ESTIMATION OF STATE OF CHARGE OF LITHIUM-ION BATTERY BASED ON PHOTOVOLTAIC GENERATION ENERGY STORAGE SYSTEM

Ze Cheng, Li Wang, Jiguang Liu, Jikao Lv

The fast and accurate estimation of state of charge (SOC) of lithium-ion battery is one of the key technologies of battery management system. In view of this nonlinear dynamic system of lithium battery, through the test and analysis of lithium-ion battery hysteresis characteristics, the second-order RC hysteresis model is established, and the cubature Kalman filter algorithm is used to estimate the battery state of charge in this report. The experiment results show that the battery model can essentially predict the dynamic hysteresis voltage behavior of the lithium-ion battery and cubature Kalman Filtering algorithm can maintain high accuracy in the estimation process.

Keywords: cubature Kalman filter; hysteresis model; Lithium-ion battery; state of charge

Procjena stanja naboja litij-ion baterije na temelju sustava akumulacije energije proizvedene solarnim čelijama

Ze Cheng i dr. Procjena stanja naboja litij-ion baterije na temelju sustava akumulacije energije proizvedene solarnim čelijama

Brza i točna procjena stanja naboja - state of charge (SOC) litij-ion baterije jedna je od ključnih tehnologija sustava za praćenje stanja baterije. Imajući u vidu nelinearni dinamički sustav litij baterije, u ovom je radu postavljen RC model histereze drugog reda ispitivanjem i analizom karakteristika histereze litij-ion baterije, a kubatura algoritma Kalmanovog filtra primijenjena je za procjenu stanja naboja baterije. Rezultati eksperimenata pokazuju da se modelom baterije može predvidjeti dinamičko ponašanje naboja histereze litij-ion baterije, a algoritmom kubature Kalmanovog filtriranja održati visoka točnost u postupku procjene.

Ključne riječi: kubatura Kalmanovog filtra; litij-ion baterija; model histereze; stanje naboja

1 Introduction

With environmental protection and energy saving issues increasing, prominent, lithium ion battery, due to its high energy density, high working voltage, long cycle life, no pollution, light weight, and small self-discharge [1], takes on a more significant role in the field of energy storage batteries. To take full advantage of the dynamic performance of the battery system and prevent battery overcharge, a battery management system is needed.

Reliable cell model is the premise condition of SOC accurate estimates. The accuracy of the model affects the precision of SOC estimation. Hysteretic characteristics are one of the basic characteristics of lithium ion batteries. It refers to the fact that OCV of battery during the charge process does not match the OCV of the discharge process. In order to improve the precision of the equivalent model of a lithium-ion battery, hysteretic characteristics must be taken into account.

In recent publications several SOC estimation algorithms such as the open circuit voltage (OCV) method, Ampere-Hour integral method and Kalman filter (KF) method are presented [2-5]. The OCV method [2] needs a long rest time, so it cannot be utilized in real time applications. The Ampere-Hour integral algorithm however is the most simple and convenient one, but it requires a prior knowledge of initial SOC and suffers from accumulated errors from noise and measurement. KF method is proposed to solve the above problem in recent years, but it is only suitable for linear system [4]. The Extended Kalman Filter (EKF) [5] is a nonlinear method of the KF, which has been used particularly for systems with nonlinear dynamic models.

This paper proposes a model based on hysteretic characteristics [6] of lithium-ion battery, and uses Cubature Kalman Filter (CKF) algorithm [7] to estimate the SOC, which greatly reduces the model error and the algorithm error. The next part is experiment analysis of battery hysteresis characteristics and its influence. In part III, we propose a high-precision battery hysteresis model which takes the hysteresis effect into consideration. Part IV introduces the volume Kalman filtering algorithm in the SOC estimation. In part V, the hysteresis model is verified by experiments and CKF method is used to estimate the accuracy of SOC. Part VI summarizes the article.

