INTECH

open science | open minds

ARTICLE

International Journal of Engineering Business Management

Supporting User Generated Content for
Mobile News Services: A Case Study

Regular Paper

Christos K. Georgiadis

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

* Corresponding author E-mail: geor@uom.gr

Received 16 July 2012; Accepted 23 July 2012

DOI': 10.5772/51646

© 2012 Georgiadis; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Web 2.0 applications encourage users to
contribute to the production of richer content. In this
context, our work mainly focuses on providing mobile
users the ability to share content and to support user
generated content production. Specifically, in our case
study, features both for a mobile Web and for a mobile
native application are implemented, capable of providing
news services enriched with indicative social networking
elements. The results of our work are largely related to
the understanding of the required proper solutions, based
on the investigation of serious technical challenges: the
XML-RPC library for the Android platform is exploited,
as well as a specific Backend Joomla! component is built
(Rsstoa) to handle consistently external content sources,
such as feeds and multipart emails.

Keywords Mobile News Services, News Infomediaries,
User Generated Content, Mobile Web

1. Introduction

The Web has fostered the emergence of ‘news
infomediaries’, which are applications/sites that work in

publishing material already published by a third party,
acting as specialists in information brokering [1].

www.intechopen.com

Characteristic examples are the portals of popular
Internet service providers (such as MSN-the Microsoft
Network) and the news aggregator services (such as the
Google News service). In the latter, advanced features for
searching articles and sorting/grouping the results are
present along with the provision of hyperlinks to news
messages from different content websites together with
the first two or three lines of the concerned message [2].

Moreover, Web and mobile users make increasing
demands on the role of users-authors: they seek flexible
ways to add content of various forms as well as to
categorize and rate content. Consequently, the objective of
this work was to facilitate the involvement of mobile users
to produce and upload new content on the news website
and to facilitate their participation in the promotion and
evaluation of the existing content. An important aspect of
the provided functionality is the capability to pull news
content from different sites and present it in a mobile
environment. A significant addition was the design and
implementation of a specific component for the automatic
storing of articles derived from external sources, such as
RSS/Atom feeds and emails.

Website creation was based on the popular Joomla!
Content Management System (plus the mobile Joomla!

Int. j. eng. bus. manag., 2012, Vol. 4, Special Issue Digital and Mobile Economy, 12:2012

component). Some modifications, adaptations and
additions were applied in order to enrich it with
functions necessary for the needs of the participative
Web. Two discrete ways for accessing the content
through mobile devices are described. The first concerns
the adaptation of content (depending on the device
specifications) that is performed by the website, whereas
the second concerns the development of a suitable
customized mobile application that allows users to access
the content of the news website. For this reason, an
application for the Android platform was developed in
the NetBeans environment. Our approach adopts the two
following critical success factors for content sharing and
social network services (in the context of convergent
mobile and Internet technologies, as they are identified in
reference [3]:

e Focusing on open source code: relative observed
benefits include simplified integration with other
services, savings on proprietary technology and
software acquisition, improved visibility and low
barriers for external developers.

e Focusing on the integration with other social
applications: relative observed benefits include
increased service usage and expanded channels for
new user acquisition.

¢ Leveraging on previous technological know-how and
intangible assets: relative observed benefits include
establishment of key business partnerships, new
user acquisition, positive reputation and technical
stability and scalability.

After using the news website under real conditions, an
evaluation of its usability was performed, both by
selected users and by random users who were forwarded
to the Website through popular social networks or who
discovered the Website themselves through search engine
results. This evaluation was of vital importance, as the
feedback received allowed correction of bugs and
implementation of additional features. The results of our
work are primarily related to the understanding of
technical challenges and the development of proper
solutions regarding the support of the “participative
relation” of mobile users with the news website. In
addition, an important aspect of this work is the resulting
conclusions regarding the provided mobile news services
that could be used as an important decision making tool
by news and media professionals. Finally, we have to
mention that some basic ideas relative to initial designs
were presented in reference [4].

2. News Services
Analysing typical user requirements on news-oriented

websites, we may distinguish the following user
categories: visitor, member, author and administrator.

Int. j. eng. bus. manag., 2012, Vol. 4, Special Issue Digital and Mobile Economy, 12:2012

Visitors (the unregistered users) have read access rights
mainly. Because our support
networking, we may allow them to share news content
(articles) that they like via popular social networking sites
(such as Facebook) and to rate news content.

focus is to social

Visitors may become members either by registering using
our registration service or by certifying their identity via
a social network. Members have extra access rights: they
may post comments and receive newsletters by e-mail.

On the other hand, authors have content management
rights: they may upload/withdraw/publish/delete news,
organize their articles in categories, parameterize the
presentation of their articles and manage the comments on
their articles. They may publish articles through RSS/Atom
feeds and via emails. Finally, they may upload multimedia
for their articles from a variety of resources including
popular social networks (such as YouTube and Picassa).

Syndication is currently a major and important part of the
Internet. There are two main forms of Syndication: RSS
2.0 (Really Simple Syndication) and Atom 1.0 (Atom
Syndication Format). Although they accomplish the same
objectives there are some differences. RSS 2.0 is a
standard copyrighted by Harvard, while Atom 1.0 has
been defined in RFC4287. Atom was invented because the
RSS 2.0 prototype was considered a prototype with
limited expansive opportunities and capabilities [5].
Websites that provide RSS and ATOM feeds can maintain
an «open connection» with their users. That means users
do not have to periodically visit a website as they can
simply use the aforementioned feeds to stay informed.
Therefore, our approach for providing news services
supports authors importing articles using RSS/Atom
feeds. In this way, all users (members and visitors) may
have access to content provided by syndication feeds.

