Optimization of RFID Tags Coil's System Stability under Delayed Electromagnetic Interferences

Regular Paper

Ofer Aluf*

Physical Electronics Dept., Tel-Aviv University, Ramat-Aviv, Israel
*Corresponding author E-mail: oferaluf@bezeqint.net

Abstract This article discusses the very crucial subject of RFID TAG's stability. RFID equivalent circuits of a label can be represented as Parallel circuits of Capacitance (Cpl), Resistance (Rpl), and Inductance (Lpc). We define V(t) as the voltage that develops on the RFID label therefore making \(\frac{dV(t)}{dt} \) the voltage-time derivative. Due to electromagnetic interference, there are different time delays with respect to RFID label voltages and voltage time derivatives. We define \(V_1(t) \) as \(V(t) \) and \(V_2(t) \) as \(\frac{dV(t)}{dt} \). The delayed voltage and voltage derivative are \(V_1(t-\tau) \) and \(V_2(t-\tau) \) respectively \((\tau_1, \tau_2)\). The RFID equivalent circuit can be represented as a delayed differential equation that depends on variable parameters and delays. The investigation of RFID's differential equation is based on bifurcation theory [1], which is the study of possible changes in the structure of the orbits of a delayed differential equation as a function of variable parameters. This article first illustrates certain observations and analyzes local bifurcations of an appropriate arbitrary scalar delayed differential equation [2]. RFID label stability analysis is done under different time delays with respect to label voltage and voltage derivative. Additional analysis of the bifurcations of RFID's delayed differential equation on the circle. Bifurcation behavior of specific delayed differential equations can be condensed into bifurcation diagrams. This serves to optimize dimensional parameters analysis of RFID TAGs under electromagnetic interferences to get ideal performances.

Keywords RFID, stability, locus

1. Introduction

This article discusses a very critical and useful subject of passive RFID TAGs system stability analysis under electromagnetic interferences. RFID TAG system has two main variables—TAG-voltage and TAG-voltage derivative with respect to time which may be subject to delay as a result of electromagnetic interferences. We define \(\tau_1 \) as time delay respect to TAG's voltage and \(\tau_2 \) as time delay respect to TAG's voltage derivative. RFID Equivalent circuits of a Label can be represented as parallel circuits of Capacitance (Cpl), Resistance (Rpl), and Inductance (Lpc). Our RFID TAG system delay differential and delay differential model can be utilized for analysis of the dynamics of delay differential equations. Incorporation of a time delay is often necessary during some stage. It is often difficult to
analytically study models with delay dependent parameters, even if only a single discrete delay is present. Practical guidelines exist that combine graphical information with analytical work to effectively study the local stability of models involving delay dependent parameters. The stability of a given steady state is determined simply through the use of the graphs of a function of \(\tau \), \(\tau_c \) which can be expressed distinctly and thus can be easily depicted by Matlab and other popular software—we need only look at one such function and locate the zeros. This function often has only two zeros, providing thresholds for stability switches. As time delay increases, the stability fluctuates. We emphasize the local stability aspects of certain models with delay-dependent parameters. In addition there is a general geometric criterion that, theoretically speaking, may be applied to models that include many delays or even distributed delays. The simplest case is that of a first order characteristic equation which provides more user-friendly geometric and analytic criteria for stability switches. The analytical criteria provided for the first and second order cases can be used to obtain insightful analytical statements and can be helpful for conducting simulations.

2. RFID Equivalent Circuit and Representation of Delay Differential Equations

RFID TAG can be represented as a parallel Equivalent Circuit of Capacitor and Resistor in Parallel. For example, see NXP/PHILIPS ICODE IC Parallel equivalent circuit and simplified complete equivalent circuit of the label (L1 is the antenna inductance) [6].

![Figure 1. NXP/PHILIPS ICODE IC Parallel equivalent circuit and simplified complete equivalent circuit of the label (L1 represents the antenna inductance).](image1)

The following Variable settings: \(V_2 = \frac{dV_1}{dt} = \frac{dV}{dt}, V_1 = V \). The dynamic equation system:

\[
\frac{dV_1}{dt} = V_2, \quad \frac{dV_2}{dt} = -\frac{1}{C_1 R_1} V_2 - \frac{1}{C_1 L_1}V_1
\]

(1)

\[
d = 2 \cdot (t + w) / \Pi
\]

\[
A_{avg} = a_0 - N_c \cdot (g + w)
\]

\[
B_{avg} = b_0 - N_c \cdot (g + w)
\]

(2)

\[
A_{avg} = a_0 - N_c \cdot (g + w)
\]

\[
B_{avg} = b_0 - N_c \cdot (g + w)
\]

(3)

\[
X_1 = A_{avg} \cdot \ln \left(\frac{2 \cdot A_{avg} \cdot B_{avg}}{d \cdot (A_{avg} + B_{avg})} \right)
\]

(4)

\[
X_2 = B_{avg} \cdot \ln \left(\frac{2 \cdot A_{avg} \cdot B_{avg}}{d \cdot (B_{avg} + A_{avg})} \right)
\]

(5)

\[
X_3 = 2 \cdot \left[A_{avg} + B_{avg} - \sqrt{A_{avg}^2 + B_{avg}^2} \right]
\]

\[
X_4 = (A_{avg} + B_{avg}) / 4
\]