2 Experiment analyses of Lithium ion battery hysteretic characteristics

The test of the hysteretic characteristics during the charge and discharge process has been done to show how the hysteretic characteristics affect the SOC estimation. The LP2770102AC lithium-ion battery, which is a lithium iron phosphate battery that can be used in portable high power devices, grid stabilization energy storage, and electric vehicles, has been chosen. Its capacity is 12.5 Ah and nominal voltage is 3.3 V. A Digatron MCT 30-05-40 cell cycler was used to test. The battery temperature should be kept at 20 ± 2 °C. The battery voltage is assumed to keep stable value after standing for 1 hour in the charging and discharging test process [8].

2.1 The major loop of the hysteretic characteristics

The major loop of the hysteretic characteristics is the OCV-SOC characteristic curve in one complete battery SOC cycle [9]. Fig. 1 shows the testing process. The process of charging and discharging time is about 53 hours, and sampling time is 1 second. It can be seen the OCV changes greatly when the SOC < 10 % and SOC > 90 %.

The major loop of the hysteretic characteristics curve
and the difference curve can be drawn with the data in Fig. 1. As shown in Fig. 2, it can be seen the charging OCV is always above the discharging OCV in the same SOC.

After dividing the curve of (b) into three parts, the largest relative difference is:

$$D_{rr} = \frac{D_{mr}}{OCV_{max} - OCV_{min}}$$ \hspace{1cm} (1)$$

where D_{mr} represents the biggest absolute difference value of each part.

1) $SOC < 10 \% = 0.16$ V ($SOC = 2.5 \%$) = 15.23 %
2) $10 \% < SOC < 90 \% = 0.035$ V ($SOC = 30 \%$) = 3.33 %
3) $SOC > 90 \% = 0.03$ V ($SOC = 97.5 \%$) = 2.8 %.

The OCV-SOC curves are shown in Fig. 3 after varying different rest time to 1 min, 5 min, 30 min. The curves show hysteretic characteristics are not only a function of SOC, but also a function of rest time [10]. As the rest time become longer, the hysteresis characteristics become weak, and then tend to be smooth ultimately.

2.2 The minor loop of the hysteresis characteristics

In practical applications of lithium-ion batteries, such as electric vehicle, lithium-ion battery is mainly working under the partial charge and discharge cycles [11]. Therefore minor loop of the hysteresis characteristics which is the battery OCV-SOC curve under local SOC cycle must be under considered in the battery SOC estimation [12]. Fig. 4 shows the voltage and current curves in testing process.

Fig. 4 shows the minor loop of the hysteresis characteristics curve. As shown in Fig. 5, Black arrows represent the changing direction of SOC.

Experimental results show the following conclusion:
1) Hysteresis characteristic is a bunch of curve.
2) It is a history function of charging-discharging process.
3) It is a function of rest time.
4) The OCV-SOC curve of minor loop of hysteretic characteristics is always under the charging and discharging OCV-SOC curves of the major loop.
5) When the current changes direction, the SOC-OCV trajectory also changes direction and successive approach to the major loop curves with the same direction [13, 14].

2.3 The influence of hysteretic characteristics to SOC estimation

SOC estimation error caused by the hysteresis characteristics is:

$$E_{SOC_{Hys}} = \frac{SOC_{Charge} - SOC_{Discharge}}{SOC_{max} - SOC_{min}} \times 100 \%.$$ \hspace{1cm} (2)$$

By exchanging the axes of Fig. 2(a) and make a difference, the curve of SOC-OCV and SOC error curve are as shown in Fig. 6.

As can be seen from the Fig. 6(b), the maximum estimation error of SOC caused by the hysteresis
characteristics is 32.6% \((OCV = 3.3 \text{ V})\), which means estimating the \(SOC\) with the average of charging and discharging \(OCV\)-\(SOC\) curve will cause a big error. Battery \(SOC\) is sensitive to the change of the \(OCV\) especially in range of 10% to 90%. Very small \(OCV\) fluctuations are likely to cause a big \(SOC\) estimation error. Therefore the hysteresis characteristics must be taken into account.