3. Mobile News Services

Increased sophistication of mobile technology makes
itself an ideal channel for offering valuable services to
mobile users [6]. The following factors should be taken
into consideration:

® A huge variety of mobile devices exists and these devices
differ (from a developer’s perspective) in at least two major
parameters: the screen size and the reading format.

e Internet access is required generally and not necessarily
in a constant online state. However, certain alternatives of
accessing Internet content may be used: (a) the Mobile
Portal model refers to browser-based approaches that
allow users to access existing website content (the mobile
Web) and (b) the Mobile Application Store model refers
to native application implementations.

www.intechopen.com

3.1 Web Technology

Most mobile devices have a preinstalled Web browser that
allows users to access websites. But restrictions are applied
because of the screen size and the limited capability of
typing text through a touch-screen, which imposes
selective modification of appearance of content depending
on the specifications of the mobile appliance that is being
served by the website. Such websites are either developed
separately from their associated desktop-oriented version
or both the versions are created simultaneously by
employing methodologies that support multi-platform
context-aware websites requiring an extensive engineering
effort [7]. Context-aware adaptation for web browsing on
handheld devices would be one of the major new functions
of smart handheld devices in the near future [8].

3.2 Mobile Native Application

An additional application is developed tailored to a specific
platform, aiming to complete user
requirements by exploiting the advanced characteristics of
the current mobile device. This approach, despite the
apparent weakness (building a different application for each
platform is very expensive if written in each native
language), has a noteworthy advantage: the Web technology
stack has not yet achieved the level of performance we can
attain with native code [9], thus mobile users will continue to
seek native experiences in order to enjoy services of similar
quality with the fixed Internet.

mobile cover

In addition, an increasing number of mobile users prefer to
seek mobile content and services in their devices’
application stores (e.g., the Apple Store). The so-called
Mobile Application Store model is a new distribution
paradigm, alternative to the dominant one of Mobile
Web/Portal. The application creation and distribution
paradigm underlying the idea is to grant higher openness
and independence to third parties, following a “self-
publishing model”. From an offer perspective, the store’s
Web-oriented nature allows pairing the mature mobile
content and service offer with Internet-based software
applications [10].

4. Mobile (Native) Application

The customized application is written in Java and is
developed in NetBeans 7.0 IDE using the Android
Software Development Kit. It was developed to support
all required news services (the handling of the news
articles published on our news website) through mobile
devices. Indicative functions are as follows:

* The retrieval and presentation of articles’ categories.

* The retrieval and presentation of the ten most recent
articles.

www.intechopen.com

® The retrieval and presentation of the ten most recent
articles per category.
¢ The publishing and deletion of an article.

It exploits the server-side XML-RPC methods and uses the
client-side XML-RPC library for the Android platform.

4.1 Android Activities

The main services that the customized application may
provide are listed below:

<activity android:name=".ViewArticle"></activity>
<activity android:name=".ListArticles"></activity>
<activity android:name=".NewArticle"></activity>
<activity android:name=".DeleteArticle"></activity>
<activity android:name=".ListCategories"></activity>

<activity android:name=".LatestArticles"></activity>

Let us provide at this point a few comments on indicative
code which uses XML-RPC methods for retrieving a list
of the most recent articles (Latest Articles activity):

public void onCreate(Bundle savedInstanceState)

{ super.onCreate(savedInstanceState);

1. The first step is to create a client for the XML-RPC
service that runs on the Joomla! server:

uri = URLcreate("http://www .kasnakisg.gr/xmlrpc/index.php");
client = new XMLRPCClient(uri);

2. The second step is to create the appropriate user
interface (UI):

setContentView(R layout.main);

katigoria=this.getIntent().getExtras().getString("kat");

int kat=Integer.parselnt(katigoria);

errorDrawable =
getResources().getDrawable(R.drawable.error);

errorDrawable.setBounds(0, 0,
errorDrawable.getIntrinsicWidth(),
errorDrawable.getIntrinsicHeight());

status = (TextView) findViewByld(R.id.status);

tests = (ListView) findViewById(R.id.tests);

final ArrayAdapter<String> adapter = new TestAdapter(this,

R.layout.test, R.id.title);

3. Remotely calling the getRecentPosts:

XMLRPCMethod method = new
XMLRPCMethod("metaWeblog. getRecentPosts",
new XMLRPCMethodCallback() {

public void callFinished(Object result) {

4. In this step we receive as response an array of objects.
The number of rows is examined and in case it exceeds

Christos K. Georgiadis: Supporting User Generated Content for Mobile News Services: A Case Study

4

ten (10), the array is limited to the first ten rows only. If
the number of rows is null, the user receives an
appropriate message:

Object[] arr=(Object[]) result;
inti;
if (arr.length>=10) numart1=10;

else numartl=arr.length;

5. The mobile application then decodes the structure into
pairs of fields in the form of “Fields name”-“Fields price”:

VA

for(i=0;i<numart1;i++) {

Map<String, Object> map = (Map<String, Object>) arr[i];

6. Every row of the array is transformed into a new object
for the Ul list structure, the ‘adapter’. At the same time,
all the necessary fields are saved to ensure that the
onClick procedure works flawlessly:

adapter.add(map.get("postid").toString()+" —
"+map.get("title").toString());
desc.add(map.get("description”).toString()); } } });
7. The parameters have to be placed into an array:

"

Object[] params = { "",user, pass,10, kat, };

8. The call is achieved through the method.call procedure
of XML-RPC:

method.call(params);

9. The list object ‘adapter’ fills the test list container, as
well as the testListener functionality.

tests.setAdapter(adapter);
tests.setOnltemClickListener(testListener); }

10. When onClick is activated, a specific activity class is
called with the appropriate parameter input:

OnltemClickListener testListener = new
OnltemClickListener() {
public void onltemClick(AdapterView<?> parent, View
view, int position, long id) {
Bundle bundle = new Bundle();

11. The parameter test receives a string value that is the
header for the html coding and the article’s short
description:

Bundle.putString(“test”, header+desc.get(position).toString());

12. The function ViewArticle is then called; it retrieves the
content of the article.

startActivity(new Intent(view.getContext(),

ViewArticle.class).putExtras(bundle)); } };

Int. j. eng. bus. manag., 2012, Vol. 4, Special Issue Digital and Mobile Economy, 12:2012