(6)

The RFID's coil calculation inductance is

\[
L_{calc} = \left[\frac{\mu_0}{\pi} \cdot \left(X_1 + X_2 - X_3 + X_4 \right) \cdot N_c^r \right] \cdot L_1 = L_{calc}
\]

(7)

Definition of limits, Estimations: Track thickness \(t \), Al and Cu coils (\(t > 30 \mu m \)).
Due to electromagnetic interferences we get RFID TAG’s voltage and voltage derivative with delays \(\tau_1 \) and \(\tau_2 \) respectively \(V_1(t) \rightarrow V_1(t- \tau_1) ; \ V_2(t) \rightarrow V_2(t- \tau_1) \). We consider no delay effect on \(\frac{dV_1}{dt} \) and \(\frac{dV_2}{dt} \). The RFID TAG’s differential equations under the effects of electromagnetic interferences (we consider electromagnetic interferences (delay terms) influence only RFID TAG voltage \(V_1(t) \) and the voltage derivative \(V_2(t) \) with respect to time. There is no influence on \(\frac{dV_1}{dt} \) and \(\frac{dV_2}{dt} \):

\[
\frac{dV_1}{dt} = V_2(t - \tau_2)
\]

\[
\frac{dV_2}{dt} = \frac{1}{C_1} \left[\frac{d\theta}{\pi} \{X_1 + X_2 - X_3 + X_4\} \right] \left(\frac{1}{C_1 \cdot R_1} \right) \frac{V_1}{V_2}
\]

To find the Equilibrium points (fixed points) of the RFID TAG system is by \(\lim_{t \to \infty} V_1(t - \tau_1) = V_1(t) \);

\[
\lim_{t \to \infty} V_2(t - \tau_2) = V_2(t) ; \quad \frac{dV_1(t)}{dt} = 0 ; \quad \frac{dV_2(t)}{dt} = 0
\]

\[\forall \ t \geq \tau_1 ; \quad t \geq \tau_2 \quad \exists \ (t - \tau_1) \approx t ; \quad (t - \tau_2) \approx t , \ t \to \infty\]

We get two equations and the only fixed point is: \(E^{(0)} \{V_1^{(0)}, V_2^{(0)}\} = (0, 0) \).

Stability analysis: The standard local stability analysis about any one of the equilibrium points of RFID TAG system consists of adding arbitrarily small increments of exponential form \([v_1, v_2] e^{\lambda t} \) to coordinates \([V_1, V_2] \), and retaining the first order terms in \(v_1, v_2 \). The system of two homogeneous equations leads to a polynomial characteristics equation in the eigenvalues \(\lambda \). The polynomial characteristics equations accept by set the following voltage and voltage derivative with respect to time into two RFID TAG system equations.

The RFID TAG system fixed values with arbitrarily small increments of exponential form \([v_1, v_2] e^{\lambda t} \) are: i=0 (first fixed point), i=1 (second fixed point), i=2 (third fixed point).

\[
V_1(t) = V_1^{(i)} + v_1 \cdot e^{\lambda t} ; \ V_2(t) = V_2^{(i)} + v_2 \cdot e^{\lambda t}
\]

\[
V_1(t-\tau_1) = V_1^{(i)} + v_1 \cdot e^{\lambda (t-\tau_1)}
\]

\[
V_2(t-\tau_2) = V_2^{(i)} + v_2 \cdot e^{\lambda (t-\tau_2)}
\]

\[\forall \ i = 0, 1, 2\]

We choose the above expressions for our \(V_1(t), V_2(t) \) as small displacement \([v_1, v_2] \) from the system’s fixed points at time \(t=0 \).

\[
V_1(t = 0) = V_1^{(0)} + v_1 ; \ V_2(t = 0) = V_2^{(0)} + v_2
\]

(13)

When \(\lambda < 0 \), \(t > 0 \) the selected fixed point is stable. However when \(\lambda > 0 \), \(t > 0 \) is unstable. Our system tends towards the selected fixed point exponentially for \(\lambda < 0 \), \(t > 0 \) and otherwise will deviate exponentially from the selected fixed point. \(\lambda \) is the eigenvalue parameter which establishes whether the fixed point is stable or unstable. In addition, the absolute value \((|\lambda|) \) establishes the speed of flow toward or away from the selected fixed point [1][2].

\[
\begin{array}{c|c|c}
\lambda < 0 & \lambda > 0 \\
\hline
0 & 0 \\
t > 0 \ \\
\end{array}
\]

The speeds of flow toward or away from the selected fixed point for RFID TAG system voltage and voltage derivative with respect to time are

\[
\frac{dV_1(t)}{dt} = \lim_{\Delta t \to 0} \frac{V_1(t + \Delta t) - V_1(t)}{\Delta t}
\]

\[
= \lim_{\Delta t \to 0} \frac{V_1^{(i)} + v_1 \cdot e^{\lambda (t+\Delta t)} - [V_1^{(i)} + v_1 \cdot e^{\lambda t}]}{\Delta t}
\]

\[
= \lim_{\Delta t \to 0} \left[v_1 \cdot e^{\lambda t} \cdot \frac{e^{\lambda \Delta t} - 1}{\Delta t} \right] = \lambda \cdot v_1 \cdot e^{\lambda t}
\]