3 Lithium-ion battery equivalent circuit models

Considering the accuracy, complexity and the requirements of different precision comprehensively, the battery model can be divided into linear model, static model and hysteresis model [15÷17].

3.1 Linear models

As shown in Fig. 7, linear model regards the battery as a large capacitor \(C\), and \(U_{oc}\) represents capacitor voltage. Meanwhile, a small resistor \(R_{0}\) is cascaded with the capacitor. The resistor is called the battery’s “internal resistor” and changes with the ambient temperature and the life of batteries [18].

\[
\begin{align*}
U_{oc} & \quad (SOC) \\
R_{0} & \quad I_{t} \\
+ & \quad C \\
- & \quad U_{oc} \\
- & \quad U_{t}
\end{align*}
\]

3.2 Relaxation model

This battery model takes relaxation characteristic [19] into consideration. Relaxation characteristic is the phenomenon of battery \(OCV\) slow return to equilibrium after a period of time charging or discharging, which can be expressed by a series of RC networks. The more RC networks, the closer to true \(OCV\). Compared with linear model, it uses controllable voltage source instead of large capacitor to represent electromotive force, and the voltage is a function of \(SOC\). Fig. 8 shows the relaxation model.

\[
\frac{dOCV}{dSOC} = \frac{dOCV_{\text{Charging}}}{dSOC} + \eta(OCV_{\text{Charging}} - OCV) \quad \frac{dSOC}{dt} \geq 0 \\
\frac{dOCV}{dSOC} = \frac{dOCV_{\text{Discharging}}}{dSOC} + \eta(OCV - OCV_{\text{Discharging}}) \quad \frac{dSOC}{dt} < 0
\]

3.3 Hysteresis model

Hysteresis model is the battery model that takes hysteresis characteristic into consideration. The basic idea to describe the hysteresis characteristics of this paper is to propose a mathematical model that successively approaches the upper curve \(OCV_{\text{Charging}}\) when the cell is charging and approach the lower one \(OCV_{\text{Discharging}}\) when it discharges [20]. The following models are chosen after many times comparison:

The second order RC hysteresis equivalent circuit model is chosen by considering model precision, complexity and chosen LiFePO4. The model is shown in Fig. 10.

\[
\begin{align*}
\frac{dSOC}{dt} & = \frac{dSOC_{\text{Charging}}}{dSOC} + \eta(OCV_{\text{Charging}} - OCV) \quad \frac{dSOC}{dt} \geq 0 \\
\frac{dSOC}{dt} & = \frac{dSOC_{\text{Discharging}}}{dSOC} + \eta(OCV - OCV_{\text{Discharging}}) \quad \frac{dSOC}{dt} < 0
\end{align*}
\]
\[
\eta = \begin{bmatrix}
\frac{1}{SOC(k+1)} \times OCV(k+1) - OCV'(k+1),
\frac{dSOC}{dt} \geq 0 \\
\frac{1}{SOC(k+1)} \times OCV'(k) - OCV(k),
\frac{dSOC}{dt} < 0
\end{bmatrix}
\]

\(\eta\) is adjustment coefficient.

According to Eq. (3), we can obtain Eq. (4). Data of test 2 are utilized in Eq. (4) and Averaging, we can obtain: \(\eta = 0.985\).

In order to verify the accuracy of the models, results are shown in Fig. 9. Even if the demonstrated hysteresis model is very simple, the OCV can be simulated accurately with deviations of less than 2 mV.

In order to improve the precision of model, the recursive least squares method is used to estimate the above parameters of the equivalent circuit model. The estimation results based on a pulse discharge data are shown in Fig. 11.

4 SOC estimation of lithium-ion battery based on the hysteresis model

There are two disadvantages in the process of EKF state estimation:

1) When the higher-order Taylor expansion term of nonlinear function cannot be ignored, linearization will produce bigger system error, and even make the filter unstable.