13. Implementation of the list object. The list returns an
integer that corresponds to the line’s number:

class TestAdapter extends Array Adapter<String> {
private LayoutInflater layouter;
private int layoutld;
public TestAdapter(Context context, int layoutld,
int textld) {
super(context, layoutld, textld);
this.layoutld = layoutld;
layouter = LayoutInflater.from(ListArticles.this);
}
@Override
public View getView(int position, View convertView,
ViewGroup parent) {
View view = layouter.inflate(layoutld, null);
TextView title = (TextView)
view .findViewByld(R.id.title);
TextView params = (TextView)
view.findViewByld(R.id.params);
String string = getltem(position);
String|[] arr = string.split(";");
title.setText(arr[0]);
if (arr.length ==2) {
params.setText(arr[1]);
} else {
params.setVisibility(View.GONE);
}

return view; } }

14. As shown in the code below (part of the onCreate
method of ViewArticle activity), the content of the article is
being projected through a mini browser (WebView type):

browser=(WebView)find ViewById(R.id.webkit);
strUrl=this.getIntent().getExtras().getString("test");
browser.loadData(strUrl, "text/html", "utf-8"); }

15. In the XMLRPCMethod, additions were made in order
to handle errors and give appropriate messages when the
remote method is being executed.

interface XMLRPCMethodCallback {
void callFinished(Object result); }
class XMLRPCMethod extends Thread {
private String method;
private Object[] params;
private Handler handler;
private XMLRPCMethodCallback callBack;
public XMLRPCMethod(String method,
XMLRPCMethodCallback callBack) {
this.method = method;
this.callBack = callBack;
handler = new Handler(); }
public void call() {
call(null); }

www.intechopen.com

public void call(Object[] params) {
status.setTextColor(0xff80£f80);
status.setError(null);
status.setText("Calling host " +

uri.getHost());
this.params = params;
start();
}
@Override
public void run() {

try {
final long t0 = System.currentTimeMillis();
final Object result = client.callEx(method, params);
final long t1 = System.currentTimeMillis();
handler.post(new Runnable() {
public void run() {
status.setText("XML-RPC call took " + (t1-t0) +
"ms");
callBack.callFinished(result); }
D
} catch (final XMLRPCFault e) {
handler.post(new Runnable() {
public void run() {
status.setTextColor(0xffff8080);
status.setError("", errorDrawable);
status.setText("No available articles");
Log.d("Test", "error", e);
}
b
} catch (final XMLRPCException e) {
handler.post(new Runnable() {
public void run() {
status.setTextColor(0xffff8080);
status.setError("", errorDrawable);
Throwable couse = e.getCause();
if (couse instanceof
HttpHostConnectException) {
status.setText("Cannot connect to " +

uri.getHost());
}
else {
status.setText("Articles Not Found" +
e.getMessage());

}
Log.d("Test", "error", e);
}
Y

4.2 On the Server Side

On the server side, a request to the data base is executed
and results are being received:

function getRecentPosts($blogid, $username, $password,
$numposts) {
global $xmlrpcerruser, $xmlrpcl4, $xmlrpcint,
$xmlrpcBoolean, $xmlrpcDouble, $xmlrpcString,
$xmlrpcDateTime, $xmlrpcBase64, $xmlrpcArray,

$xmlrpcStruct, $xmlrpcValue;

www.intechopen.com

The following code is for identifying the user:

If ('plgXMLRPCmetaWeblogHelper::authenticateUser
($username, $password))

return new xmlrpcresp(0, $xmlrpcerruser+1, "Login Failed");

$user =& JUser::getInstance($username);

$aid = plgXMLRPCmetaWeblogHelper::getUserAid($user->id);

$plugin =& JPluginHelper::getPlugin('xmlrpc','metaweblog');

$params = new JParameter($plugin->params);

A data base object is being created:
$db =& JFactory::getDBO();

A query is being executed:

$query = 'SELECT c.id, c.title, c.alias, c.created_by, c.introtext,
c.created, c.state'
."FROM #__content AS ¢'
."INNER JOIN #__sections AS s ON c.sectionid = s.id'
."INNER JOIN #__categories AS cc ON c.catid = cc.id'
. WHERE s.published =1 AND cc.published =1'
." AND s.access <= "$aid .' AND cc.access <=".$aid.' AND
c.access <= "$aid ." AND c.state >= ('

."ORDER BY c.created DESC’;

$db->setQuery($query, 0, Snumposts);

$items = $db->loadObjectList();

A check for results is being performed and if results are
found they undergo a proper serialization before transfer.

if (!$items) return new xmlrpcresp(0, $xmlrpcerruser+1, 'No
posts available, or an error has occurred.');
require_once (JPATH_SITE.DS.'components'.DS.'com_content'
.DS.'helpers'.DS. route.php');
$structArray = array();
foreach ($items as $item)
$dateCreated=& new JDate($item->created);
$articleLink= JURI::root()
.(ContentHelperRoute::getArticleRoute($item->id, $item-
>catid, $item->sectionid));
$structArray[] = new xmlrpcval(array(
//'dateCreated' => new xmlrpcval($dateCreated-
>toISO8601(), 'dateTime.is08601"),

'title' =>new xmlrpcval($item->title),
'description’ =>new xmlrpcval($item->introtext),
‘userid' =>new xmlrpcval($item->created_by),
"postid' =>new xmlrpcval($item->id),

link' =>new xmlrpcval($articleLink),
‘permaLink’ =>new xmlrpcval($articleLink)

), $xmlrpcStruct); }
return new xmlrpcresp(new xmlrpcval($structArray ,

$xmlrpcArray)); }

The return is an array of articles having selected fields.
All activities of the Android application follow the model
described above.

Christos K. Georgiadis: Supporting User Generated Content for Mobile News Services: A Case Study

4.3 Use of RSS/Atom Feeds

We have to underline that the mobile application is
capable of using RSS/Atom feeds: as we will describe in
the next sections, significant effort has been made to build
a news website with advanced characteristics for feeds.
Consequently, the mobile application takes advantage of
this fact, so that the content will be presented to the
mobile user more concisely. The user can choose from a
list in the category that she is interested in and only titles
of articles that belong in that category will be presented.
After selecting a title, the whole article can be projected to
the user. Figures 1 and 2 depict the relative class and
sequential diagrams, correspondingly.

5. Mobile News Website
5.1 Joomla! Extension/Component Development

Mobile Joomla! is a powerful open source component
regarding mobile device-oriented adaptations for Joomla!
websites. It is available in the BackEnd Joomla!
environment and it allows website administrators to
choose their preferred way of assigning templates (using
standardized templates, customizing the predetermined
templates or supporting TERA WURFL mechanisms).
Mobile Joomla! allows adding or removing menus,
modules or other user interface components. Moreover, it
favours the selective placement of components: it
contains modules capable of modifying the export of the
news website content and placing it in suitable template
containers. For example, it is possible to only present the
introduction of an article and hide information such as
the name of the author or the date on which the article
was published.

