



ON THE ALMOST CONVERGENCE OF DOUBLE SEQUENCES 189

Therefore

(3.34)

Σ
kl

R =Σ
kl

R (I) +Σ
kl

R (II)

=

∞
∑

m=1

aklm1

1

p

m+p−1
∑

i=m

xij + · · ·

+

∞
∑

m=1

aklm,q−1

1

p

m+p−1
∑

i=m

xi,q−1 +
1

pq

∞
∑

m=1

q

∞
∑

j=q

aklmj

m+p−1
∑

i=m

xij

with

(3.35)

Σ
kl

R (II) =
1

pq

∞
∑

m=1

∞
∑

j=q

aklmjq

m+p−1
∑

i=m

xij

=
1

pq

∞
∑

m=1

∞
∑

n=1

qaklm,n+q−1

m+p−1
∑

i=m

xi,n+q−1.

We estimate (3.28) by
(3.36)

∣

∣Σ
kl

R

∣

∣ ≤
∣

∣Σ
kl

RC

∣

∣+
∣

∣Σ
kl

RC −Σ
kl

R

∣

∣

≤
∣

∣Σ
kl

RC |+ |Σ
kl

RC(I)
∣

∣+
∣

∣Σ
kl

R (I)
∣

∣+
∣

∣Σ
kl

RC(II)−Σ
kl

R (II)
∣

∣.

Now we look at members of (3.36). First, we take Nε defined by (1.6)
and C defined by (2.2). For p, q ≥ Nε we have

(3.37)
∣

∣Σ
kl

RC

∣

∣ =
∣

∣

∣

∞
∑

n=1

∞
∑

m=1

aklmn

1

pq

n+q−1
∑

j=n

m+p−1
∑

i=m

xij

∣

∣

∣
≤ Cε.

For a particular n and ε > 0, by (2.20) and a sufficiently large k, l,

(3.38)

∞
∑

m=1

|aklmn| ≤
ε

q − 1

for every n (Corollary 2.5 and Remark 2.8).

By (3.30), |Σ
kl

RC(I)| is estimated from above by

(3.39)

(q − 1)

∞
∑

m=1

|aklm1|
1

q

∣

∣

∣

1

p

m+p−1
∑

i=m

xi1

∣

∣

∣
+ . . .

· · ·+

∞
∑

m=1

|aklm,q−1|
1

q

∣

∣

∣

1

p

m+p−1
∑

i=m

xi,q−1

∣

∣

∣
.
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By (3.38) and choosing k, l large enough we obtain

(3.40)

∞
∑

i=1

|aklij | <
ε

q − 1
, j = 1, . . . , q − 1.

With

(3.41) supij |xij | = B < +∞,

we have

(3.42)
1

q

∞
∑

m=1

|aklmj|
∣

∣

∣

1

p

m+p−1
∑

i=m

xij

∣

∣

∣
≤

1

q
B

ε

q − 1
, j = 1, . . . , q − 1

for every p ∈ N. Estimating (3.39) we obtain

(3.43)
∣

∣Σ
kl

RC(I)
∣

∣ ≤
(q − 1)q

2
·
1

q
B

ε

q − 1
=

Bε

2
.

The estimate for Σ
kl

R (I) in (3.33) differs from (3.39) having no coefficients
q−1
q

, . . . , 1
q
. Therefore

(3.44)
∣

∣Σ
kl

R (I)
∣

∣ ≤ Bε.

To complete the estimate of (3.36) we estimate the difference of (3.31)
and (3.35):

(3.45)

Σ
kl

RC(II)−Σ
kl

R (II)

=
1

q

∞
∑

n=1

∞
∑

m=1

(

(aklmn − aklm,n+q−1)

+ · · ·+ (aklm,n+q−1 − aklm,n+q−1)
)1

p

m+p−1
∑

i=m

xi,n+q−1.