2) Jacobian matrix is needed to calculate at each filter cycle, and this will greatly increase the computational complexity of filtering estimation.

\[
\begin{pmatrix}
SOC(k+1) \\
U_e(k+1) \\
U_d(k+1)
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & e^{-T/\tau_c} & 0 \\
0 & 0 & e^{-T/\tau_d}
\end{pmatrix}
\begin{pmatrix}
SOC(k) \\
U_e(k) \\
U_d(k)
\end{pmatrix}
+ \begin{pmatrix}
\frac{\eta T}{Q_e} \\
R_e(1-e^{-T/\tau_c}) \\
R_d(1-e^{-T/\tau_d})
\end{pmatrix} I_e(k) + w_k,
\]

\(U_e(k) = U_{oc}(SOC(k)) - \frac{SOC(k)}{R_0} - U_d(k) - R_0I_e(k) + v_k\) (6)

This paper uses another kind of Kalman filter nonlinear method - Cubature Kalman Filter (CKF) [18] to estimate lithium-ion battery SOC. It uses the same weight cubature points to approximate posterior distribution of optimal state [19, 20]. CKF is suitable to solve nonlinear state estimation problems from low dimension to high dimension, and its estimation precision can reach second order Taylor precision at least.

Regarding SOC, \(U_e\) and \(U_d\) as state variables, \(I_e\) as input, \(U_t\) as output, the discretization state equation (5) and observation equation (6) is obtained. When \(\tau_c\) is coulomb efficiency, \(\tau_d\) is rated capacity of the battery; \(T\) is sampling period; \(\tau_c\) and \(\tau_d\) are time constant of RC networks, \(\tau_c = R_0 C_e, \tau_d = R_0 C_d\); \(I_e(k)\) is current of \(k\) moment; \(w_k\) and \(v_k\) are unrelated gaussian white noise.

1) Initialization:

\[
\hat{x}_0 = [SOC(0) 0 0], \hat{P}_0 = E[(x_0 - \hat{x}_0)(x_0 - \hat{x}_0)^T].
\]

2) Forecast update:

\[
P_k = S_k S_k^T, \hat{x}_k = S_k \xi + \hat{x}_k
\]

\[
y_{k+1} = f(\hat{x}_k, u_k) + \tilde{y}_k
\]

\[
\hat{x}_k+1 = \frac{1}{L} \sum_{i=1}^L y_{k+1,i} = \frac{1}{L} \sum_{i=1}^L f(\xi_{k+1,i}, u_k) + \tilde{y}_k
\]

\[
P_{k+1} = \frac{1}{L} \sum_{i=1}^L (y_{k+1,i} - \hat{x}_{k+1,i}) (y_{k+1,i} - \hat{x}_{k+1,i})^T + \hat{Q}_k
\]

3) Measurement update:

\[
P_{k+1} = S_{k+1}\hat{x}_{k+1} + \hat{Q}_{k+1}
\]

\[
Z_{k+1,i} = h(\hat{x}_{k+1,i}, u_{k+1}) + \hat{z}_{k+1,i}
\]

\[
\hat{z}_{k+1,i} = \frac{1}{L} \sum_{i=1}^L Z_{k+1,i} = \frac{1}{L} \sum_{i=1}^L h(\hat{x}_{k+1,i}, u_{k+1}) + \hat{z}_{k+1,i}
\]

\[
P_{k+1} = \frac{1}{L} \sum_{i=1}^L (Z_{k+1,i} - \hat{z}_{k+1,i})(Z_{k+1,i} - \hat{z}_{k+1,i})^T + \hat{R}_{k+1}
\]

\[
P_{k+1} = \frac{1}{L} \sum_{i=1}^L (Z_{k+1,i} - \hat{z}_{k+1,i})(Z_{k+1,i} - \hat{z}_{k+1,i})^T + \hat{R}_{k+1}
\]