The main Joomla! tables (related to the news-oriented
website) are the Content table, the Categories table and
the Sections table (Figures 3, 4, 5). Content (or article) is
the basic entity that belongs to a category which in turn
belongs to a section. One section may contain many
categories and one category may contain many articles.

Components are the main functional units of Joomla!;
they can be seen as mini-applications. They are a kind of
Joomla! extension. To handle consistently external
content sources, such as feeds and emails, a specific
Backend Joomla! component (Rsstoa) was built. The
Joomla! code has been designed for extensibility [12], thus
the process of developing a component should be
according to the Model-View-Controller (MVC) software
design pattern:

e The model is the part of the component that
encapsulates the application's data. It will often provide

Int. j. eng. bus. manag., 2012, Vol. 4, Special Issue Digital and Mobile Economy, 12:2012

routines to manage and manipulate this data in a
meaningful way, in addition to routines that retrieve the
data from the model.

® The view is the part of the component that is used to
render the data from the model in a manner that is
suitable for interaction. For a Web-based application, the
view would generally be an HTML page that is returned
to the user. The view pulls data from the model (which is
passed to it from the controller) and feeds the data into a
template which is populated and presented to the user.

* The controller is responsible for responding to user
actions. In the case of a Web-based application, a user
action is (generally) a page request. The controller will
determine what request is being made by the user and
respond appropriately by triggering the model to
manipulate the data appropriately and passing the model
into the view. The controller does not display the data in
the model, it only triggers methods in the model which
modify the data, and then pass the model into the view
which displays the data.

BascFostParser
(orgdevlope works.andrad)
[-CHANNEL : String= "channel"
(-PUB_DATE : String = "pubDate”

DESCRIPTION : String = "description”]
IFLINK : ring = "ink" I tAncroidSaxFeadParser{feedUil : String)

FTILE : String = "tie" fhparse) : List<Message>

[ITEM : String= "item" <<Interface>>
feedurl | URL FeedParser

[#BaseF eedP; String) > {org :develapemorks anireid)
fhgetinputStreami| : InputStream +parse(: LiskMessage>

(org :devlope warks ‘andraid)
LRSS : String = "tss”

RssHandler

(g Ve penuarks: ardrold)
-messages : List<Message>
Mssage
builder : StringBuilder
thetMessages() : List<Message>
rcharacters(ch : char] start: int, length . inf) : void
thendElement(uri : String, localName : String, name : String) : void
tstartDocument(): void
tstartElement{uri : String, localName : String, name: String, attributes : Attributes) : void

MessageLlist

[0y develcpemorks: ancroid)
Hmessages : List<Message>
fronCreateicicle: Bundle : void
rhonCrexte0ptionsMenu(men : Menu : boolean
rtonMenuitem Selectaci(featureld : int, tem : Menuitem|: boolean
iFonListitem Clik{: ListView, v: View, position :int,id :long) : void
WoadFead(type: ParserType) : void
HriteXml[) : String

-eurentMessage

-messages

* \messages 1y
Message
(s anro,

itle: String

link; URL.
«description. String
-date: Date

+geflitie(): Sting

+setTitla(ttle : String) : void
+getLink{): URL.

+setLink(link : String) : void
+getDescription() : String
+setDescription(description: String) : void
+getDate() : String

+setate(date: String) : void
+copy(): Message

+toString) : String

+hashCode(): int

+2quals(ob] : Object: boolean
+compareTo(another : Message) : int

Figure 1. Feeds via the Mobile Application - Class Diagram

www.intechopen.com

% Option
Menu
momlg User

|
|
selet Category

messagelist:

androids axFeedParser:
AndroidSaxFeedParser

MessageList
T

B oriMenulte Selected))

7. selectitem

8 onlListitemClick()

a 4 loadFeed)

§: parse)

nGreat0ptienshienui)

6 listhis sage

L

—— ——— —

message:

10: gtlitel) |

11: getDescription)
12; setlink)

13: toString)

14: getDatel)

15: toString)

Message
1

Figure 2. Feeds via the Mobile Application:

Sequential Diagram

<

] jos_content v

id INT(11)
 title WARCHAR(ZSS)
alias VAR CHAR{ 255)
 tile_alias Y ARCHAR(255)
Jintrokext MEDILMTEXT
o fullbext MEDIUMTEXT
O stake TINYINT(S)
sectionid INT(11)
o mask INT(11)
> catid INT(11)
> created DATETIME
> creaed_by INT(11)
o created_by_slias VARCHAR(ZSS)
> modified DATETIME
> modified_by INTi11)
& checked_out INT(11)
checked_out,_tin e DATETIME
> publish_up DATETIME
» publish_dawn DATETIME
» images TEXT
> s TEXT
athibs TEXT
> version INT(L1)
»parentd INT(11)
> ordering INT(11)
» metakey TEXT
O metadese TEXT
»access INT(11)
o hits INTE11)
o metadsta TEXT
2 jos_categories_id INT(11)

e

Tljos_categories v

T e -
"] jos_sections v

kasnakisg.jos_categories
References:

(jos_sections_id) TO jos_sections(id)

Referenced By

jos_sectians (jos_categeries_id) TO (id)
Jos_oontent (jos_categories_id) TO (id)

—t

PRIMARY

» image VARCHAR{255)

> section YARCH AR(S0)

5 image_position YARCHAR(30)
> description TEXT

» published TINVINT{1)

> checked_out INT(11)

checked_out,_time DATETIME P =

> edtor Y ARCHAR(SD)

> ordering INT(11)

> atcess TINVINT(3)

> count INT(11)

» params TEXT
 jos_sections_id INT(11)

cat_idx
idx_access
idx_checkout

fic_jos_categories_jos_sectims

o

| & checked_out INT(11)

id INT(L1)
il YARCHAR(255)

 alias YARCHAR(255)
 scope VARCHAR(S0)

 description TEXT

> ordering INT(11)
> atcess TINVINT(3)
> eount INT(11)

