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Abstract. In a nondegenerate continuum we study the set of non-
cut points. We show that it can be stratified by inclusion into six natural
subsets (containing also non-block and shore points). Among other results
we show that every nondegenerate continuum contains at least two non-
block points. Our investigation is further focused on both the classes of
arc-like and circle-like continua.

1. Introduction

In Continuum theory it is often useful to know more about special kinds of
points in a continuum. A well known example is the classical result of Moore
(see [Bo67, p. 177]) stating that every nondegenerate continuum must have
at least two non-cut points (a non-cut point in a connected space is a point
whose complement is connected); the result has been recently generalized to
the shore points by Leonel ([Le13]) - precise definitions will be given later. We
recommend to the reader the book of Nadler ([Na92]) as a general reference
for many notions used throughout the paper.

More authors have investigated various properties of special sets in con-
tinua: Grace in [Gr81] provides a survey of results relating the notions of
aposyndesis and weak cut point; Illanes in [Il01] shows that, in a dendroid,
finite union of pairwise disjoint shore subdendroids is a shore set; among other
results, a simple example of a planar dendroid in which the union of two dis-
joint closed shore sets is not a shore set is presented in [BMPV14]; in [Na07]
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Nall explores the relationship between center points and shore points in a den-
droid; Illanes and Krupski study blockers and nonblockers for several kinds
of continua ([IKr11]); and, using the results of [IKr11], Escobedo, López and
Villanueva ([ELV12]) characterize some classes of locally connected continua
- for further information on the subject see also [PV12,Le13].

Our aim is to study blocking properties of points in a general continuum.
We laminate the set of non-cut points to six natural subsets (containing non-
block and shore points, among others) ordered by the inclusion and consider
various questions related to them. Our interest is mainly focused on both the
classes of arc-like and circle-like continua.

It is interesting to compare our lamination of non-cut points with several
kinds of end points. The points of order one are points of colocal connect-
edness. In dendroids end points in the classical sense are exactly the points
which are not weak cut points. In chainable continua the notion of end point
is usually used in another sense and we show that in chainable continua the
end points are closely related to non-block points.

The structure of our paper is as follows. In the next section we nominate
the definitions of various kinds of non-cut points followed by illustrating ex-
amples. We recall several related results known from the literature and discuss
the Borel hierarchy with respect to the notions in question. Also we show,
generalizing the result from [Le13], that the sets of non-block points spans
every nondegenerate continuum. Section 3 is devoted to the class of chain-
able (arc-like) continua. Among other results we show that any chainable
continuum consisting of the non-block points is indecomposable - Corollary
3.6. In Section 4 we deal with the circle-like continua. The main result of this
part states that every point in a circle-like continuum is a non-block point -
Theorem 4.5.

2. Lamination of non-cut points

We start by one illuminating example showing that the notion of a non-
cut point is relatively weak. Let X be the continuum defined as the union of
two sin( 1

x
)-continua with the common vertical segment S. One can easily see

that the set of non-cut points consists of all points in S and two end points
e1 and e2 of the sinusoidal branches. Choose y ∈ S arbitrarily. The non-cut
points e1,e2 do not have the same relationship to X as the point y. There
are arbitrarily small open neighborhoods of e1, e2 complements of which are
connected, which is not true for y. The composant of y is the wholeX whereas
the composants of e1, e2 are proper subsets of X . The end points e1, e2 span
X , i.e. no proper subcontinuum of X contains all of them, at the same time
the points in S do not influence spanning of X at all.

So it seems to be meaningful to distinguish various non-cut points in a
continuum. Let us consider six kinds of non-cut points listed in Table 1.
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notation notion definition

P1 x is a point of
colocal connect-
edness

there are arbitrary small open neigh-
borhoods of x complements of which are
connected

P2 x is not a weak
cut point

any pair of points distinct from x is con-
tained in a subcontinuum avoiding x

P3 x is a non-block
point

there exist subcontinua A1 ⊂ A2 ⊂
· · · ⊂ X such that

⋃

n An is dense in
X \ {x}

P4 x is a shore
point

for each ε > 0 there is an ε-dense sub-
continuum avoiding x

P5 x is not a strong
center

every pair of nonempty open sets is in-
tersected by a subcontinuum avoiding
x

P6 x is a non-cut
point

the complement of {x} is connected

Table 1.

It is easy to see that in general context any property with smaller number
implies the one with greater number. On the other hand, as we show later, no
property in Table 1 with greater number implies the one with smaller number.