For q ≥ 2 the above differences are sums

(3.46)

(aklmn − aklm,n+1) + · · ·+ (aklm,n+q−2 − aklm,n+q−1)

(aklm,n+1 − aklm,n+2) + · · ·+ (aklm,n+q−2 − aklm,n+q−1)

...

with q − 1, q − 2, . . . , 1 terms. For every m in (3.46) there are (q−1)q
2 terms

with ∆01a
kl
mj (counting separately members that in the sum of lines (3.46)

result to be equal).
The (v△)1 ∈ bcn in (3.26) means that

(3.47) limk,l

∞
∑

n=1

∞
∑

m=1

|(aklmn − aklm,n+1)| = 0.
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The same equality is valid if we have △01a
kl
m,n+̺ (̺ = 0, 1, . . . , q − 2) instead

of △01a
kl
mn. The (3.46) is reduced to the sum of

1

q

∞
∑

n=1

(

∞
∑

m=1

△01a
kl
m,n+̺

1

p

m+p−1
∑

i=m

xi,n+q−1

)

(3.48)

with ̺ = 0, . . . , q − 2. The absolute value of (3.48) is less or equal to

1

q

∞
∑

n=1

∣

∣

∣

∞
∑

m=1

△01a
kl
m,n+̺

∣

∣

∣
B,(3.49)

where by B = supij |xij |. By the
ε

q−1 -estimate for (3.47) the (3.49) is≤ Bε
q(q−1) .

Therefore (3.45) is estimated by

(3.50)
∣

∣Σ
kl

RC(II)−Σ
kl

R (II)
∣

∣ ≤
Bε

2
.

By (3.50), (3.43) and (3.44)

(3.51) |Σ
kl

RC(II)−Σ
kl

R (II)|+ |Σ
kl

RC(I)|+ |Σ
kl

R (I)| ≤ 2Bε.

Therefore, with (3.37) we have the estimate for (3.36):

(3.52)
∣

∣Σ
kl

R

∣

∣ ≤ (C + 2B)ε.

This means that Lemma 3.4 holds for Σ
kl

R . Similarly for Σ
kl

C .

Theorem 3.5. The matrix A = [aklij ] transforms the space racrn into the
space bcn if and only if

(3.53) (v) ∈ b; (v△) ∈ bcn.

Proof. Sufficiency. With (3.10) and (3.11), ykl is estimated by estimates

for Y kl, Σ
kl

RC , Σ
kl

R and Σ
kl

C . Let p, q be such that |Σ
kl

RC | < εC, which
is possible by the existence of the P a-limit 0 of σmn

pq and C from (2.2).

Lemma 3.2 gives Y kl as small as we please with conditions (v) ∈ b and

(v�) ∈ bcn. For Σ
kl

R and Σ
kl

C , conditions on (v△)1, resp. (v△)2, are given
by Lemma 3.4. Conditions (3.26) and (3.27) assure that, by k, l → ∞ and

every x ∈ racrn, both Σ
kl

R and Σ
kl

C converge to 0. The same conditions
imply (v�) ∈ bcn (Lemma 2.7). Therefore ykl from (3.10) also P converges
to 0.

Necessity. We assume (v) ∈ b and (i) ∈ bcn which are N.S. for the
transformation of rcrn to bcn. The necessity of (v△)1 ∈ bcn for the space of
all double sequences with columns uniformly a-convergent to 0 and rows non-
uniformly a-convergent to 0 is proved in [12, pp. 287–288]. The proof there is
given for uniformly a-convergent rows. Moreover, the bounded regularity of
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[aklmn] is assumed. It includes (iv) ∈ bcn which is not needed for the necessity
proof but follows from (v△) ∈ bcn by Corollary 2.5.

Remark 3.6. The sufficiency proof in [12] uses (v△)1 and (v△)2 together.

In our setting they are related to Σ
kl

R , resp. to Σ
kl

C . In the case of the

uniformly a-convergent columnsΣ
kl

C is small for large q and Y kl is estimated
via Lemma 2.7. Notice that the p and q are determined by (3.37) and hereafter
remain fixed.

Corollary 3.7. Let subspaces of racrn be sets of all (xij) such that
their a-convergence to 0 is

(3.54)

i. uniform by rows and columns

ii. uniform by columns

iii. uniform by rows

iv. without uniformity restrictions.

Conditions on [aklij ], N.S. for the transformation of the classes above into bcn,
corresponding to the respective cases are

(3.55)

i′. (v) ∈ b, (v�) ∈ bcn

ii′. (v) ∈ b, (v△)1 ∈ bcn

iii′. (v) ∈ b, (v△)2 ∈ bcn

iv′. (v) ∈ b, (v△) ∈ bcn.

Theorem 3.8. The matrix A = [aklij ] transforms the space rac into the

space bc such that limkl y
kl of y = Ax is equal to Lim ijx

ij if and only if

(3.56) (iii) ∈ bc limkl = 1; (v) ∈ b; (v△) ∈ bcn.

