INTECH

open science | open minds

ARTICLE

International Journal of Engineering Business Management
Special Issue on Radio Frequency Identification and Wireless Sensor Networks

Editor: Cristina Turcu

XRFID: Design of an XML Based Efficient
Middleware for RFID Systems

Regular Paper

Indrajit Bhattacharya'”, Amit Kumar Gupta® and Uttam Kumar Roy?

1 Assistant Professor, Dept. of Comp. Applications, Kalyani Govt. Engineering College, Kalyani

2 Lecturer, MCA Department, DSMS Business School, Durgapur-12

3 Assistant Professor, Dept. of Information Technology, Jadavpur University, Kolkata

* Corresponding author E-mail: indra51276@gmail.com

Originally published in the International Journal of Radio Frequency Identification & Wireless Sensor Networks, ISSN 1847-9812

© 2012 Bhattacharya et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Radio identification (RFID)
technology can automatically and inexpensively track
items as they are moved through the supply chain. This
can automate the whole updating and management
system, thereby making the system work with a much
smaller workforce and reducing the error that can occur
because of interference by human beings. One of the
major advantages RFID provides is that it does not
require direct physical contact with the objects and also
does not require the object to be placed in its ‘Line-of-
Sight’. This has given it an edge over other auto-
systems, like bar-codes. The
proliferation of RFID tags and readers would require
dedicated and very efficient middleware solutions that
manage readers and process the vast amount of captured
data according to the need of various applications. RFID
middleware is the software sitting in between various
RFID readers and the enterprise applications. Extracting
meaningful information out of huge amount of scan data
is a challenging task. In this paper we like to analyze the
requirements and propose a design for such an RFID
middleware. This paper demonstrates how to enable the
middleware to handle a large amount of RFID scan data
and execute business rules in real-time. The conventional
middleware solutions show dramatic

frequency

identification recent

existing

www.intechopen.com

degradation in their performance when the number of
simultaneously working readers increases. Our proposed
solution tries to recover from that situation also. One of
the major issues for large scale deployment of RFID
systems is the design of a robust and flexible middleware
system to interface various applications to the RFID
readers. Most of the existing RFID middleware systems
are costly, bulky, non-portable and heavily dependent on
the support software. Our work also provides flexibility
for easy addition and removal of applications and
hardware.

Keywords RFID, Readers, Tags, Middleware, XML,
XML-RPC

1. Introduction

Radio Frequency Identification (RFID) [4][6] is a means of
identifying an object or a person using radio frequency
transmission, generally from a distance. Like the
extensively used barcode based systems and optical
recognition systems (OCR), RFID is also an auto-
identification system. RFID can be understood as the next
generation bar code', but this description only does

Int. j. eng. bus. manag., 2012, Vol. 4, 22:2012

partial justice to the huge advantages RFID has over bar
codes.

Early RFID implementations used to be driven by
external
technological improvements, more readily available
component options, and cost reductions, the technology
has proven its value in driving significant operational
efficiencies, and RFID has gained a much broader
adoption [1].

mandates, but along with significant

Today, industries are looking beyond the realm of
compliance, as they seek competitive advantages and
integrate RFID much earlier into their production
processes. Innovative companies are expanding the use of
RFID in their supply chain, logistics and asset tracking
operations [8]. As a result, they are achieving
demonstrable improvements in supply chain visibility,
forecast accuracy, reduced out-of-stock situations and
reduced counterfeiting.

RFID system has Tags that can carry information like
serial numbers, model numbers, color, place of assembly
or other types of data as well. This information gives the
unique identity of the item (object) to which this tag is
attached. This identification occurs when these tags move
in the vicinity of any RFID reader. An RFID reader is a
device that can access the information of any RFID tag in
its vicinity by establishing a wireless communication path
using radio frequency. The information the readers obtain
from the tags is then sent to the middleware [11][15] that
sits above the readers. The middleware processes this
information according to the need of the RFID
applications. These applications can these
processed data by communicating with the middleware.
The middleware, in this regard functions like a server
that collects information from the readers and provides
services to the applications on the other side of it.

access

Most of the existing RFID middleware systems are costly,
non-portable and non-flexible [10][13][14]. Most of them
show performance degradation when the number of
simultaneously working readers are increased beyond a
certain limit. The objective of our work is to analyze the
current and required scenario, design and develop
efficient and flexible middleware software for RFID
systems incorporating the analyzed requirements.