Whyburn ([Wh39]) defined a continuum X to be semi-locally connected
at a point x provided that if U is an open subset of X containing x, there is
an open subset V of X lying in U and containing x such that X \ V has a
finite number of components. A continuum is semi-locally connected if it is
semi-locally connected at every point.

A continuum X is aposyndetic at a point x provided that whenever y is a
point of X distinct from x, there exists a subcontinuum Y of X and an open
subset U of X such that x ∈ U ⊂ Y ⊂ X \ {y}. A continuum is aposyndetic
if it is aposyndetic at every point.

Remark 2.1. A continuum is semi-locally connected if and only if it is
aposyndetic ([Ma05, Theorem 1.7.17]).

Using the results from [Wh39] we deduce that all the notions from Table 1
are equivalent.

Proposition 2.2. Let X be a semi-locally connected continuum. Then
all properties P1-P6 are equivalent. In particular, it is true when X is locally
connected.

Proof. It is sufficient to show that P6 implies P1. Let x ∈ X be a non-
cut point. Choose an arbitrary open neighborhood U of x. We assume that X
is semi-locally connected at x, so by definition there is an open neighborhood
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V of x such that x ∈ V ⊂ U and some components C1, . . . , Cn of X \ V
cover X \ U . By [Wh39, (6.2)] there exist subcontinua Xij ⊂ X \ {x}, 1 ≤
i, j ≤ n, such that Xij connects Ci and Cj for i 6= j. Obviously the set
W = U \ (

⋃

iCi ∪
⋃

i6=j Xij) is an open neighborhood of x satisfying W ⊂ U

and for which X \W is connected. Since every locally connected continuum is
semi-locally connected ([Wh39, Example 2(i)]), the last part of our proposition
follows.

Another natural notion for a point x in a continuum X which fits for our
table could be:

P2’ : There exist subcontinua A1 ⊂ A2 ⊂ · · · ⊂ X such that
X \ {x} =

⋃

n An.

Clearly P1 implies P2’ which implies P2. However, it turns out that P2’ only
provides an alternative way of how to characterize the points with the property
P2.

Proposition 2.3. Let X be a continuum containing a point x. The
following two properties are equivalent.

(i) x has the property P2 (x is not a weak cut point).
(ii) x has the property P2’.

Proof. Clearly (ii) implies (i). In order to show the opposite implication,
let x ∈ X be not a weak cut point. Let B(x, 1/n) denote the open ball with
the center at x and the radius 1/n. Choose a point p ∈ X \ {x} arbitrarily.
Let An be the connected component of X \ B(x, 1/n) containing p. Then
for each sufficiently large n the set An is a continuum. We may assume that
A1 6= ∅. Then ∅ 6= A1 ⊂ A2 ⊂ · · · and, since x is not a weak cut point,
⋃

n An = X \ {x}.

In order to complete the definitions from Table 1 we list several examples
in which P(n + 1) is not accompanied by Pn. For simplicity of notation, we
write P(n+ 1)\Pn.

Example (P2\P1). Let X be a dendroid constructed as follows: if P =
(0, 0), Q = (1, 0), An = (1 + 1/n, 1/n), Bn = (1 + 1/n,−1/n) and Cn =
(0,−1/n) are the points from R

2, then the union of segments forms the desired
dendroid

X = PQ ∪
⋃

n

(PAn) ∪ (AnBn) ∪ (BnCn).

The point Q is neither a weak cut point nor a point of colocal connectedness.

Example (P3\P2). Any point of the vertical segment in the sin( 1
x
)-

continuum is a non-block point and a weak cut point.
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Example (P4\P3). Let us denote by C the Cantor middle third set, let
Y ⊂ R

2 be the union of all segments [p, c] connecting the point p = (0, 1) with
a point c ∈ C×{0}. The continuum Y is a special dendroid called the Cantor
fan. Let Dn = {dn1 , . . . , d

n
m(n)} ⊂ C ×{0}, n = 1, 2, . . . , be a finite 1/n-net in

C × {0} such that Di ∩Dj = ∅ for i 6= j. We define a decomposition σ of Y
whose nondegenerate elements consist of finite sets

ℓα ∩

m(n)
⋃

i=1

[p, dni ], n ∈ N, α ∈ [1− 1/n, 1),

where ℓα denotes the horizontal line of points with second coordinate α ∈ R.
The quotient space X = Y/σ is a continuum, since σ is an upper semi-
continuous decomposition. The continuum X is a dendroid as well. The
point p is a shore point but not a non-block point.