(14)

\[
\frac{dV_2(t)}{dt} = \lim_{\Delta t \to 0} \frac{V_2(t + \Delta t) - V_2(t)}{\Delta t}
\]

\[
= \lim_{\Delta t \to 0} \frac{V_2^{(i)} + v_2 \cdot e^{\lambda (t+\Delta t)} - [V_2^{(i)} + v_2 \cdot e^{\lambda t}]}{\Delta t}
\]

\[
= \lim_{\Delta t \to 0} \left[v_2 \cdot e^{\lambda t} \cdot \frac{e^{\lambda \Delta t} - 1}{\Delta t} \right] = \lambda \cdot v_2 \cdot e^{\lambda t}
\]
and the time derivative of the above equations:

\[
\frac{dV_1(t)}{dt} = v_1 \cdot \lambda \cdot e^{\lambda t} ; \quad \frac{dV_2(t)}{dt} = v_2 \cdot \lambda \cdot e^{\lambda t} \tag{16}
\]

\[
\frac{dV_1(t - \tau)}{dt} = v_1 \cdot \lambda \cdot e^{\lambda (t - \tau)} \quad \text{and} \quad \frac{dV_2(t - \tau)}{dt} = v_2 \cdot \lambda \cdot e^{\lambda (t - \tau)} \tag{17}
\]

First we take the RFID TAG’s voltage \(V_1\) differential equation: \(\frac{dV_1}{dt} = V_2\) adding arbitrarily small increments in exponential form \([v_1, v_2] \cdot e^{\lambda t}\) to the coordinates \([V_1, V_2]\) retaining the first order terms in \(v_1, \ v_2\).

\[
\lambda \cdot v_1 \cdot e^{\lambda t} = V_1^{(i)} + v_1 \cdot e^{\lambda t} ; \quad V_1^{(i=0)} = 0 \quad ; \quad \lambda_1 = \frac{v_2}{v_1} \approx 1 > 0
\tag{18}
\]

Second we take the RFID TAG’s voltage \(V_2\) differential equation: \(\frac{dV_2}{dt} = V_2\) and adding arbitrarily small increments in exponential form \([v_1, v_2] \cdot e^{\lambda t}\) to the coordinates \([V_1, V_2]\) retaining the first order terms in \(v_1, \ v_2\).

\[
\frac{dV_2}{dt} = \left\{- \frac{1}{C_1 \cdot \frac{\mu_0}{\pi} \left[X_1 + X_2 - X_3 + X_4 \right] \cdot Nc^p} \right\} \cdot (V_1^{(i)} + v_1 \cdot e^{\lambda t})
\tag{20}
\]

\[
V_1^{(i=0)} = V_2^{(i=0)} = 0 \quad \text{then} \quad \frac{v_1}{v_2} \approx 1 ; \quad \lambda_2 = \frac{1}{C_1 \cdot \frac{\mu_0}{\pi} \left[X_1 + X_2 - X_3 + X_4 \right] \cdot Nc^p} + \frac{1}{R_1} \tag{21}
\]

If \(\frac{1}{C_1 \cdot \frac{\mu_0}{\pi} \left[X_1 + X_2 - X_3 + X_4 \right] \cdot Nc^p} + \frac{1}{R_1} > 0\) then we have saddle fixed point otherwise it is an unstable node (both eigenvalues are positive). We define

\[
V_1^*(t - \tau_1) = V_1^{(i)} + v_1 \cdot e^{\lambda (t - \tau_1)} ; \quad V_2^*(t - \tau_2) = V_2^{(i)} + v_2 \cdot e^{\lambda (t - \tau_2)}
\tag{22}
\]

which gives us two delayed differential equations adding arbitrarily small increments of exponential form \([v_1, v_2] \cdot e^{\lambda t}\) to the coordinates \([V_1, V_2]\).

\[
V_1^{(i=0)} = V_2^{(i=0)} = 0 \Rightarrow v_1 \cdot \lambda \cdot e^{\lambda t} = v_2 \cdot e^{\lambda (t-\tau_2)}
\tag{23}
\]

In the equilibrium fixed point \(V_1^{(i=0)} = V_2^{(i=0)} = 0\) and

\[
\lambda \cdot v_2 \cdot e^{\lambda t} = \left\{- \frac{1}{C_1 \cdot \frac{\mu_0}{\pi} \left[X_1 + X_2 - X_3 + X_4 \right] \cdot Nc^p} \right\} \cdot (V_2^{(i)} + v_2 \cdot e^{\lambda t})
\tag{24}
\]

Then we get

\[
\lambda \cdot v_2 \cdot e^{\lambda t} = \left\{- \frac{1}{C_1 \cdot \frac{\mu_0}{\pi} \left[X_1 + X_2 - X_3 + X_4 \right] \cdot Nc^p} \right\} \cdot (V_2^{(i)} + v_2 \cdot e^{\lambda t})
\tag{25}
\]

We define

\[
f_i(X_1, X_2, etc...) = \left[\frac{\mu_0}{\pi} \left[X_1 + X_2 - X_3 + X_4 \right] \cdot Nc^p \right] \tag{26}
\]