Proof. Sufficiency. We estimate

(3.57) ykl − L = Y kl −
(

Σ
kl

RC − L
)

+
(

Σ
kl

R − L
)

+
(

Σ
kl

C − L
)

.

By the Lemma 3.2, (v) ∈ b and (v�) ∈ bcn are sufficient for |Y kl| ≤ ε if k, l
are sufficiently large.
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The last three terms of (3.57) are

(3.58)

Σ
kl

RC − L =

∞
∑

m=1

∞
∑

n=1

aklmn

[ 1

pq

m+p−1
∑

i=m

n+q−1
∑

j=n

(xij − L)
]

+
(

∞
∑

m=1

∞
∑

n=1

aklmn − 1
)

L,

Σ
kl

R − L =

∞
∑

m=1

∞
∑

j=1

aklmj

[1

p

m+p−1
∑

i=m

(xij − L′′
i ) +

(1

p

m+p−1
∑

i=m

L′′
i − L

)]

+
(

∞
∑

m=1

∞
∑

n=1

aklmn − 1
)

L,

Σ
kl

C − L =

∞
∑

i=1

∞
∑

n=1

aklin

[1

q

n+q−1
∑

j=n

(xij − L′
j) +

(1

q

n+q−1
∑

j=n

L′
j − L

)]

+
(

∞
∑

m=1

∞
∑

n=1

aklmn − 1
)

L.

By (iii) ∈ bc, limkl = 1, increasing k, l we have |
∑∞

m=1

∑∞

n=1 a
kl
mn−1||L| ≤ ε

8 .
With C from (v) ∈ b and the P a-convergence of x, the choice of p, q gives

|σmn
pq − L| ≤ ε

8C and |Σ
kl

RC − L| ≤ ε
4 . By Lemma 3.1,

∣

∣

∣

1
p

∑m+p−1
i=m L′′

i − L
∣

∣

∣

and
∣

∣

∣

1
q

∑n+q−1
j=n L′

j − L
∣

∣

∣
are also ≤ ε

8C . The terms (xij − L′′
i ) resp. (xij − L′

j)

in Σ
kl

R − L and Σ
kl

C − L a-converge to 0. Lemma 3.4 applies on xij − L′′
i

because (xij) and (L′′
i ) as double sequences a-converge to L: x ∈ rac and

1
p

∑m+p−1
i=m

1
q

∑n+q−1
j=n L′′

i = 1
p

∑m+p−1
i=m L′′

i converges to L if p, q → ∞. By

(3.26) and (3.27) i.e. by (v) ∈ b and (v△)1 ∈ bcn, resp. (v△)2 ∈ bcn, if
k, l → ∞, the absolute value of these members becomes ≤ ε

8 . Therefore, the

linear combination of (3.58) is by absolute value ≤ ε and |ykl − L| ≤ 2ε.

Necessity. The N.S. conditions for the a-convergence of sequences which
have uniformly a-convergent rows and columns (the class rac un denoted in
[3] by arc) are necessary conditions for transformations of sequences from
rac. This means that (v) ∈ b, (iii) ∈ bc with limkl = 1 and (v�) ∈ bcn

are necessary. Other conditions, given in [3, Theorem 2, p. 361] follow by
implications (2.23). Also, necessary are (v△) ∈ bcn because of racrn ⊂ rac

and the Theorem 3.5 above.

Similarly to Corollary 3.7, subclasses of rac are characterized by unifor-
mities of row, resp. column, a-convergence.
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Corollary 3.9. Let subspaces of rac be sets of all (xij) such that their
a-convergence is

(3.59)

i.uniform by rows and columns

ii.uniform by columns

iii.uniform by rows

iv.without uniformity restrictions.

Conditions on A, N.S. that y = Ax belongs to bc with limkl y
kl = Lim ijxij

are

(3.60) (iii) ∈ bc, limkl = 1, (v) ∈ b

and, moreover, for cases i–iv,

(3.61)

i′.(v�), (vi△) ∈ bcn

ii′.(v△)1, (vi△)2 ∈ bcn

iii′.(v△)2, (vi△)1 ∈ bcn

iv′.(v△) ∈ bcn.

Proof. The proof for i is given in [3]. We look at the proof for ii.