Example (P5\P4). With the above notation, let

{(an1 , a
n
2 ) : a

n
1 6= an2 for n ∈ N and {am1 , am2 } ∩ {a

n
1 , a

n
2} = ∅ for m 6= n}

be dense in C × C. We define a decomposition τ of the Cantor fan Y whose
nondegenerate elements consist of pairs of points

ℓα ∩
2
⋃

i=1

[p, ani ], n ∈ N, α ∈ [1− 1/n, 1).

The quotient space X = Y/τ is again a dendroid. The point p is neither a
strong center nor a shore point.

Example (P6\P5). Any point of the common vertical segment of two
sin( 1

x
)-continua is a non-cut point and a strong center.

There are easy examples of continua without P2-points. For example, the
closure of the graph of the function

sin

(

1

1− |x|

)

, x ∈ (−1, 1)

has this property. In indecomposable continua there are no points of colocal
connectedness (P1), even there are no points with property P2. On the other
hand, every point of an indecomposable continuum is a non-block point (P3).

Let us briefly mention some results known from the literature related to
the notions listed in our Table 1. In arcwise connected continua there are
points of colocal connectedness (P1) ([KM79, Corollary 3.8]); the same is true
for continua with exactly two arc components ([KM79, Corollary 3.11]). Every
nondegenerate hereditarily decomposable continuum X contains at least one
subcontinuum K with empty interior at which the continuum X is colocally
connected ([KM79, Corollary 3.5]). Hence any point of K is a non-block
point ofX (P3). In particular, every nondegenerate hereditarily decomposable
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continuum contains a non-block point. We show that every nondegenerate
continuum contains at least two such points (Corollary 2.8). Recently, using
the results of Bing ([Bi48]), it has been proved that every nondegenerate
continuum contains at least two shore points ([Le13]).

In what follows we concern the Borel types of sets of points listed in the
table. We summarize our knowledge in the following.

Proposition 2.4. Let X be a continuum. The following is true.

(i) The set of P1-points is of type Gδ.
(ii) The set of P4-points is of type Gδ.
(iii) The set of P5-points is of type Gδ.
(iv) The set of P6-points is of type Fσδ .

Proof. (i) Let C be the set of all points of colocal connectedness. For
every n ∈ N there is an open cover Bn of C by open sets of diameter less than
1/n whose complements in X are connected. It holds that C =

⋂

n

⋃

Bn.
(ii) For n ∈ N let Gn be the set of all points p in X for which there exists

a (1/n)-dense continuum in X \ p. Then each Gn is open and
⋂∞

n=1 Gn is the
set of all shore points in X .

(iii) Let B be a countable base of X . The set of all non-strong centers
can be expressed as

⋂

A,B∈B

⋃

K

{X \K : K ∩ A 6= ∅ 6= K ∩B, K is a continuum}.

(iv) See [Wh42, Theorem 5.2].

We complete Proposition 2.4 by three examples.

Example 2.5. (i) The set of P2-points need not be Borel. In a dendroid
X , a point x is an end point (in the classical sense) if whenever x ∈ γ for
some arc γ ⊂ X , then x is an end point of γ. Obviously, the set of P2-
points in X coincide with the set of all end points. The assertion follows from
[NT90, Example 5], where the authors have found an example of a dendroid
in which the set of all end points is co-analytic and not Borel.

(ii) The set of Pn-points, n ∈ {1, 4, 5, 6}, need not be of type Fσ. Let us
denote by X the Wazewski universal dendrite ([Wa23]), and by E the set of
all end points in X . As stated in the explanation of (i), the set E coincides
with the set of all P2-points. Since X is locally connected, it follows from
Proposition 2.2 that the sets of points with the properties P1-P6 coincide and
hence they are equal to E. In particular, by Proposition 2.4(i) the set E is of
type Gδ. It is known that E is dense with an empty interior in X , hence by
the Baire category theorem E cannot be of type Fσ.

(iii) The set of all non-cut points is in general not of type Gδ. We only
sketch our argument. Let Q = {qn : n ≥ 0} be the set of all rational numbers
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from the interval (−1, 1). Define the continuum X as the closure of the graph
of the function

∞
∑

n=0

1

2n
sin

(

1

x− qn

)

, x ∈ (−1, 1) \Q.

Let us denote by N the set of all non-cut points in X . Obviously (x, y) ∈ N
if and only if x ∈ Q ∪ {−1, 1}, the set N is dense and of the first category in
X . By the Baire category theorem N is not of type Gδ.

It is of interest that the Borel complexity of the set of shore points is in
general better than the one of the set of non-cut points. From this point of
view the notion of a shore point is simpler than that of a non-cut point. Note
that we still do not know the descriptive character of the set of non-block
points. So we can pose the following.