) s YARCHARIZSS)

simage TEXT

»image_position YARCHAR(30)

» published TINYINTCL)

checked_out_time DATETIVE

 params TEXT
v
|FRIMARY
idx_scope
u! o o

Figure 3. The Section-Category-Article Structure

www.intechopen.com

Christos K. Georgiadis: Supporting User Generated Content for Mobile News Services: A Case Study

contentModelArticle cotentModelFrontpage
-5 _article ; var = nul “data
total
-construct()
Lsetlc(id) +getData()
-set(Fproperty, value) +getToatal()
+get(Fproperty, Saefault) icadData()
_getArticle() —buildQuery()
+hitf) “buildCortentOrderBy()
+isChechedOut($uid) “buildC i
+checkin() Hsblla
~checkoul($uid)
+store($data -total
+stareVote(Srate) L
-ioadArticle()
_ioadArticleParams() :gg?;’:lg
RReCanEAn el _getlist(Squery, Slimitstart, $imit)
“buildGuery()
“buildCortentOrderBy()
“buildCortenthere()
contentModelSection
i contentModelCategory
_data e
-total L
“section total
-categories -category
o siblings
+setidl $id) _construci()
get(Jelata) +set(Fid
+get(Stotal) +getDatal Sstate)
+getSection)) +getTotal Fstate)
rgetCategories() ategory()
_getArchives($state) +getSiblings()
+getTree() +getArchives($state)
loadSection() +loadCategory() contentControler
adCategories() +getSiblings()
adDatal $state) +getArchives(Sstate) +clisplay()
adTree() “loadCategory() +save()
wildQuery(Jstate) “loadSiiblings() +cancel)
ildCortentOrderBy(Ssate) ‘loaciData(Fstate) +vote()
uildComtentivhere($state) -bLilciQuery(Sstate) +finclkey()
“buildCortentOrderBy($state) +ins_pagebrake()
“buildCortentihere(Sstate)
ContentViewArticle ContentViewSection
displayForm Stpl) +display()
“buildEditLists() display(3tpl)
displayPagebreak($tol) +getitem(Sinciex, Jarams)
+clispaly($tpl)
_getHeader Text{ Jarticle, $params)
contentViewCategory
+display()
+clisplay($tpl)
+getitms()
rgetitems($inclex, Fparams)
_buildSortList()
contentViewFrontPage
+clisplay($tpl) gzniEriiawArchive
+gethem($index, Sparams) +elisplay($tpl)
Figure 4. Frontpage Class Diagram
MainFrame
+$msaq($link)
+dlisplay($tmpl)
contentControler [scontroer |
[}iewk contentModelElcment
+element() 5 T
+viewContent() e
+edtCortent()
+saveContent() getList()
+changeCortert() +getPagenation()
+oggleFTontpaget()
+rémoveContert()
+cancelConter()
+orderContert(Sdirection)
+moveSection() T
+copytem
el e +shawConter(§row, Slists, §page, Sredirect)])
e visbas | e +showArchives(Sraw, Ssecion, Sist, Spagebay, Soption, Sall, recirect)
e o editCantert Srow, $section, Sists, SsectionCategories, Soption, $form)
e +moveSection(Sopion, Scid, SscciCatList, Jsectionid, Siems)
ranrbaebrand) copySectiont Soption, Scid, SsectCatList, Ssectionid, Stems)
+oreviewContert()
+insertPageBreak()
dispalyArticleDetalls(Srow, Slists)
TOOLBAR_content displayArticleStats(Srow, Siists)
BT JElement
oy —
-COPY()
-DEFALLT()
“Sname -name

+etchElemert($name, Svalue, $node, Scontrol_name)

+fetchElement($name, $value, Snode, Seortrol_name)

Figure 5. Backend Class Diagram

Figure 6 depicts the directory structure of the Rsstoa
component, and Figure 7 presents its robustness diagram
(to express the entity elements, the interface/boundary
elements and the process elements between them).

Backend (/administrator/components)

| — —/com_rsstoa
|

| — —admin.rsstoa.php

| ——controller.php

| — —index.html

|

| — —/models

| | ——url.php

| | — —urls.php

| | — —index.html
|

| — —/tables

| | ——url.php

| | — —index.html
|

| ——/views

| | ——/url

|

(to select the proper model-view)

(to prepare data — display single item)
(to prepare data — display a list)

| — —view.html.php

| ——index.html

| — —/tmpl
[
| — —default.php
| — —index.php

(grid view)

| — —view.html.php
| — —index.html
| ——/tmpl

| — —default.php
| — —index.php

Figure 6. The Joomla! Directory Structure of Rsstoa Component

wiContler

701\

/
/’/ \\\
YR
/]

/

/

0~

SiNeOIder
\

\

\

; 8
)® \\ @ T s . Hll;ﬂ%h

— A4

\

A /
T \ /

O |

Ny X A
\
%

publish N \

storeContent
!

| |
| / /

geilistCount | / P
| / o
! i feedControler
2 4 / g)
s @ / rssFedhtion “ /
getlist /
/ \ L/
) / F'V4 ’
Q / g su\:efwds
naramelts / sinplessFeedimpon /
7 4 /
A\ / / /
\ / /
/ /
v // / v n
@ / / 8
getTemplate / P emailtddon
) / /
/ & o P
e 8
/ // ___—~emaRssFeedmpont
S/ e
/ i
A
s = "
e 8
— 8
i Hidos

Figure 7. Rsstoa Component: Robustness Diagram

Int. j. eng. bus. manag., 2012, Vol. 4, Special Issue Digital and Mobile Economy, 12:2012

5.2 Publishing Content through RSS/Atom Feeds

RSS/Atom feeds for a news website could be used for
indexing in order to create news articles from various
sites and sources clustered together in one website. The
first modification/improvement on Joomla!’s
default functionality was storing feeds in the website’s
database. Subsequently, the stored articles might be
filtered by keywords or even other feeds” metadata (such
as date or origin). Joomla! has a function named
Jfactory:getXMLparser which accepts an RSS or ATOM
feed as input and returns a PHP-Based RSS and Atom
Feed Framework object, namely the SimplePic. An
indicative approach for storing RSS feeds in the Joomla!

major

Content table is by using its fields as follows:

$contenttable->title=§title;
$contenttable->permalink=$rssurl->section_id;
$contenttable->catid=$rssurl->cat_id;
$text=pitem->get_content();
$contenttable->created=$item->get_date(‘Y-m-d H:i:s’);
$contenttable->publish_up=$item->get_date("Y-m-d H:i:s);

We may preserve Content Joomla!
secondary table (feedtable) in which
regarding the author, the hyperlink of the source and
other information will be stored.

table using a
information

$premalink=$item->get_permalink();

$feedtable->sourcelink=$premalink;

The capability to have multiple feeds, which can be
enhanced with filters, could work as a mechanism for
article indexing from selected sources. On the other hand,
indexing could also be achieved through social network
applications such as the ‘Yahoo pipes’ mashup. An
author may adjust a mashup for her own needs and
interests and then send those feeds to the news website in
an RSS or JSON format. In any case, if the advantages of
permanent storage are required, these data have to be
stored in the site’s database.

5.3 Publishing Content via Email

The second indicative functionality that we investigated
and developed through Rsstoa component was related to
emails. Users with rights to publish articles (both
members and authors) may in this way send an article via
email and that article will be automatically published in
the appropriate section. All that is needed is the author’s
approval.

The necessary library for the management of the emails is
provided directly by PHP. The library is called IMAP and
it provides the functions that allow the handling of the
email structure. An email parser is actually developed; it
is capable of splitting the email into discrete pieces (title,

www.intechopen.com

main body and attachments). These pieces may then be
used for the creation of the article just like in the case of
the RSS feeds. Consequently, this integrated approach of
handling both RSS/Atoms and emails leads to the
formalization of certain user cases for managing URL
feeds, as Figure 8 illustrates.

=l T
= S
s <Use Caseo>
cseCases <induges> Import ltems From Feed URL
AddFeed - {UseCase Number ="8"}
{UseCase Number="1"}
e e e
T sdllseCaser i =2
& Edit Feed _ssinclude>> / T
{UseCase Number="2"} T
*— oot fems FromFeed UL~
. . {UseCase Number = "6"}

T adlse Caserr
Delete Feed
{UseCase Number="3"}

/’ wlseCasers .
(PublishF
{UseCase Number="4"

T <dseCases
Unpublish Fee
{UseCase Number="5"}

Figure 8. User Cases for Managing RSS/Atom Feeds and Emails

The storage of the URL of a certain feed or of a certain
email triggers (triggerEvent) the processes of importing
RSS items (SimpleRssFeedlmport) or emails
(emailRssFeedImport) in the Content table and
simultaneously the update in the secondary table
(Feedtable) of the additional fields that cannot be saved in
the basic table (Figure 9).

9 [TG e 1 TR T TR
P B et Bt i
¥ |] | | | | i |
-] : A B :
| | | | |
i i i i i i
1 1 [1 i 1
LN A . :
Ly i i | i I
et | i i i |
i i i i i
1 } | | |
Sodbidall ! i | i |
I T |
‘Jewummw : : : : i :
EawsiEfd i i i i i
i | i i
1 | | | |
Degwn | o | i |
i i I i i
YT IS SN B !
T | (] i i
i i i i i
| | | | |
0 gt s | | | | i
i . ;
b fom | ! ! |
1 1 1 1
| : L :
:lmm“mi E i E E
L et P !
T T T T P 1
i |t) | |
| |t | | i
| 1 g i | | | | | 'EJ
" | | : | |
7 gt v nimp or el : : I : :
| | i i i
T i i i i |
I 1 1 1 1 1
i i | | i i
i i i i i |
| | | | | | I
I 1 1 1 1 1 1

According to the MVC pattern, Rsstoa component’s
model class had to be responsible for executing the
required database queries (Figure 10).

Testoaliodellr; restoabodelln TTablent: JFactory:
Tableli JFactory
T T T
I |
| 1: ndJBD?]: iy ol
I
l x _[@viab
N | >
s | T
N | '
| | :
I I i
| | 1
| % settuery(| |
| I
& I;imhhﬂlk frone !
| |
L I I]
I I I]
[!
|

Figure 10. getList(): Sequential Diagram

An important function which we had to implement was
the getAttachments() function. Its job was to extract the
email body, as well as all potential attachments. Figure 11
depicts its sequential diagram. The decomposition of the
emails is implemented via the function fetchstructure(),
based on the returned objects” values of Table 1.

getEmalAttachme imap

1: fetchstructure(): $struct

nts

T T

| |
| |
| |
Ir‘ 2 cerate
|

|

|

[nat $pants]
5: body(): Scontent

...... i ’”

[toop/

[for $parts]
6 fetchbody{)

7: §content, $attach ments
(_______________

Figure 9. Save and Edit Feed/Email: Sequential Diagram

www.intechopen.com

Figure 11. getAttachments(): Sequential Diagram

Christos K. Georgiadis: Supporting User Generated Content for Mobile News Services: A Case Study

9

type Primary body type

encoding Body transfer encoding

ifsubtype TRUE if there is a subtype string

subtype MIME subtype

ifdescription TRUE if there is a description string

description Content description string

ifid TRUE if there is an identification string

id Identification string

lines Number of lines

bytes Number of bytes

ifdisposition TRUE if there is a disposition string

disposition Disposition string

ifdparameters TRUE if the dparameters array exists

dparameters An array of objects where each object
has an "attribute" and a "value" property
corresponding to the parameters on the
Content-disposition MIME header.

ifparameters TRUE if the parameters array exists

parameters An array of objects where each object has
an "attribute” and a "value" property.

parts An array of objects identical in structure
to the top-level object, each of which
corresponds to a MIME body part.