The small Jacobian increments of our RFID TAG system

\[
\left[\begin{array}{c}
-\lambda \\
\frac{1}{C_1 \cdot f_n} - \frac{1}{C_1 \cdot R_1} e^{-\lambda \tau_1} - \lambda
\end{array} \right] \cdot \left[\begin{array}{c}
v_1 \\
v_2
\end{array} \right] = 0 \tag{27}
\]
The expression for \(P_n(\lambda, \tau) \) is
\[
P_n(\lambda, \tau) = \sum_{k=0}^{\infty} P_k(\tau) \cdot \lambda^k = P_0(\tau) + P_1(\tau) \cdot \lambda + P_2(\tau) \cdot \lambda^2 + \ldots
\]
\[
= \lambda^2 + \lambda \cdot \frac{1}{C_1 \cdot R_1} + \ldots
\]
The expression for \(Q_m(\lambda, \tau) \) is
\[
Q_m(\lambda, \tau) = \sum_{k=0}^{\infty} q_k(\tau) \cdot \lambda^k
\]
\[
= q_0(\tau) + q_1(\tau) \cdot \lambda + q_2(\tau) \cdot \lambda^2 + \ldots
\]

3. RFID Tag System Second Order
CHARACTERISTIC EQUATION \(\tau_1 = \tau \); \(\tau_2 = 0 \)

The first case we analyze involves a delay in RFID Label voltage with no delay in voltage time derivative [4] [5].
\[
D(\lambda, \tau_1 = \tau, \tau_2 = 0) = \lambda^2 + \lambda \cdot \frac{1}{C_1 \cdot R_1} + \lambda \cdot e^{-\lambda \cdot \tau_1}
\]
\[
D(\lambda, \tau) = P_n(\lambda, \tau) + Q_m(\lambda, \tau) \cdot e^{-\lambda \cdot \tau}
\]
\[\omega^4 + \omega^2 \cdot \frac{1}{(C_i \cdot R_i)^2} - \frac{1}{(C_i \cdot f_s)^2} = 0 \]
(45)

And its roots are given by

\[\omega_i^2 = \frac{1}{2} \cdot \left\{ (b^2 + 2 \cdot c - a^2) + \sqrt{\Delta} \right\} = \frac{1}{2} \cdot \left\{ \sqrt{\Delta} - \frac{1}{(C_i \cdot R_i)^2} \right\} \]
(46)

\[\omega_i^2 = \frac{1}{2} \cdot \left\{ (b^2 + 2 \cdot c - a^2) - \sqrt{\Delta} \right\} = -\frac{1}{2} \cdot \left\{ \sqrt{\Delta} + \frac{1}{(C_i \cdot R_i)^2} \right\} \]
(47)

\[\Delta = (b^2 + 2 \cdot c - a^2)^2 - 4 \cdot (c^2 - d^2) = \frac{1}{C_i} \cdot \left(\frac{2}{f_s} - \frac{1}{R_i^2} \right) \]
(48)

Therefore the following holds true:

\[2 \cdot \omega_{i_+}^2 - (b^2 + 2 \cdot c - a^2) = \pm \sqrt{\Delta} \]
(49)

\[2 \cdot \omega_{i_-}^2 + \frac{1}{(C_i \cdot R_i)^2} = \pm \sqrt{\Delta} \]
(50)

Furthermore \(P_R(i \cdot \omega, \tau) = c(\tau) - \omega^2(\tau) = -\omega^2(\tau) \)

(51)

\[P_I(i \cdot \omega, \tau) = \omega(\tau) \cdot a(\tau) = \omega(\tau) \cdot \frac{1}{C_i \cdot R_i} \]
(52)

\[Q_R(i \cdot \omega, \tau) = d(\tau) = \frac{1}{C_i \cdot f_s} \]
(53)

\[Q_I(i \cdot \omega, \tau) = \omega(\tau) \cdot b(\tau) = 0 \]
hence

(54)

(55)

(56)

(57)

Which jointly with

\[\omega^4 + \omega^2 \cdot \frac{1}{(C_i \cdot R_i)^2} - \frac{1}{(C_i \cdot f_s)^2} = 0 \]
(58)

defines the maps \(S_n(\tau) = \tau - \tau_n(\tau) \); \(\tau \in I \), \(n \in N_0 \)

(59)

which are continuous and differentiable in \(\tau \) based on Lema 1.1 (see Appendix A). Hence we use theorem 1.2 (see Appendix B). This proves theorem 1.3 (see Appendix C) and theorem 1.4 (see Appendix D).

Remark: a, b, c, d parameters are independent of delay parameter \(\tau \) even if we use \(a(\tau), b(\tau), c(\tau), d(\tau) \).