Question 2.1. Is the set of non-block points Borel?

Our proof of Theorem 2.7 is based on the result of Bing [Bi48, Theorem
5].

Theorem 2.6. For each proper subset R of the continuum X there is a
point x of X \ R such that the union of all continua that lie in X \ {x} and
intersect R is dense in X.

We say that a subset S of a continuum X spans X if no proper subcon-
tinuum of X contains S. The next theorem and its corollary generalize the
fact that every nondegenerate continuum contains at least two non-cut points
[Bo67,Le13].

Theorem 2.7. Let X be a continuum. Then the set of all non-block points
spans X.

Proof. To the contrary, let A be a proper subcontinuum of X containing
all non-block points. By Theorem 2.6 there exists a point x ∈ X \ A such
that the union of all continua that lie in X \ {x} and intersect A is dense in
X . For some decreasing sequence (εn)

∞
n=1 of positive reals converging to zero

let us denote by Bn the open ball with the center at x and the radius εn; we
can assume that A∩B1 = ∅. For each n, let An be the component of X \Bn

containing A. Since Bn is open, the set An is a continuum. Moreover, An is a
subset of An+1 for n = 1, 2, . . . and any continuum C ⊂ X \ {x} intersecting
A is a subset of An for each sufficiently large n. Hence by Theorem 2.6 the
union

⋃∞
n=1 An is dense in X \ {x}, i.e. the point x is a non-block point.

Moreover, x /∈ A which is a contradiction.

Corollary 2.8. Let X be a nondegenerate continuum. Then X contains
at least two non-block points.
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3. Chainable continua

In this section our attention will be focused on the class of chainable
continua. For their own interest we state and prove several results describing
various roles of distinct kinds of non-cut points from Table 1. When arguing
our statements we will repeatedly use the fact that chainable continua are
hereditarily unicoherent ([Na92, Theorem 12.2]).

We start with two lemmas concerning the decomposability of a chainable
continuum.

Lemma 3.1. Let X be a chainable continuum such that X = K ∪ L for
two proper subcontinua K and L of X. Then every point of K ∩L is a strong
center.

Proof. Let p ∈ K∩L and suppose that p is not a strong center. Consider
the nonempty open sets X \K and X \L. Since p is not a strong center, there
is a continuum M intersecting K and L but omitting p. It follows that

M ∪ (K ∩ L) = (M ∩K) ∪ (M ∩ L) ∪ (K ∩ L)

form a weak triod. This is a contradiction with the fact that chainable con-
tinua do not contain weak triods ([Na92, Corollary 12.7]).

Notice that the intersection K ∩ L from Lemma 3.1 can consist of the
non-cut points only, see our Example P6\P5 in Section 2.

A shore set in a continuum X is a subset A of X such that, for each
ε > 0, there exists a subcontinuum Y of X such that the Hausdorff distance
from Y to X is less than ε and A ∩ Y = ∅. In [Il01, Na07, BMPV14] the
authors have studied in dendroids (or λ-dendroids) when the union of shore
points (continua) is a shore set. In the case of chainable continua we deduce
the following general result.

Proposition 3.2. The set of all shore points of a decomposable chainable
continuum is a shore set.

Proof. Let X be a decomposable chainable continuum and let X =
K ∪ L for two proper subcontinua K and L of X . By Theorem 2.7 there are
non-block points hence also shore points p ∈ K \ L and q ∈ L \K. Related
to p, q there are sequences of continua An and Bn which converge to X and
such that p /∈ An and q /∈ Bn. We may suppose that all An and Bn contain
K ∩ L. We define Mn = (An ∩K) ∪ (Bn ∩ L). The sequence Mn converges
to X . We prove that the complement of

⋃

Mn consists of all shore points.
Clearly any point of X \

⋃

Mn is a shore point. On the other hand, suppose
for contradiction that there is a shore point r ∈Mn for some n ∈ N. Without
loss of generality we may suppose that r ∈ K, notice that by Lemma 3.1 and
Table 1 even r ∈ K \ L. Since r is a shore point and K ∩Mn is a proper
closed subset of K, it follows that there is a subcontinuum C of X such that
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C ∩ (K \Mn) is nonempty, C ∩L = L∩Bn and r /∈ C. One can easily verify
that C ∪Mn ∪ L is a weak triod in X which is a contradiction. Thus the set
of all shore points of X is a shore set.

In a nondegenerate continuum X , a point p ∈ X is a point of irreducibility
provided that for some point q ∈ X \ {p} no proper subcontinuum of X con-
tains {p, q}. Clearly p is a point of irreducibility if and only if the composant
of p is a proper subset of X (compare [Na92, Theorem 11.2]).