We have simulated the unique tag ID generation [5]
through the use of random number generation and the
support is provided completely in the software. The
designed middleware provides the support for the user
applications to communicate with the hardware (readers
and tags, in this case). We have designed a middleware
that support simultaneous communication of multiple
applications with the RFID hardware. The middleware

Int. j. eng. bus. manag., 2012, Vol. 4, 22:2012

must provide all data processing capabilities like filtering,
grouping and duplicate data removal.

The middleware provides the storage for the tag
information periodically sent by the readers in different
files. The queries generated by the applications are
performed on these files. A simple user interface is
provided to communicate with the middleware. The
request from the applications is sent to the middleware in
the form of simple XML-RPC requests. The response
against this request is transferred back to the application
in simple XML format. The required information for the
application is parsed from the database stored in the
middleware and appropriate XML response files are
generated. These XML response files are sent to the
applications for further processing.

2. Related Work

A lot of work has been done in the field of RFID and its
applications [15]. The main focus of all those
developments had been the middleware and the RFID
applications. And there is a huge scope for research in the
area.

Because of recent increase in the interest generated in
RFID field, a large number of small and big players have
started showing interest in the field. And most of the
RFID middleware solutions developed are commercial.
These include “BizTalk RFID” from Microsoft, “RFID
Middleware” from Sun, and “Fusion” from Oracle, to
name a few. RFID and RFID middleware in particular,
has been the centre of research for quite some time.
“WinRFID” by UCLA and “Accada” by ETH Zurich are
some of the products generated as a result of research in
the field [2].

The Sun Java System RFID software, which is
middleware software, is a part of the Java Enterprise
System (JES). It has four components namely, the RFID
Event Manager, the RFID Management Console, the RFID
Information Server, and a software development kit
(SDK). The RFID Event Manager helps in the capture,
filtering, and storage of the events generated by the RFID
readers. The RFID middleware console (a browser based
management interface), allows configuration of the
attributes and parameters of the middleware. The
information server stores and queries the EPC related
data, and manages inter-Enterprise handling of data. The
SDK provides a development platform for building
custom applications. The Sun middleware presents the
hardware as logical readers to the applications, where
each logical reader may consist of one or more physical
readers. The applications, according to their needs, select
one or more logical readers and apply processing
parameters to the entire group [3].

www.intechopen.com

The WinRFID from University of California Los Angeles
(UCLA) has certain unique features like, hiding of
communication details from the end-users, network
management on a large-scale, intelligent data processing
and routing,
interoperability, provision for system integration and
system extendibility, etc. It has novel algorithms and
data-structure schemes capable of processing large
amounts of data, rectifying errors in real-time, identifying
patterns, correlating events to each other, reorganizing
data and recovering from unwanted faults and
exceptions. It provides support for simultaneous working
of sundry readers and tags at different frequencies, and
using different protocols. An XML based framework is
used that helps the filtered data from the tags to be
formatted as per the customized requirements [2].

support for hardware and software

Accada by ETH Zurich helps in RFID application
development. The Accada platform manages readers,
filters and aggregates RFID data, and helps in
interpreting the RFID data. It uses EPCglobal based
specifications for the reader protocols, the application
level event specifications and the EPCIS capture and
query
enterprises. The platform has three main modules- the
reader, the middleware and the EPC information services
module. The Accada reader implementation uses
standard edition of SUN Java Virtual Machine and not a
micro edition[7].

interface to handle RFID data flow across

The Biztalk RFID middleware solution from Microsoft
supports plug-and-play architecture to provide support

for both standard and non-standard devices. It supports
an event processing engine that manages the RFID events
by creating business rules. It also provides real time
visibility of the RFID data.