4. RFID Tag System Second Order

CHARACTERISTIC EQUATION: \(\tau_1 = 0 \); \(\tau_2 = \tau \)

The second case we analyze involves no delay in RFID Label voltage but does have a delay in voltage time derivative [9].

\[D(\lambda, \tau_1 = 0, \tau_2 = \tau) = \lambda^2 + \frac{1}{C_i \cdot R_i} \cdot e^{-\lambda \tau} + \frac{1}{C_i \cdot f_s} \cdot e^{-\lambda \tau} \]
(60)

\[D(\lambda, \tau_1 = 0, \tau_2 = \tau) = \lambda^2 + \left(\lambda \cdot \frac{1}{C_i \cdot R_i} + \frac{1}{C_i \cdot f_s} \right) \cdot e^{-\lambda \tau} \]
(61)

\[D(\lambda, \tau) = P_n(\lambda, \tau) + Q_n(\lambda, \tau) \cdot e^{\lambda \tau} \]
(62)

The expression for \(P_n(\lambda, \tau) \) is

\[P_n(\lambda, \tau) = \sum_{i=0}^{\infty} P_i(\tau) \cdot e^{-\lambda \tau} \]
(63)

\[P_i(\tau) = 1 \]; \[P_0(\tau) = 0 \]; \[P_\tau(\tau) = 0 \]

The expression for \(Q_n(\lambda, \tau) \) is

\[Q_n(\lambda, \tau) = \sum_{i=0}^{\infty} Q_i(\tau) \cdot e^{-\lambda \tau} \]
(64)

\[Q_i(\tau) = \frac{1}{C_i \cdot f_s} \]; \[Q_0(\tau) = \frac{1}{C_i \cdot R_i} \]; \[Q_\tau(\tau) = 0 \]

Our RFID system second order characteristic equation:

\[D(\lambda, \tau) = \lambda^2 + a(\tau) \cdot \lambda + b(\tau) \cdot e^{-\lambda \tau} + c(\tau) + d(\tau) \cdot e^{-\lambda \tau} \]
(65)

Then

\[a(\tau) = 0 \]; \[b(\tau) = \frac{1}{C_i \cdot R_i} \]; \[c(\tau) = 0 \]; \[d(\tau) = \frac{1}{C_i \cdot f_s} \]
(66)

And like in our previous case analysis:

\[P(\lambda, \tau) = P_n(\lambda, \tau) = \lambda^2 + a(\tau) \cdot \lambda + c(\lambda) = \lambda^2 \]
(67)
\[Q(\lambda, \tau) = Q_\mu(\lambda, \tau) = b(\tau) \cdot \lambda + d(\tau) = \lambda \cdot \frac{1}{C_1 \cdot R_i} + \frac{1}{C_1 \cdot f_\sigma} \]

we assume that \(P(\lambda, \tau) = P_\mu(\lambda) \) and \(Q_\mu(\lambda, \tau) = Q_\mu(\lambda) \) cannot have common imaginary roots. That is, for any real number \(\omega \):

\[p_\mu(\lambda = i \cdot \omega, \tau) + Q_\mu(\lambda = i \cdot \omega, \tau) \neq 0 \]

Therefore \(F(\omega, \tau) = 0 \) implies:

\[\omega^4 - \omega^2 \cdot \frac{1}{(C_1 \cdot R_i)^2} - \frac{1}{(C_1 \cdot f_\sigma)^2} = 0 \]

And its roots are given by:

\[\omega_\pm = \frac{1}{2} \left\{ (b_2 + 2 \cdot c - a^2) \pm \sqrt{\Delta} \right\} = \frac{1}{2} \left\{ \sqrt{\Delta} + \frac{1}{(C_1 \cdot R_i)^2} \right\} \]

\[\omega_\pm = \frac{1}{2} \left\{ (b_2 + 2 \cdot c - a^2) - \sqrt{\Delta} \right\} = \frac{1}{2} \left\{ -\sqrt{\Delta} + \frac{1}{(C_1 \cdot R_i)^2} \right\} \]

\[\Delta = (b_2 + 2 \cdot c - a^2) - 4 \cdot (c^2 - d^2) = \frac{1}{C_1^2} \left\{ \left(\frac{2}{f_\sigma} \right)^2 + \frac{1}{R_i^2} \right\} \]

Therefore the following holds:

\[2 \cdot \omega_{\pm}^2 - (b_2 + 2 \cdot c - a^2) = \pm \sqrt{\Delta} \]

\[2 \cdot \omega_{\pm}^2 + \frac{1}{(C_1 \cdot R_i)^2} = \pm \sqrt{\Delta} \]

Furthermore \(P_R(i \cdot \omega, \tau) = c(\tau) - \omega^2(\tau) = -\omega^2(\tau) \)

\[P_R(i \cdot \omega, \tau) = \omega(\tau) \cdot a(\tau) = 0 \]

\[Q_R(i \cdot \omega, \tau) = d(\tau) = \frac{1}{C_1 \cdot f_\sigma} \]

hence:

\[Q_R(i \cdot \omega, \tau) = \omega(\tau) \cdot b(\tau) = \omega(\tau) \cdot \frac{1}{C_1 \cdot R_i} \]

Therefore:

\[\sin \theta(\tau) = \frac{\sin \theta(\tau)}{|Q(i \cdot \omega, \tau)|^2} \]

\[\cos \theta(\tau) = \frac{\cos \theta(\tau)}{|Q(i \cdot \omega, \tau)|^2} \]

Which, along with:

\[\omega^4 - \omega^2 \cdot \frac{1}{(C_1 \cdot R_i)^2} - \frac{1}{(C_1 \cdot f_\sigma)^2} = 0 \]

defines the maps \(S_\mu(\tau) = \tau - \tau_\mu(\tau) \); \(\tau \in \mathbb{R} \), \(n \in \mathbb{N}_0 \)

defines the maps \(S_\mu(\tau) = \tau - \tau_\mu(\tau) \); \(\tau \in \mathbb{R} \), \(n \in \mathbb{N}_0 \)

which are continuous and differentiable in \(\tau \) based on Lema 1.1 (see Appendix A). Hence we use theorem 1.2 (see Appendix B). This proves the theorem 1.3 (see Appendix C) and theorem 1.4 (see Appendix D).