The next two lemmas hold true in the general context. They will be
useful when proving Proposition 3.5 and Corollary 3.6. The first is from
[Na92, Corollary 11.19]. The second generalizes [Le13, Theorem 3].

Lemma 3.3. Let X be a nondegenerate continuum. The following two
properties are equivalent.

(i) Every point p ∈ X is a point of irreducibility of X.
(ii) X is indecomposable.

Lemma 3.4. Every point of irreducibility of a nondegenerate continuum
X is a non-block point.

Proof. If p is a point of irreducibility, then for some point q ∈ X \ {p}
no proper subcontinuum of X contains {p, q}. It means that the composant
κ(q) of q does not contain the point p. Since the composant κ(q) is dense in X
and can be expressed as a union of countably many proper subcontinua each
of which contains q ([Na92, Proposition 11.14]), the point p is a non-block
point.

The main statement of this section follows.

Proposition 3.5. Let X be a chainable continuum and let p ∈ X. The
following properties of p are equivalent.

(i) p is a point of irreducibility.
(ii) p is a non-block point.
(iii) p is a shore point.
(iv) p is not a strong center.

Proof. By Lemma 3.4 (i) implies (ii). Moreover, (ii) implies (iii) and
(iii) implies (iv) in general.

Let us prove (iv) implies (ii). If X is an indecomposable continuum every
point is a point of irreducibility ([Na92, Theorem 11.18]), so (iv) implies (i)
and (i) implies (ii) by Lemma 3.4. Thus we can assume that X is decompos-
able. Let X = K ∪ L, where K and L are two proper subcontinua of X and
let p be not a strong center of X . From Lemma 3.1 follows that p /∈ K ∩ L.
Without loss of generality we may suppose that p ∈ K \ L. Let {Bn : n ∈ N}
be the base of nonempty open subsets of X \ {p}. Since p is not a strong
center, there is for every n ∈ N a continuum Mn intersecting Bn and X \K
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such that p /∈ Mn. It is enough to let Pn = L ∪M1 ∪ . . . ,∪Mn. We deduce
that Pn is a continuum not containing p, P1 ⊆ P2 ⊆ . . . and Pn converge to
X in the Hausdorff metric. We have shown that p is a non-block point, i.e.
(iv) implies (ii).

It remains to prove that (ii) implies (i). In much the same way as above,
let p ∈ K \L. By Theorem 2.7 there is a non-block point q ∈ L \K. We show
that X is irreducible between p and q.

Suppose for contradiction that there is a proper subcontinuum A of X
which contains both p and q, let x ∈ A ∩ K ∩ L; x is a strong center by
Lemma 3.1. At least one of the sets K \ A, L \ A is nonempty. Assume the
former possibility. Since p is a non-block point, there is a sufficiently dense
subcontinuum B such that p /∈ B, x ∈ B and (K \ A) ∩ B is nonempty.
It follows that (L ∩ A) ∪ (K ∩ A) ∪ (K ∩ B) forms a weak triod which is a
contradiction.

Thus X is irreducible between the points p and q and hence p is a point
of irreducibility.

Combining Proposition 3.5 and Lemma 3.3 we deduce the following.

Corollary 3.6. Let X be a chainable continuum. The following prop-
erties are equivalent.

(i) Each point in X is a non-block point.
(ii) X is indecomposable.

Remark 3.7. By Proposition 3.5 the property P3 in Corollary 3.6 can
be replaced by P4 or P5. Let X be an arc of pseudoarcs ([Le85]). Then each
point of X is a non-cut point, at the same time X is decomposable, hence
Corollary 3.6 is not true for P6.

Let X be a chainable continuum. A point x ∈ X is called an end point
of X provided that for every ε > 0 there is an ε-chain B1, . . . , Bn covering X
such that x ∈ B1. An end point in a chainable continuum need not fulfill the
(classical) definition presented in Section 2 before Proposition 2.4. In [Do94]
it has been shown that the cardinality of end points of a chainable continuum
can be any cardinal number from {0, 1, . . . ,ℵ0, c}. In particular, it is known
that the Buckethandle continuum is chainable and has exactly one end point
([Do08]). Gluing two Buckethandle continua together in their end points we
find a chainable continuum with no end point.

There is a classical characterization of end points in chainable continua
([Do08, p. 32]). We recall two descriptions in the following statement.

Proposition 3.8. For a point x of a nondegenerate chainable continuum
X the following conditions are equivalent.