3. Proposed middleware and its sub-systems
3.1. System Overview

The solution that we have proposed here consists of
developing an efficient and flexible RFID middleware
system, right from the scratch. At the beginning, we have
created user specified number of readers, each reader
executing in its own separate zone. These readers have
been assigned co-ordinate values in a user specified
geographical region, i.e., we placed the generated readers
at specified locations in the region. The co-ordinates are
specifically calculated and generated so as to have an
optimum efficiency for the readers. We also stored these
co-ordinate values for later use.

After that, we provided the option to create as many
number of tags as the user may want. These tags are
placed at random locations inside the same region. The
coordinates of these tags are randomly generated, within
the limits of the region, so as to have the feel of
simulation. Each and every tag gets a unique
identification number that is 16-hex bits (64-binary bits)
long. The flowchart to implement the proposed system is
shown in figure 1.

Uniquely Tag each item |
with 64-bit Id J

;f Place the readers in strategic locations to
L track all the tagged items

Track the items by the
readers in its vicinity
and send that information
to the middleware

Connect the Middleware
Server to the application J ~N

v

Filter the redundant data and

Parse the XML file at
middleware and
Output the result at
the application end

Middleware
server
available?

Figure 1. Flowchart of the proposed RFID Middleware system

www.intechopen.com

store the information in the
form of an XML file

> A

Application request for)
Specific information to the RFID
middleware in the form of an
XML-RPC request

Indrajit Bhattacharya, Amit Kumar Gupta and Uttam Kumar Roy:
XRFID: Design of an XML Based Efficient Middleware for RFID Systems

3

4

3.2. Middleware Functions

The middleware software is supposed to perform the
following:

e To receive packets from the readers lying at
lower level.

e To disseminate the data, i.e. to decide which
applications are interested in what processed
information, and to what latency extent.

o To process, filter and aggregate if required the
received information according to the needs of
the various applications.

e To perform Load Balancing of the loads at the
middleware [9][12], whenever it is required.

e Transmit the finally processed information to
the respective applications at the upper layer.

e To provide for appropriate privacy and security.

The communication between the user applications and
the middleware is done using XML-Remote Procedure
Call (XML-RPC, in short). There are numerous other
methods for remote communication available but we
have chosen XML-RPC over others because it is simple to
understand, is very light weight, clear and easy to
implement, and is also flexible in its functionalities.

3.3. Proposed Middleware and its sub-systems
The proposed middleware system consists of the

following sub-systems, as shown in Figure 2 below, and
is described later on.

The middleware obtains tag information from the readers
through the RFID Reader-Middleware interface. The
middleware stores this information in files, strictly in
XML-format. The raw cleaned (verified and filtered) tag
data from the readers is formatted in a variety of ways to
a high-level XML based representation, using an XML-
converter. When a user application (client) generates a
request, it is sent to the middleware, using XML-RPC.
The request processor present in the middleware
understands this request and sends an appropriate query
to the XML parser. The XML parser then retrieves
required fields” information and sends it to the response
generator, which combines the information into a string
and sends the formatted response to the client. The client,
in its turn, performs further formatting of this response
locally, for display or some other use.

The information is filtered, cleaned, aggregated and
adapted as per requirements. We have tried to provide
data in a format agreeable to decision making at the
application layer. The data is designed in such a way that
it is possible to easily search through the whole
information based on key fields.

| Tag Population

O
© 0 s o%oo
O it “ 48§ O

‘ Reader_1 ‘ ‘ Reader_2 ‘

Tag Information {as Hex String)
——

Reader Interface to
the RFID Middleware

XMIL-
Converter

XML

Retrieve Requested

Information

Response Generator

Combine and Format

Tag
& Parser
Information

Response

Understand User

{in XML
format) stored
in files.