Remark: a, b, c, d parameters are independent of the delay parameter \(\tau \) even we use \(a(\tau), b(\tau), c(\tau), d(\tau) \) [4][5].

5. RFID Tag System Second Order

CHARACTERISTIC EQUATION \(\tau_1 = \tau \); \(\tau_2 = \tau \)

The third case we analyze is when there is delay in both the RFID Label voltage and in the voltage time derivative [4][5].

\[D(\lambda, \tau_1, \tau_2) = \lambda^2 + \frac{1}{C_1 \cdot R_i} \cdot e^{-\lambda \cdot \tau_1} + \frac{1}{C_1 \cdot f_\sigma} \cdot e^{-\lambda \cdot \tau_2} \]

\[D(\lambda, \tau_1, \tau_2) = \lambda^2 + \frac{1}{C_1 \cdot R_i} \cdot e^{-\lambda \cdot \tau_1} + \frac{1}{C_1 \cdot f_\sigma} \cdot e^{-\lambda \cdot \tau_2} \]

\[D(\lambda, \tau_1, \tau_2) = \lambda^2 + \frac{1}{C_1 \cdot R_i} \cdot e^{-\lambda \cdot \tau_1} + \frac{1}{C_1 \cdot f_\sigma} \cdot e^{-\lambda \cdot \tau_2} \]

\[D(\lambda, \tau_1, \tau_2) = \lambda^2 + \frac{1}{C_1 \cdot R_i} \cdot e^{-\lambda \cdot \tau_1} + \frac{1}{C_1 \cdot f_\sigma} \cdot e^{-\lambda \cdot \tau_2} \]
\[D(\lambda, \tau) = P_s(\lambda, \tau) + Q_m(\lambda, \tau) \cdot e^{-\lambda \tau} \]

(89)

The expression for \(P_s(\lambda, \tau) \) is

\[P_s(\lambda, \tau) = \sum_{n=0}^{m} P(\tau) \cdot \lambda^n = P(\tau) + P(\tau) \cdot \lambda + P(\tau) \cdot \lambda^2 = \lambda^2 \]

(90)

\[P_s(0) = 1; \quad P(0) = 0; \quad P_s(0) = 0 \]

The expression for \(Q_m(\lambda, \tau) \) is

\[Q_m(\lambda, \tau) = \sum_{n=0}^{m} q(n, \tau) \cdot \lambda^n = \lambda \cdot \frac{1}{C1 \cdot R_s} + \frac{1}{C1 \cdot f_s} \cdot e^{-\lambda \tau} \]

(91)

Taylor expansion: \(e^{-\lambda \tau} \approx 1 - \lambda \cdot \tau + \frac{\lambda^2 \cdot \tau^2}{2} \) since we need \(n > m \) for [BK] analysis we choose \(e^{-\lambda \tau} \approx 1 - \lambda \cdot \tau \) then we get \(Q_m(\lambda, \tau) = \sum_{n=0}^{m} q(n, \tau) \cdot \lambda^n = \lambda \cdot \frac{1}{C1 \cdot R_s} + \frac{1}{C1 \cdot f_s} \cdot q(0) = 0 \)

(92)

Our RFID system second order characteristic equation:

\[D(\lambda, \tau) = \lambda^2 + a(\tau) \cdot \lambda + b(\tau) \cdot \lambda \cdot e^{-\lambda \tau} + c(\tau) + d(\tau) \cdot e^{-\lambda \tau} \]

(94)

Then

\[a(\tau) = 0; \quad b(\tau) = \frac{1}{C1 \cdot R_s} \cdot \frac{1}{C1 \cdot f_s} \cdot q(\tau) = 0; \quad d(\tau) = \frac{1}{C1 \cdot f_s} \]

(95)

And much like our previous case analysis:

\[P(\lambda, \tau) = P_s(\lambda, \tau) = \lambda^2 \]

(96)

\[Q(\lambda, \tau) = Q_m(\lambda, \tau) = \lambda \cdot \frac{1}{C1 \cdot R_s} + \frac{1}{C1 \cdot f_s} \]

(97)

we assume that \(P_s(\lambda, \tau) = P_s(\lambda) \) and \(Q_m(\lambda, \tau) \) can’t have common imaginary roots. That is for any real number \(\omega \); \(P_s(\lambda = i \cdot \omega, \tau) + Q_m(\lambda = i \cdot \omega, \tau) \neq 0 \)

(98)

\[-\omega^2 + i \cdot \omega \cdot \frac{1}{C1 \cdot R_s} + \frac{1}{C1 \cdot f_s} \neq 0 \]