Sufficiency. For Σ
kl

R − L in (3.58) we apply (3.60) and (v△)1 ∈ bcn as in

the proof of Theorem 3.8. For Σ
kl

C − L we have

(3.62)

Σ
kl

C − L =

∞
∑

i=1

∞
∑

n=1

aklin

[(1

q

n+q−1
∑

j=n

xij − L′′
i

)

+ (L′′
i − L)

]

+
(

∞
∑

m=1

∞
∑

n=1

aklmn − 1
)

L.

Because of the uniformity for ε > 0 by increasing q we obtain
∣

∣

∣

1
q

∑n+q−1
j=n xij−

L′′
i

∣

∣

∣
≤ ε for every n, i = 1, 2, . . . . For the transformation of (L′′

i −L) we apply

(vi△)2 ∈ bcn.

Necessity. For Σ
kl

C and Y kl transformation conditions follow from [3,
Theorem 2, p. 261] where N.S. conditions are given for the case i. Conditions

(i), (ii) ∈ bcn in [3] are superfluous by Lemmas 2.2 and 2.3. For Σ
kl

R , as
for Theorems above, necessity follows from the proof for ykl in [12]. Móricz-
Rhoades conditions for transformations of the class ac in [12] are conditions
of our Theorem 3.8. For the transformations of acn the (iii) ∈ b, limkl = 1
in [12] is superfluous (cf. also [4, 35. RCN → BCN , p. 49]). Conditions that
follow from [12] for transformations of acn are the same as our conditions for
transformations of racrn and therefore also for our racn (Theorem 3.5).
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Proofs of the cases (ii) and (iii) in Corollaries 3.7 and 3.9 remain valid
without the a-convergence of rows, resp. columns (see Remark 3.6). We denote
subspaces of acn and of ac with H a-convergence by columns, resp. by rows,
by r1acn and r1ac, resp. by r2acn and r2ac. Therefore, r1ac is the class of
sequences with the P a-limit L and with columns that a-converge to L′′

i . By
Lemma 1.1 the L′′

i a-converges to L but row a-limits don’t necessarily exist.
The class r1acr is a subclass of r1ac with L′′

i = L for every i and r1acn is
a subclass of r1ac with L = 0. For x ∈ r1acn and i ∈ N the L′′

i are not
necessarily 0. The class r1acrn is a subclass of r1ac with L′′

i = L = 0 for
every i. If the a-convergence of columns to L′′

i is uniform, to the designation
of the class we add un. If instead of columns we have the a-convergence by
rows, instead of r1 we have r2.

Because the classes r1acrn and r1ac as well as r2acrn and r2ac are in
the between of racrn and ac, N.S. conditions for transformations of these
classes to bcn and bc are conditions of Theorems 3.5 and 3.8. In case that
the H a-convergence by columns or by rows is uniform, the corresponding
conditions differ from conditions [12].

Theorem 3.10. The matrix [aklij ] transforms the space r1acrn un into
the space bcn if and only if

(3.63) (v) ∈ b, (v△)1 ∈ bcn.

Conditions N.S. for the transformation of r2acrn un into bcn are

(3.64) (v) ∈ b, (v△)2 ∈ bcn.

The matrix A = [aklij ] transforms r1ac un into bc such that limkl y
kl of

y = Ax is equal to Lim ijxij if and only if

(3.65) (iii) ∈ bc, limkl = 1, (v) ∈ b, (v△)1 ∈ bcn, (vi△)2 ∈ bcn.

The N.S. conditions for the analogous transformation of r2ac un are

(3.66) (iii) ∈ bc, limkl = 1, (v) ∈ b, (v△)2 ∈ bcn, (vi△)1 ∈ bcn.

The N.S. conditions on A for the transformation of r1acr un, resp. r2acr
un, into bc with limkl ykl = Lim ijxij are (3.63) resp. (3.64), with added
(iii) ∈ bc, limkl = 1.

The N.S. conditions on A for the transformation of r1acn un, resp.
r2acn un, into bcn are (3.65), resp. (3.66) without (iii) ∈ bc, limkl = 1.

Proof. With inclusions commented in the introduction of classes with
r1 and r2 the various cases above are deduced by the corresponding cases in
Corollaries 3.7 and 3.9. See also Corollary in [3, p. 261].

Remark 3.11. In accordance with the notation for classes in Theo-
rem 3.10 we can denote classes in Corollaries 3.7 (ii), (iii) and 3.9 (ii), (iii) by
racrn un1, racrn un2 and rac un1, rac un2. The necessity counterexample
in [12] is from racrn un2.
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