(i) x is an end point of X.
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(ii) Each nondegenerate subcontinuum of X containing x is irreducible be-
tween x and some other point.

(iii) If there are two subcontinua of X containing x, one of them contains
the other.

From the above characterization of an end point in a chainable continuum
and our Proposition 3.5 we conclude the following.

Proposition 3.9. Let X be a chainable continuum and let p ∈ X. Then
the following are equivalent.

(i) p is an end point.
(ii) p is a non-block point of every subcontinuum of X which contains p.

Proof. It is a consequence of Propositions 3.8(i),(ii) and 3.5(i),(ii).

A point x in a chainable continuum X is called an absolute end point, pro-
vided that whenever X is irreducible between p and q, then either x = p or
x = q. By the definition there are at most two absolute end points in a chain-
able continuum. The notion of an absolute end point in chainable continua
was introduced in [Ro88], where a number of equivalent characterizations was
proved. We choose only the following one. A point x is an absolute end
point if and only if x is a point of irreducibility and X is locally connected
at x ([Ro88, Theorem 1.0]). We note that being locally connected at a point
x of a chainable continuum is the same as being connected im kleinen at x
([Ro88, Theorem 1.7]).

It is easy to show that a point of order one in a chainable continuum is an
absolute end point. The converse need not be true. For example the two end
points of the arcless arc ([BPV13]) are absolute end points but these are not of
order one. This suggests to use the following notion. A continuumX is said to
be rim-connected at a point x if there are arbitrarily small neighborhoods of
x whose boundaries are connected. From the Boundary bumping theorem we
easily deduce that if a continuum X is rim-connected at x, then X is locally
as well as colocally connected at x. We give two other characterizations of
an absolute end point. One of them is based on Table 1 from Section 2, the
other is using the notion of rim-connectedness. These results are using the
following.

Lemma 3.10. Let x be a point of irreducibility of a continuum X. Then
the following are equivalent.

(i) x is a point of local connectedness.
(ii) x is a point of colocal connectedness.

Proof. (i) =⇒ (ii). Let X be irreducible between x and y. Let U be any
neighborhood of x. There is an open connected neighborhood V of x whose
closure is a subset of U and which avoids y. Let K be the component of X \V
which contains y. Clearly K is a continuum intersecting the boundary of V
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and hence K ∪ cl(V ) is a continuum. Since it contains x and y, we conclude
that it is equal to X . Hence X \K is a neighborhood of x whose complement
is connected.

(ii) =⇒ (i). Let X be irreducible between x and y. Let U be any neigh-
borhood of x. In U there is an open neighborhood V of x avoiding y, whose
complement is connected. Let us denote by C the component of the point
x in V and let us denote by K the closure of C. Clearly K is a continuum
intersecting the boundary of X \ V . We get that K ∪ (X \ V ) is a continuum
containing x and y and thus it equals X . It follows that K contains V and
thus C = V is an open connected neighborhood of x contained in U .

Proposition 3.11. The following are equivalent for a point x in a chain-
able continuum X.

(i) x is an absolute end point.
(ii) x is a point of rim-connectedness.
(iii) x is a point of colocal connectedness.

Proof. (i) =⇒ (ii). Let x be an absolute end point. By [Ro88, Theo-
rem 1.0] x is a point of irreducibility at which X is locally connected. Thus
there is y ∈ X such that X is irreducible between x and y. Let U be any
neighborhood of x whose closure does not contain y. There is a connected
open neighborhood V ⊆ U of the point x. Let K be the closure of V . Define
S to be the union of all subcontinua of X \ K containing the point y. Let
L be the closure of S. First, we claim that K ∩ L 6= ∅. Suppose to the con-
trary that this is not the case. Thus we can find an open set W such that
L ⊆W ⊆ cl(W ) ⊆ X \K. By the Boundary Bumping Theorem ([Na92, The-
orem 5.4]) the component C of the set cl(W ) containing the point y intersects
the boundary of W . Since C is disjoint with K we get that C ⊆ S and hence
C ⊆ L. Thus L intersects the boundary of W which contradicts the fact that
L ⊆W and W is open.

It follows that K ∪ L is a continuum containing both x and y and thus
X = K ∪L. Let B be the boundary of K, we want to show that B = K ∩L.
Clearly

B = K ∩ cl(X \K) ⊆ K ∩ cl(L) = K ∩ L

because K ∪ L = X . For the opposite inclusion suppose that z ∈ K ∩ L
is arbitrary. By the definition of L there is a sequence of points zn ∈ S
converging to z. Since S is disjoint with K it follows that z ∈ B.