(99)

\[F(\omega, \tau) = |P(i \cdot \omega, \tau)|^2 - |Q(i \cdot \omega, \tau)|^2 \cdot P(i \cdot \omega, \tau) = -\omega^2 \]

(100)

\[P_s(i \cdot \omega, \tau) = -\omega^2 \cdot P_s(i \cdot \omega, \tau) = 0 \]

(101)

\[Q(\lambda = i \cdot \omega, \tau) = i \cdot \omega \cdot \frac{1}{C1 \cdot R_s} + \frac{1}{C1 \cdot f_s} \]

(102)

\[Q_s(\lambda = i \cdot \omega, \tau) = \omega \cdot \frac{1}{C1 \cdot R_s} + \frac{1}{C1 \cdot f_s} \]

(103)

\[Q_s(\lambda = i \cdot \omega, \tau) = \frac{1}{C1 \cdot f_s} \]

(104)

\[|P(i \cdot \omega, \tau)|^2 = P_s^2 ; \quad |Q(i \cdot \omega, \tau)|^2 = Q_s^2 \]

(105)

\[|P(i \cdot \omega, \tau)|^2 = P_s^2 ; \quad |Q(i \cdot \omega, \tau)|^2 = Q_s^2 \]

(106)

\[F(\omega, \tau) = \omega^4 - \omega^2 \cdot \frac{1}{C1 \cdot R_s} \cdot \frac{1}{C1 \cdot f_s} \cdot \frac{1}{C1 \cdot f_s} \]

(107)

Hence \(F(\omega, \tau) = 0 \) implies that:

\[\omega^4 - \omega^2 \cdot \frac{1}{C1 \cdot R_s} \cdot \frac{1}{C1 \cdot f_s} \cdot \frac{1}{C1 \cdot f_s} = 0 \]

(108)

\[F_s = 4 \cdot \omega^3 \cdot \frac{1}{C1 \cdot f_s} \cdot \frac{1}{C1 \cdot f_s} \]

(109)

\[F_s = 2 \cdot \omega \cdot \frac{1}{C1 \cdot f_s} \cdot \frac{1}{C1 \cdot f_s} \]

(110)

\[P_{Io} = 0 ; \quad P_{Ro} = -2 \cdot \omega ; \quad Q_{Io} = \frac{1}{C1} \cdot \frac{1}{C1 \cdot R_s} \cdot \frac{1}{C1 \cdot f_s} \]

(111)

\[Q_{Ro} = 0 ; \quad P_{Io} = 0 ; \quad P_{Ro} = 0 \]

(112)

\[Q_{Io} = -\frac{\omega}{C1 \cdot f_s} ; \quad Q_{Ro} = 0 \]

The expressions for \(U \) and \(V \) can be derived easily [BK]:

\[U = (P_s \cdot P_{Io} - P_s \cdot P_{Ro}) - (Q_s \cdot Q_{Io} - Q_s \cdot Q_{Ro}) \]

(113)

\[V = (P_s \cdot P_{Io} - P_s \cdot P_{Ro}) - (Q_s \cdot Q_{Io} - Q_s \cdot Q_{Ro}) \]

(114)
\[V = \frac{\omega}{C_i \cdot f_0^2} \quad \text{and} \quad U = \frac{1}{C_i \cdot f_0} \left[\frac{-\omega}{R_1} - 1 \right] \]
(115)

\[\omega_{\tau} = -\frac{F_0}{F_{\omega}} \] and we get the expression:

\[\omega_{\tau} = -\frac{\omega}{2 \cdot \omega^2 - \frac{1}{C_1 \cdot f_0} \left(\frac{1}{R_1} - \frac{\tau}{f_0^2} \right)^2} \]
(116)

Defines the maps \(S_1(\tau) = \tau - \tau_{n}(\tau) \); \(\tau \in I \), \(n \in \mathbb{N}_0 \)

\(S_2(\tau) = \tau - \tau_{n}(\tau) \); \(\tau \in I \), \(n \in \mathbb{N}_0 \)

which are continuous and differentiable in \(\tau \) based on Lema 1.1 (see Appendix A). Hence we use theorem 1.2 (see Appendix B). This proves theorem 1.3 (see Appendix C) and theorem 1.4 (see Appendix D).

Remark: Taylor approximation for \(e^{-\lambda \tau} \approx 1 - \lambda \cdot \tau \) gives us good stability analysis approximation for restricted delay time intervals only.

6. RFID Tag System Stability Analysis under Delayed Variables In Time

Our RFID homogeneous system for \(v_1, v_2 \) leads to a characteristic equation for the eigenvalue \(\lambda \) having the form

\[P(\lambda) + Q(\lambda) \cdot e^{-\lambda \tau} = 0 \] ; first case \(\tau_i = \tau \); \(\tau_2 = 0 \)

\[D(\lambda, \tau_i = \tau, \tau_2 = 0) = \lambda^2 + \lambda \cdot \frac{1}{C_1 \cdot R_i} + \frac{1}{C_1 \cdot f_0} \cdot e^{-\lambda \tau} \]
(117)

We use different parameter terminology in this case:

\[k \rightarrow j ; p_j(\tau) \rightarrow a_j ; q_j(\tau) \rightarrow c_j \; ; n = 2 \; ; m = 0 \]