Send Query

XML-RPC

Reouest

Request Processor

RFID Middleware

Figure 2. Proposed Middleware and its Sub-systems

Int. j. eng. bus. manag., 2012, Vol. 4, 22:2012

Generate Request Receive Response (as a single flong) string)

Application’s Interface
to the RFID Middleware

F Y

v

| Format response for display

User

Applications

www.intechopen.com

3.3.1. Why XML?

The extensible markup language, XML, is a way to mark-
up text in a structured document. XML is a simplification
of the complex SGML standard. SGML, the Standard
Generalized Markup Language, is an international (ISO)
standard for marking up text and graphics. The best
known application of SGML is HTML. Although SGML
data is very easy to write, it's very difficult to write a
generic SGML parser. When designing XML however, the
authors removed much of the flexibility of SGML making
it much easier to parse XML documents correctly.

XML data is structured as a tree of entities. An entity can
be a string of character data or an element which can
contain other entities. Elements can optionally have a set
of attributes. Attributes are key/value pairs which set
some properties of an element.

We have used the XML based representation because it
facilitates the ease of data consumption by enterprise
applications such as warehouse management, supply
chain management, enterprise resource planning and
others. This is because most of these systems have
adapters to export XML based data and wizards to design
templates to parse the XML tree within these systems are
also quite established. XML is mainly used to satisfy
customized requirements.

Each tag consists of the following fields (with total
size 64-bits):

Manufactu |Produ |Produ |Uniq |Date-of- |Perio |Price
rer ct ct ue ID |Manufact |d-to- |(in US
Type |Sub- ure expire|Dollar
Type (in |s)
week
s)
8-bits 8-bits |8-bits |8-bits |16-bits 8-bits |8-bits

A sample XML-file in our designed format and using our
tags that we have used to store the information is given
below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<items>

<tag>

<manufacturer>a8</manufacturer>

<p_type>a8</p_type>

<p_subtype>1f</p_subtype>

<u_id>cd</u_id>

<d_o_m>d374</d_o_m>

<p_o_e>e6</p_o_e>

<price>d8</price>

</tag>

www.intechopen.com

All the tags’ information gets stored in the above format.
When the middleware obtains a user request, which
again is in XML-format, from the applications, it parses
this XML file to abstract out the required information and
send this back to the requesting application for further
processing or display.

3.3.2. About XML-RPC

XML-RPC is a simple, portable way to make remote
procedure calls over HTTP. It can be used with the
programming languages Perl, Java, Python, C, C++, PHP
and many others. The XML-RPC implementations are
available for the operating systems UNIX, Windows and
the Macintosh.

XML-RPC values are encoded as XML to carry out their
work. It supports the data types int, string, boolean,
datetime, array, struct, and base64 (raw binary data of
any length encoded using Base64).

4. Implementation and Result
4.1. Experimental Set-Up

We have developed the RFID middleware system on a
Java platform. Firstly, unique tag IDs are randomly
generated for the system. There is an option for the user
to specify the number of tags to be placed in the user
specified area. The tag IDs are 64-bits in length, and
contain seven different fields. To ascertain that no
duplicate tag IDs get generated, we have used the linear
search method. Then we converted these tag-IDs in XML-
format using customized tag-names, and stored them in
an XML file. We used co-ordinates (2-dimensional) to
position the tags and readers in the area.

After that we designed the middleware that acts as the
server. The Readers gather information regarding the tags
in their vicinity and send that information periodically to
the middleware. The middleware is the remote machine
that collects all information regarding all the readers and
tags in the system. It is the information repository for the
whole system. It uses XML-RPC as the technology for its
communication with the clients. The client sends request
to the server for obtaining appropriate information. The
middleware server then parses the XML file and selects
out only the required information, combines the whole
information collected above in a single string, and sends
this string back to the client. Using this method (XML-
RPC) to communicate has made the system very light-
weight.