By the unicoherence of X , the set B = K ∩ L is connected. Since the
neighborhood U was arbitrary we get that x is a point of rim-connectedness.

(ii) =⇒ (iii). This implication holds in general.
(iii) =⇒ (i). Let x be a point of colocal connectedness. In order to

show that x is an absolute end point it is enough to show that it is a point of
irreducibility at which X is locally connected ([Ro88, Theorem 1.0]). We have
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shown in Section 2 that x is a non-block point (P1 implies P3) and thus it is a
point of irreducibility by Proposition 3.5. Then from Lemma 3.10 we conclude
that x is a point of local connectedness of X and hence x is an absolute end
point of X .

4. Circle-like continua

In this section we investigate the class of circle-like continua. The main
tool of our approach will be the use of an inverse limit. Our main result is
formulated in Theorem 4.5.

Let P be a collection of compact metric spaces. We say that a continuum
X is P-like provided that for each ε > 0 there is a continuous map f from
X onto some member of P such that diamf−1(f(x)) < ε for each x ∈ X . In
particular, if P consists of an arc (resp. a simple closed curve), then X is
called arc-like (resp. circle-like).

The next general result can be found for example in [Na92, Theorem 2.13].

Proposition 4.1. A continuum X is P-like if and only if X is an inverse
limit lim←−{Xi, fi}, where all the coordinate spaces Xi are chosen from P and

each bonding map fi : Xi+1 → Xi is continuous and onto.

It is known that the classes of arc-like and chainable continua coincide
([Na92, Theorem 12.11]). Some continua are both arc-like and circle-like, see
for example the Buckethandle continuum ([Na92, 12.48]). In this section we
deal with the circle-like continua from the point of view of our Table 1.

For a continuum X and a continuous map f : X → X we say that f is
weakly confluent if for any subcontinuum K ⊂ X there exists a component L
of f−1(K) such that f(L) = K.

Let S
1 = {z ∈ C : |z| = 1}. Consider a continuous map f : S1 → S

1 of
degree deg(f) ∈ Z. Let F : R → R be a lifting of f , i.e. the continuous map
for which

(4.1) ϕ ◦ F = f ◦ ϕ on R,

where ϕ : R→ S
1 is defined as ϕ(x) = e2πix. Then

(4.2) F (x+ 1) = F (x) + deg(f) for each x ∈ R.

In particular, if the degree deg(f) is nonzero the map F is onto. Note that
any map F +m is also a lifting of f for m ∈ Z.

We start with one lemma providing an important ingredient of our next
construction.

Lemma 4.2. (i) Any nonzero degree continuous self-map of the unit
circle is weakly confluent.

(ii) Any continuous onto map f : I → J , where I, J are intervals, is weakly
confluent.
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Proof. (i) Let F : R → R be a lifting of f . By our assumption on the
degree, the map F is onto.

Let K be an arc in S
1. Then ϕ−1(K) = [a, b] + Z for some interval

[a, b] ⊂ R, 0 < b − a < 1. Since F is continuous onto, there exist points
x, y ∈ R such that F ({x, y}) = {a, b} and each point t between x, y is mapped
by F into (a, b). Moreover, from (4.2) we conclude |x − y| < 1. Let J ⊂ R

be the interval with end points x and y. Then L′ = ϕ(J) is an arc in S
1 and

using (4.1) we deduce f(L′) = ϕ(F (J)) = ϕ([a, b]) = K. So, if L ⊂ S
1 is

a component of f−1(K) containing L′, then also f(L) = K and f is weakly
confluent. (ii) We let the proof to the reader.

Let X be a circle-like continuum. By Proposition 4.1 the continuum X
can be expressed as an inverse limit

(4.3) lim←−{S
1, fi} = {((xi)

∞
i=1 : fi(xi+1) = xi for each i ∈ N}.

The space X will be equipped with the metric

d(x, y) =

∞
∑

i=1

̺(xi, yi)

2i
,

where ̺(xi, yi) denotes the Euclidean distance of xi, yi ∈ S
1. For n ∈ N let

Xn = {(xi)
n
i=1 : (xi)

∞
i=1 ∈ X} be a metric space endowed with the metric

dn(x, y) =
∑n

i=1
̺(xi,yi)

2i . Let Hd, resp. Hdn
be the induced Hausdorff metric

on X , resp. Xn.