Table 1. Returned Objects for imap_fetchstructure()

The saveEmail ($mbox, $mid, $rssurl) function updates
Content and feedtable tables. Function’s inputs are the
mailbox, the message id and the Rsstoa object which
contains parameters (stored in the corresponding xml file)
concerning important settings such as the category in
which the mail should be imported, the reference of the
source, the date of publication, if the email should be
published on the front page of the website (Figure 12).

il
i T . I
T T

T T
i I
i '
1 i
1 peilnsgancef) : : :
| ' |
| EE | | |
1 ' 1
i i I
1 1 1
1 e ! | |
= | |||al.h|mmml!n "'C] i |
i 1 i 1
: I | "
I I T] bl |
i | i i T
1 A: glimagalissiral} 1 o :
| 1 1 i | |
| | | | !
w“:ﬂwwmmmnm 5 : I
i
I T T i |
5 shorky | i i i
i) i i i
1 1 1 1 1
e e 1 i |
Eﬁmnmwwmwmn ﬁi i i
1 1 1 i |
| | | ' |
& getinst) : i i | i
i i i " i I JFna
| R R R R R TR
1 el H ! >
I 1 | o
i i i 1
1 1 1
1 i i
1 i 1
1 1
i i
| |
| |

Figure 12. saveEmail(): Sequential Diagram

10 Int.j. eng. bus. manag., 2012, Vol. 4, Special Issue Digital and Mobile Economy, 12:2012

In Joomla! components may have additional libraries,
namely Helpers, that contain useful functions/tools. In
Figure 13, imageResize() function is depicted. It was
created using php methods.

resicalioper ;

S | |I.lﬂ1.h|1 I—Impl_sn

|r 1 imageoeatelremipegl)]

9 petimage el
—_“-T_"'
1 !rmumﬂ'!.l':ﬂwwﬂ

|
11 imagealp hablending ()

:
1
1

1& Enagecop e sampledi]
i
| 12 ob_stann)]

14 imeageipeail

1 i
15 ob_get_comients{)
4 1
i
16 obh_and_cledn()
1

T i
E

Figure 13. imageResize(): Sequential Diagram

Let us provide again at this point a few comments on
indicative php code. Steps 1-2 for creating an image object
from an image file:

$image= @imagecreatefromjpeg($file);

Steps 3-4 and 9 for storing the parameters (transparent,
width, height) of the initial image temporarily:
$transparentIndex= imagecolortransparent($image);
list($currentWidth , $currentHeight) =
getimagesize($srcPath);

Steps 5-8 for creating colours:

$image_p=ImageCreateTrueColor($destWidth,
$destHeight);
$background= ImageColorAllocate($image_p, 255, 255, 255);

Steps 9-12 for allocating the appropriate temporary
memory space to hold the image copy:

imagealphablending($image_p , false);

imagecopyresampled($image_p , $image, $targetX, $targetY,
$sourceX, $sourceY, $destWidth , $destHeight,
$currentWidth , $currentHeight);

Steps 13-14 refer to a very interesting process: the
ob_start() function directs output to buffers. Until the

www.intechopen.com

execution of the ob_end_clean() process, we may send all
data (in our case the memory content/variable $image_p)
to buffer:

imagejpeg($image_p, null, 80);

Finally, steps 15-16 for copying buffer content to a
variable (image object) and emptying the buffer:

$output = ob_get_contents();

ob_end_clean();

In Joomla! the MVC pattern is implemented using three
classes: J]Model, JView and JController, as it is depicted in
Figure 14. The sequential diagram of the Rsstoa

component is presented in Figure 15.
Lontolr mstnaCortollrds rsnabbodeed Nien
g anoner) (eomols) froils) (apdicafr: anoner)
 asefeth=ndl K——_eonsnut g amaf) _emsnut) | models= amayf
. TITE = il -y I-geLitpubished - flse, it = array]) - tame = nul
. mefiods=nul -publish{ r-gelLisCounk{published - alse, ke = + basePath =nul
- skl = nul -al] raelLisForSlectpubised = fse) + deiufock] =l
task=nul v -publishas, cid) ot Hefau
. dofask=nul ~Temon{ r-removedid = amy) + youExt = phy'
- it =y ~sivegida() r-saveorderfid orcey, fotl) + = aey(
iesl=» amayl) -onter] ronde sk i) template = amayf,
ogye sask i Iheiper'=>ary)
et Hoadlid:= 0] I
- message =l) + femplate = ull
- messigeType =nul b - ulpit=ul
. aeaSeetion =il L] + estape= imispecialchirs
il i |t V1Y
__tonsiucticonfl = amayi) ::Ie i tr__cmstnictconfig= amayl)
erbie - e syai-nl
atis) t__eonstucliorfiy= amay) +_tsnt] sl
it el = oy <) & Lt e e~) asipRele)
et aetSbtepropety,wlue=nul] +gelLisCourtpubished - fle) s
e, = =yl [Stegey=) AL L ety =
I — [1eDb0)d i) —
i) B0) o) e
s foellane)) Faelane
sl tgetTablefname = *, reix = Tole!, opfions = amay() & | - sremovefid = amy) deuk-fise &
teane " =", el =" cory -)& tadkincludePathipath = saveardzcid orce,foll) el ot
badtiaéatit T itePatpat i] bt it
beitaTasos et - geLitpuery, Bittar - , i = [) & +{eSectionCategoriesipublishe = rE) e i)
ittt I mtltCant eyt Sttt -ie el | |y
[— v st bleme, prefit = Tak', orig =araf) & }-+pelpe = dy, scheble= 5 Fequany =) P tiat)
skl msg=nul e esoge) e ehinelps pts -)) eyt
tsethezessConrolsestion, value = i) tHoadH eperfln =)
_redeelrane e - oy - amy & | saPllite,
 eretelfew{rame pee =, type =, corig = amay() & [tr_aciPatitga path)
_selthiype, path) e e I sreateF eflamestype pats= amay()
_aPatfyoe,] B
ey, pas=) ol A
rsstalfeulil
[igng)
deplyfpl =nul)

Figure 14. Rsstoa Component: Class Diagram

6. Conclusions and Results — Further Research

A ser

ies of trials and tests were performed to ensure that

the website operates flawlessly:

www.intechopen.com

Articles were published using RSS feeds and
regular emails.

We allowed selected users to comment on the
articles, to avoid future problems.

Articles were shared in well-known social
networking sites.

Articles were handled through the mobile
application.