Finally, we developed the user applications. Here, we
have made a simple user interface to select fields and
make requests. This interface has been made using the

Indrajit Bhattacharya, Amit Kumar Gupta and Uttam Kumar Roy:
XRFID: Design of an XML Based Efficient Middleware for RFID Systems

6

Swings of JAVA. When the user completes making the
request and submits, the result gets displayed in another
window in a tabular format. At first, the client receives
the information from the server in codes (hexadecimal)
which is then converted into human understandable form
by the client program. The client employs appropriate
conversions for the system. One important point that we
would make here is that we have tried to make the
system compact by using the least possible number of bits
for the date field. The server
complexities; it just sends the 16-bits raw data to the
client. We have made it the responsibility of the client to
convert that raw data into appropriate date format so that
human beings can understand it. This is one of the
various techniques we have employed to make the
middleware server light-weight. The following figures
demonstrate some snapshots of the implemented system:

L

—

is unaware of the

Welcome to XRFID Panel

Display

e - =0)

The result obtained when the client requested for
information relating to the available manufacturers,
product types, unique IDs and their date of manufacture
is shown in figure 4.

We have carried out our experiments with varying
number of tags and readers in a departmental store
scenario over a 300x300m? area. We have observed the
load on the readers that is the number of tags that are
identified by the readers for different number of tags and
readers that are kept active for different cases. The
distribution of loads among the readers are shown in a
bar diagram as shown in the figure 5. On an average, it
may be observed that our proposed system effectively
reduces the load on the readers and hence help faster
retrieval of information.

[] Show Manufacturer
[] Show Product Type
[] Show Product Sub-type I
[] Show Unigue ID |]
[] Show Date of Manufacture
[] Show Time to Expire

[] Show Price

Cancel | |

Refresh whole System

Figure 3. The user interface for retrieving information

|£: | Welcome. Your output is here
SERIAL NO MANUFACTURER ENTEE uU_ID D_O_M

1 MARLUITI Two Wheelers cd 27-7-2117 =

2 LG Dairy 349 4-12-2015

3 GRASIM Garments 06 4-5-2007

4 BHARATI Dairy 67 29-4-2099 I

5 GRASIM Four Wheelers cl 27 -4-2020 H
(& DELL Four Wheelers ec 22-2-2041

7 SAMSUMG Garments 21 4-6-2053 i

g CHEVROLET Baby Products a3 17-2-2084

] DELL Four Wheelers 30 6-11-2101

10 RELIANCE Two Wheelers 0 31-5-2063

11 DELL Garments 2b 7-10-2021

12 RAYMOMDS Dairy 21 12-3-2036

13 SHYAM Dairy T 9-2- 2068

14 LG Baby Products 35 9-1-2057 =

15 HP Pharmaceuticals 88 18-7-2090

18 BHARATI Four Wheelers b5 13-5-2010

17 RAYMOMDS Electronics 0 24-9-2124

18 RELIANCE FourWheelers 56 8-2-2110

19 TATA Garments o7 5-2-2002

20 BEML Four Wheelers di 27-1-2122

| HP Four Wheelers 46 7-4-2102

22 BSML Two Wheelers 56 22-4-2040

23 MARUTI Garmenis 42 15-11-2108

24 MARUTI Baby Products 6 6-3-2005

25 DELL Garments 4b 28-8-2069

Figure 4. Sample output observed at the application end

Int. j. eng. bus. manag., 2012, Vol. 4, 22:2012

www.intechopen.com

Graph showing the load (no. of tags) distribution on various readers:

35

30

O 1st Execution
B 2nd Execution

Load (no. of tags)----—--->

1 2

Reader number

Figure 5. Graph showing the load distribution on readers

] 0O 3rd Execution
O4th Execution
B 5th Execution
M O 6th Execution
@ 7th Execution
0O 8th Execution
W 9th Execution
@ 10th Execution
0O 11th Execution
0 12th Execution

No. of fields queried for display vs Response time graph for a fixed
number of tag & reader:

180

160 -

/

120
/

100 4

80

—— No. of tags=70, under 4
readers.