Lemma 4.3. Let each bonding map in (4.3) has nonzero degree. Fix a
point x = (xi)

∞
i=1 ∈ X. Then there is a countable set

{Kj
i : i ∈ N, j ∈ {1, . . . , i}}

of arcs in S
1 satisfying (let fj(i−1) = fj ◦ · · · ◦ fi−1 for each i > 1 and 1 ≤ j <

i− 1, f(i−1)(i−1) = fi−1, fi(i−1) = id)

(i) Ki
i ⊂ S

1 \ {xi} for i ∈ N,

(ii) fi(K
j
i+1) = Kj

i for i ∈ N and j ∈ {1, . . . , i},

(iii) Ki
i ⊃ Ki−1

i · · · ⊃ K1
i for i ∈ N,

(iv) fji−1(K
i
i) ⊃ Kj

j for each i > 1 and 1 ≤ j < i,

(v) Hd1
(K1

1 , X1) < 1,
(vi) For each i > 1,

Hdi
(Xi ∩

i
∏

j=1

fj(i−1)(K
i
i), Xi) < 1/2i−1.

Proof. In the construction of Kj
i we repeatedly use the fact that the

bonding maps fi are continuous, onto and of a nonzero degree and apply
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Lemma 4.2. We proceed by the induction. In the ith step, we choose arcs
Ki−1

i , Ki−2
i ,. . . , K1

i , K
i
i (in written order):

Step 1. We choose an arc K1
1 ⊂ S

1 \ {x1} fulfilling the property (v).

Step 2. With the help of Lemma 4.2(i) we choose an arc K1
2 ⊂ S

1 such
that f1(K

1
2 ) = K1

1 . Since the arc K1
2 does not contain the point x2 and

f1(x2) = x1, there exists an arc K2
2 ⊂ S

1 \ {x2} such that K2
2 ⊃ K1

2 (iii),
f1(K

2
2 ) ⊃ K1

1 (iv) and (vi) is fulfilled for i = 2.

Step i + 1. Let us assume that the arcs Ki
i ,K

i−1
i , . . . ,K1

i fulfilling (i)-(vi)

have already been defined. Using Lemma 4.2 we can choose arcs Kj
i+1, j ∈

{1, . . . , i} satisfying (ii) and (iii). Since the arc Ki
i+1 does not contain the

point xi+1 (fi(K
i
i+1) = Ki

i and xi /∈ Ki
i by (i)), there exists an arc Ki+1

i+1

(the length of which is sufficiently close to 2π) such that all the properties
(i),(iii),(iv) and (vi) are satisfied.

This finishes our construction of the arcs Kj
i satisfying (i)-(vi).

For each n ∈ N, let

Ln
i = fi(n−1)(K

n
n) if 1 ≤ i < n, Ln

i = Kn
i for i ≥ n.

The key proposition follows.

Proposition 4.4. Let X be a circle-like continuum such that each bond-
ing map in (4.3) has nonzero degree.

(i) For each n ∈ N, the set

An = lim←−{L
n
i , fi}

is a subcontinuum of X. Moreover, An ⊂ An+1.
(ii)

⋃

n An ⊂ X \ {x},
(iii)

⋃

n An is dense in X.

Proof. (i) By our definition of the arcs Ln
i we conclude fi(L

n
i+1) = Ln

i

for each i ∈ N. Thus, the set An is well defined for each n ∈ N and it is a
subcontinuum inX . The inclusion An ⊂ An+1 directly follows from properties
(iii) and (iv) of Lemma 4.3.

(ii) From property (i) of Lemma 4.3 we conclude xn /∈ Ln
n = Kn

n , hence
x /∈ An for each n. It implies x /∈

⋃

n An.
(iii) From the properties (v),(vi) of Lemma 4.3 we deduce

Hd(An, X) ≤ Hdn
(Xn ∩

n
∏

j=1

fj(n−1)(K
n
n ), Xn) +

∞
∑

i=n+1

2

2i

< 1/2n−1 + 1/2n−1 = 1/2n−2.
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Using the above construction and the conclusion of Proposition 4.4 we
conclude the following.

Theorem 4.5. Let X be a circle-like continuum. Then every point x ∈ X
is a non-block point.

Proof. If X is also arc-like, then by [Bi62, p. 121] the continuum X is
indecomposable and the conclusion follows from Corollary 3.6. So in what
follows we assume that X is not arc-like. Then by [Ma05, Theorems 2.5.9-
10] each bonding map in (4.3) can be assumed to have a positive degree and
Proposition 4.4 can be applied.

We have proved that each point of a circle-like continuum has the property
P3 from our Table 1. On the other hand, there are circle-like continua in which
no point has the property P2, for example the circle of pseudoarcs is such a
continuum ([BJ59]).
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