JoomlaParserimport Jractory 1Table Mainframe GHelper

| |
t ummparmrmmmgn

NZ
|
|
|
|

| |
| |
| |
| |
| |
I | |
I | |
| | |
% message(COULD_NOT_IWPORT_FEED)

)
T y

$:qpt fams) |

|

5
| [Gissheeds "'T—
I

countrssfeeds)

A
‘Batitem= issur=deraed crount
“(rssreeds)

|
|
|
|
| £ getinstance{confent) |]
| |
AR — R — By (A Rk .
| I | |
| ity | B \
[[[U [
v o e 4--JQW--L---4_---‘
\ [[[‘ [
0y
satien ‘ ! ‘ | ‘
- | I | | |
fop0e) | ‘ [‘
b ‘ ! .

gl | I |
e pabid) | ‘
T
|
! Lo ! | !
iz o v 2 i 2z 22 2 Fiz s 4 2 22 2z 2 [iz
B | | ‘ | ‘
adge rtnt s fonfed | |
It I | |
; T kg coten) | | | |
A J__Jg:_m”_______J____ | !
| I | ‘ | ‘
) | DesitTertexngh) | I | &
f f f }
| | W araytet ‘ | ‘
fic sm tim mm s s R aEEE SR T mn B f zim s 2 2 e 2o w2y
| I | | | | |
8 [[[
Udae oer fialfe | | | | | | |
| | | st ‘ | - |
| | '
I | | |
N | |
| |
|

|
‘Zﬁ:feedthecm
|
|
store |

Figure 15. Rsstoa Component: Sequential Diagram

The existence of feeds allows users to be informed on
various subjects faster and more completely. Nevertheless,
the simple republishing of articles that were firstly
published on other websites decreases the website’s value
as a source of information. Consequently, to increase the

Christos K. Georgiadis: Supporting User Generated Content for Mobile News Services: A Case Study

business perspectives of news intermediary services more
attention has to be given to organizing the selection,
organization, hierarchical ranking and distribution of the
news published by others. This new ‘industry of access’ to
content produced questions
concerning the pluralism of news. Current research indeed
argues that while it appears that the Internet has
theoretically favoured the emergence of countless ‘new’
news channels, it seems not to have fostered as many new
sources, so much as new gateways to access the same
contents produced by a few companies [1].

externally may raise

It is worth mentioning at this point a significant business-
related pitfall that a news infomediary service developer
has to avoid: given the well-known heavy criticism for
copyright infringement by the Google News service [12],
approach portal-oriented procedures:
agreements/deals with news providers, similar to the
ones a press company agrees with a news agency — a

our favours

subscription to a newswire with an agreement to use a
certain number of news items each day.

Further research is needed for the development of an
additional component capable of handling
personalization issues (such as recommending specific feeds
or user comments, based on users’ profiles and behaviours).
Also, an interesting extension could be the development of
supplementary mobile news services, by designing and
implementing a mobile application that would enable more
features like the geographical identification of the source of
news feed, the sharing of news based on geographical
criteria and the utilization of REST services that are offered
in many social networking sites.

relative

7. Acknowledgments

The author would like to acknowledge the assistance of
George Karnakis in the development of
the prototype presented in this paper.

8. References

[1] Goyette-Coté M-O, Carbasse R, George E (2012)
Converging Journalism, Journalism Studies, iFirst
Article: 1-10.

[2] van Loon S (2012) The Power of Google: First Mover
Advantage or Abuse of a Dominant Position? In A.
Lopez-Tarruella (ed.), Google the Law,
Information Technology and Law Series 22: 9-36.

[3] Cortimiglia M, Ghezzi A, Renga F (2011) Social
Applications: Revenue Models, Delivery Channels,
and Critical Success Factors — An Exploratory Study
and Evidence from the Spanish-Speaking Market.
Journal of Theoretical and Applied E-commerce
Research, Special Issue on Business Models for
Mobile platforms — Vol. 6, Issue 2: 108-122.

and

(4]

[5]

8]

(11]

[12]

[13]

12 Int.j. eng. bus. manag., 2012, Vol. 4, Special Issue Digital and Mobile Economy, 12:2012

Georgiadis CK (2012) Design and Implementation of
Mobile Supporting
Networking Features. In Proceedings of the AIS-
affiliated Eleventh International Conference on
Mobile Business. Delft, pp. 101-112.

Wittenbrink H (2005). RSS and ATOM:
Understanding and Implementing Content Feeds
and Syndication. Puckt Publishing. 256p.

Georgiadis CK (2010) Developing Personalized
Information Mobile
Location-Aware Applications. Int.]. on Advances in
Internet Technology, 3 (3&4): 274-283.

van Woelsen W, Casteleyn S, de Troyer O (2011) A
Generic Approach for On-The-Fly Adding of
Context-aware Features to Existing Websites. In
Proceedings of the 22nd ACM Conference on
Hypertext and hypermedia (HT '11), ACM, USA,
New York. pp. 143-152.

Zhang D, Lai] (2011) Can Convenience and
Effectiveness Converge in Mobile Web? A Critique
of the State-of-the-Art Adaptation Techniques for
Web Navigation on Mobile Handheld Devices. Int. J.
of Human-Computer Interaction, 27:12: 1133-1160.
Charland A, Leroux B (2011) Mobile application
development: Web vs. Native. Commun. ACM 54, 5:
49-53.

Ghezzi A, Balocco R, Rangone A (2010) How a New
Distribution Paradigm Changes the Core Resources,
Competences and Capabilities Endowment: The
Case of Mobile Application Stores. In Proceedings of
Ninth International Conference on Mobile Business/
Ninth Global Mobility Roundtable, Athens. pp. 33-
42.

Kennard J, Lanham C (2010). Mastering Joomla 1.5!
Extension and Framework Development Second
Edition: The Professional Guide to Programming
Joomla!. Puckt Publishing. 562p.

Laurent P (2011) Copiepresse SCRL & alii v. Google
Inc. - In its decision of 5 May 2011, the Brussels
Court of Appeal confirms the prohibitory injunction
order banning Google News and Google’s “in
cache” function. Computer Law & Security Review
27: 542-545.

Ghezzi A, F Renga, R Balocco (2009) A Technology
Classification Model for Mobile Content and Service
Delivery Platforms. In: Joaquim Filipe, José Cordeiro
(Eds.). Enterprise Information Systems — Lecture
Notes in Business Information Processing. Verlag:
Springer. 24(3): 600-614. doi: 10.1007/978-3-642-
01347-8_50.

News Services: Social

Services for Commerce

www.intechopen.com