60 -

Response time (in ms)-—-——-—>

40

20

2 3 4 5

No. of fields queried-------

Figure 6. Graph showing the response time of the system for various queries from the application

In the second experiment we have considered the amount
of delay between a query that has been submitted to the
middleware system by the application and the requested
information being available to the user at the application.
Figure 6 shows the amount of delay in milliseconds. It
can be observed, in general, that the amount of delay
increases with the number of field information of the
tagged items that need to be parsed at the server end.

In our third experiment we have calculated the time (in
ms) required to identify the tags by the readers. Firstly we
fixed the number of readers and then increased the
number of tags and calculated the time to detect all the
tags. Then we repeated the same experiment by

www.intechopen.com

increasing the number of readers and obtained the result
as in figure 7. It can be observed that an increase in the
tag population has a much greater impact on the response
time rather than increasing the number of readers.

Lastly we carried out the experiment to find out the delay
(in ms) to detect a fixed number of tags varying the
number of readers in the simulation area. The same
experiments have been carried out with different number
of tags and figure 8 shows the experimental result. Here
again, we see that abruptly increasing the number of tags
suddenly increased the response time of the system,
while the number of readers has little effect on this.

Indrajit Bhattacharya, Amit Kumar Gupta and Uttam Kumar Roy:
XRFID: Design of an XML Based Efficient Middleware for RFID Systems

8

No. of tags vs time (in ms) graph for different no. of readers:

—— No. of readers=3
—=— No. of readers=4
—— No. of readers=5
—— No. of readers=6

Response time (ms)——>

o 7o 80 100 200
No. of tags------->

Figure 7. Graph showing the time required to identify the tags by the readers

No. of reader vs time (in ms) graph for different no. of tags:

800
700

600

500 —e— No. of tags=60

—=— No. of tags=70
No. of tags=80

—< No. of tags=100

—*— No. of tags=200

400

300

Response time (Mms)——>

200

100

3 4 5 6
No. of readers------->

Figure 8. Graph showing the time required to detect a fixed number of tags by increasing the number of readers

5. Conclusion and Future Work 2) The use of XML has helped the system to be more
efficient as well as backward compatible to the
In our work, we have developed RFID middleware existing HTML applications.
software that is more efficient as well as flexible 3) The system supports a large number of tags and
compared to some of the other middleware solutions readers.
available today. To prove our point, we have chalked out 4) The various fields can be selected for information
some of the unique features incorporated in our system. retrieval just by a single click from the specially
These include the following: designed user interface. So, a novice also can easily
1) Our system views the data obtained from a tag as a use the system.
byte stream. It replies to the user’s query from the 5) Reliability: The system uses processing rules to

server in the form of sequence of strings. The client
accepts these strings and then parses them to take
out the required information. This tag abstraction
gives our system the freedom to choose amongst
various types of tags available and make the system
more robust.

Int. j. eng. bus. manag., 2012, Vol. 4, 22:2012

retrieve useful information from the raw data at the
client side. So, if the information received from the
server is not distorted while being transferred, i.e., if
the XML-RPC is error-free then the system is
completely reliable to provide the correct
information.

www.intechopen.com

6) Scalability: Only a single middleware is present that
provides a common reader management interface.
Complete reader and tag information is situated at
the middleware. So the middleware is light-weight
and efficient in terms of time and a number of
readers and tags can be added over the existing
applications without much effort.

7) Load Balancing: We have proposed a solution to load
balancing that is quite simple to implement but
equally effective. In the case of a conflict arising out
of a particular tag falling into the vicinity of two or
more different readers,
proposed is that the reader having a smaller load
will have the right over this tag (i.e., will store its
information). Load of a reader here means the total
number of tags assigned to it at any instant of time.

the solution we have

In case the multiple readers reading a particular tag
have the same load, then the reader reading the tag
first will own it. This solution has not yet been
implemented in our system, but it can easily be
added in future works.