\[
P_{k+1} = \frac{1}{L} \sum_{i=1}^L (Z_{k+1,i} - \hat{z}_{k+1,i})(Z_{k+1,i} - \hat{z}_{k+1,i})^T + \hat{R}_{k+1}
\]

\[
P_{k+1} = \frac{1}{L} \sum_{i=1}^L (Z_{k+1,i} - \hat{z}_{k+1,i})(Z_{k+1,i} - \hat{z}_{k+1,i})^T + \hat{R}_{k+1}
\]
4) State updates:
\[
W_{k+1} = P_{k+1}^{zz} \left(P_{k+1}^{zz} + W_{k+1} \right)^{-1}
\]
\[
\hat{x}_{k+1} = \hat{x}_{k+1}^{zz} + W_{k+1} \left(\hat{x}_{k+1}^{zz} - \hat{x}_{k+1} \right)
\]
\[
P_{k+1} = P_{k}^{zz} - W_{k+1} P_{k}^{zz} W_{k+1}^T.
\]

Fig. 13 shows the estimation value of lithium-ion battery terminal voltage and estimation error of equivalent model with and without considered hysteretic characteristics. The results of the two conditions can be found by utilized battery current and voltage data in the hysteresis models shown in Fig. 10.

5.1 Model validation

Fig. 13 shows the estimation value of lithium-ion battery terminal voltage and estimation error of equivalent model with and without considered hysteretic characteristics. The results of the two conditions can be found by utilized battery current and voltage data in the hysteretic models shown in Fig. 10.

As shown in Fig. 13(c), the terminal voltage estimation error is within 0.02 V when considering hysteresis characteristics. This means that the second-
order RC hysteresis model can track the dynamic characteristics of lithium-ion battery more accurately even in the condition of the severe changes of current.

5.2 Algorithm verification

The experiment results are shown in Fig. 14 by Using CKF to estimate the battery SOC. All the truth value of SOC is based on an ampere-hour integral method. Fig. 14(c) shows that SOC estimation errors are less than 2 % and 5 % respectively, which explains CKF algorithm can accurately estimate the battery SOC even if model error is considerable. It can accurately track the actual value of SOC, which shows CKF has good robustness.

In order to compare the speed of CKF and EKF converging to the true value with wrong initial value, initial SOC of charging and discharge conditions is set to 0.4 and 0.6 respectively. As shown in Fog. 15, CKF converges to true SOC faster than EKF, and has better dynamic interference resistance as well.

6 Conclusions

This paper analyses the influence of hysteresis characteristics to battery SOC estimation quantitatively. A simple and feasible equivalent hysteresis model is established for charging and discharging experiments. In addition, CKF algorithm is used to estimate battery SOC. As a result, the advantages of the model and algorithm can be verified.

7 References

[9] Tian, Tian; Li, Xiaozun; Li, Hongmei. Modified modeling and SOC estimation of LiFePO4 Li-ion battery // Journal of Hefei University of Technology (Natural Science). 9, (2012), pp. 1192-1195+1252.
[18] Wang, Xiaoxu; Pan, Quan; Huang, He et al. Overview of deterministic sampling filtering algorithms for nonlinear system. // Control and Decision. 27, 6(2012), pp. 801-812.

Authors' addresses

Ze Cheng, Associate Professor
School of Electrical Engineering & Automation of Tianjin University, 300072 Tianjin, China
E-mail: chengze@tju.edu.cn

Li Wang, Master
School of Electrical Engineering & Automation of Tianjin University, 300072 Tianjin, China
E-mail: wxlwbh@163.com

Jiguang Liu
School of Electrical Engineering & Automation of Tianjin University, 300072 Tianjin, China
E-mail: zdbljg@tju.edu.cn

Jikao Lv, Master
School of Electrical Engineering & Automation of Tianjin University, 300072 Tianjin, China
E-mail: lvjikao@126.com