8) Data Management: The information in our system is
managed at a single location, the middleware; so it
is a centralized data management system.

9) The security as such has not been considered so far,
as our main aim was to device the communication
of information from server to clients. But, in future
works, appropriate security mechanism can be
added to the system so that it can be treated as a
full-fledged middleware solution.

10) The complete communication details have been kept
hidden from the end-users, so that they do not get
involved in the complex processes running behind
such a simple front-end.

6. References

[1] R. Weinstein, “RFID: A Technical Overview and its
Application to the Enterprise”, IT Professional, Vol.7,
pp-27-33, May 2005.

[2] B S Prabhu, X. Su, H. Ramamurthy, CH.I.C. Chu, and
R. Gadh, “WIinRFID: A Middleware for the
Enablement of Radiofrequency Identification (RFID)-
Based Applications”, Mobile, Wireless, and Sensor
Networks: Technology, Applications, and Future
Directions, 2006.

[3] “Sun Microsystems Inc.Sun Java System RFID
Software”, February, 2006. http://www.sun.com/
software/ products/ rd/ index.xml.

www.intechopen.com

[4] B. Glover and H. Bhatt, “RFID Essentials”, O'Reilly,
2006.

[5] “EPC Class 1 Gen2. EPCglobal Tag Data Standards
Version 1.3”, March 2006.

[6] K. Finkenzeller, “RFID handbook”, Wiley Hoboken,
NJ, 2003.

[7] C. Floerkemeier, C. Roduner, and M. Lampe, “RFID
Application Development with the Accada
Middleware Platform”, IEEE Systems Journal,
Special Issue on RFID Technology, Vol 10, December
2007.

[8] A. Brewer, N. Sloan, and T.L. Landers, “Intelligent
Tracking in Manufacturing.”, Journal of Intelligent
Manufacturing”, vol.10 pp. 245-250, March 1999.

[9] Jian Feng Cui and Heung Seok Chae, “Developing
Load Balancing System for RFID Middlewares Using
Mobile Agent Technology”, LNCS 2007, Vol
4496/2007, pp. 757-764.

[10] Jian Feng Cui and Heung Seok Chae, “Mobile Agent
based Load Balancing for RFID Middlewares”, 9%
International Conf. on Advanced Communication
Technology, 12-14 Feb, 2007, pp. 973-978.

[11] Christian Floerkemeier and Matthias Lamp, “RFID
middleware design - addressing application
requirements and RFID constraints”, Proceedings of
International conf. on Smart Objects and Ambient
Intelligence, Oct 2005, pp.219-224.

[12] Piyush Maheshwari, “A Dynamic Load Balancing
Algorithm for a Heterogeneous Computing
Environment”, Proceedings of the 29th Annual
Hawaii International Conference on System Sciences,
3-6 Jan 1996, vol.1 pp.338-346.

[13] Ashad Kabir, Bonghee Hong, Wooseok Ryu,
Sungwoo Ahn, “LIT Middleware: Design and
Implementation of RFID Middleware Based on the
EPC Network Architecture”, Proceedings of 18%
ACM conf. on Information
Management, 2009, pp. 221-229.

[14] Siti Zaiton Mohd Hashim, Mardiyono, Nurulhaini
Anuar, Wan Mohd Nasir Wan Kadi, “Comparative
Analysis on Adaptive RFID
Middleware”, International Conf. on Computer &
Communication Engg., ICCCE-2008, pp.989-993.

[15] Jameela Al-Jaroodi, Junaid Aziz, and Nader
Mohame, “Middleware for RFID Systems: An
Overview”, 33 International Conf. on Computer
Software Applications, 2009, pp. 154-159.

and Knowledge

Features for

Indrajit Bhattacharya, Amit Kumar Gupta and Uttam Kumar Roy:
XRFID: Design of an XML Based Efficient Middleware for RFID Systems

9