Additionally \(P(\lambda) \rightarrow P(\lambda) ; Q(\lambda) \rightarrow Q(\lambda) \)

then \(P(\lambda) = \sum_{j=0}^{2} a_j \cdot \lambda^j \) and \(Q(\lambda) = \sum_{j=0}^{0} c_j \cdot \lambda^j \).

\[P(\lambda) = \lambda^2 + \lambda \cdot \frac{1}{C_1 \cdot R_i} \quad \text{and} \quad Q(\lambda) = \frac{1}{C_1 \cdot f_0} \]
(118)

\[n, m \in \mathbb{N}_0 \; , \; n > m \quad \text{and} \quad \begin{array}{l} a_j, c_j : \mathbb{R}_{+0} \rightarrow \mathbb{R} \end{array} \]

\(a_0 + c_0 \neq 0 \). In the following ____ "__" denotes complex and conjugate. \(P(\lambda), Q(\lambda) \)

Are analytic functions in \(\lambda \) and differentiable in \(\tau \).

The coefficients:

\[\{a_j (C_1, R_i), c_j (C_1, \text{antenna parameters})\} \in \mathbb{R} \] depend on RFID \(C_i, R_i \) values and antenna parameters but not on \(\tau \).

\[a_0 = 0, a_i = \frac{1}{C_1 \cdot R_i}, a_i = 1, a_i = 0 ; c_i = \frac{1}{C_1 \cdot f_0}, c_i = c_0 = 0 \]

Unless absolutely necessary, the designation of the variation arguments \((R_i, C_i, \text{antenna parameters}) \) will subsequently be omitted from \(P, Q, a_j, c_j \). The coefficients \(a_k, c_k \) are continuous, and differentiable functions of their arguments, and direct substitution shows that

\[a_0 + c_0 \neq 0 ; \frac{1}{C_1 \cdot f_0} \neq 0 \]

\(\forall C_i, \text{ antenna parameters} \in \mathbb{R} \) i.e. \(\lambda = 0 \) is not a root of the characteristic equation. Furthermore \(P(\lambda), Q(\lambda) \) are analytic functions of \(\lambda \) for which the following requirements of the analysis (see Kuang, 1993, section 3.4) can also be verified in the present case [4] [5].

(a) If \(\lambda = i \cdot \omega, \omega \in \mathbb{R} \) then \(P(i \cdot \omega) + Q(i \cdot \omega) \neq 0 \), i.e. \(P \) and \(Q \) have no common imaginary roots. This condition was verified numerically in the entire \((R_i, C_i, \text{antenna parameters}) \) domain of interest.

(b) \[|Q(\lambda) / P(\lambda)| = \frac{1}{C_i \cdot f_0 \cdot \left(\lambda^2 + \lambda \cdot \frac{1}{C_1 \cdot R_i} \right)} \]
(120)

\[(c) F(\omega) = |P(i \cdot \omega)|^2 - |Q(i \cdot \omega)|^2 \]
(121)

\[F(\omega, \tau) = \omega^4 + \omega^2 \cdot \frac{1}{(C_1 \cdot R_i)^2} - \frac{1}{(C_1 \cdot f_0)^2} \]
(122)

Has at most a finite number of zeros. Indeed, this is a biquadratic polynomial in \(\omega \) (second degree in \(\omega^2 \)).

(d) Each positive root \(\omega(0, R_i, \text{antenna parameters}) \)

www.intehopen.com
of $F(\omega)=0$ is continuous and differentiable with respect to C_1, R, antenna parameters. This condition can only be assessed numerically.

In addition, since the coefficients in P and Q are real, we have

$$P(-i \cdot \omega) = P(i \cdot \omega), \quad \text{and} \quad Q(-i \cdot \omega) = Q(i \cdot \omega)$$

thus $\lambda = i \cdot \omega$, $\omega > 0$ may be on eigenvalue of characteristic equation. The analysis consists in identifying the roots of characteristic equation situated on the imaginary axis of the complex λ plane, where by increasing the parameters C_1, R, antenna parameters and delay τ, $\text{Re} \lambda$ may, at the crossing ω change its sign from ($-$) to ($+$), i.e. from a stable focus

$$E^{(0)}(V_1^{(0)}, V_2^{(0)}) = (0, 0)$$

to an unstable one, or vice versa.

This feature may be further assessed by examining the sign of the partial derivatives with respect to C_1, R and antenna parameters.

$$\frac{\partial \text{Re} \lambda}{\partial C_1} \bigg|_{\lambda = i \omega}, \quad R_1, \text{antenna parameters} = \text{const}$$

$$\frac{\partial \text{Re} \lambda}{\partial R_1} \bigg|_{\lambda = i \omega}, \quad C_1, \text{antenna parameters} = \text{const}$$

$$\frac{\partial \text{Re} \lambda}{\partial f_0} \bigg|_{\lambda = i \omega}, \quad C_1, R_1 = \text{const}$$

$$\frac{\partial \text{Re} \lambda}{\partial \tau} \bigg|_{\lambda = i \omega}, \quad C_1, R_1, \quad \text{antenna parameters} = \text{const}$$

where $\omega \in \mathbb{R}$. \hspace{1cm} (123)

For the first case $\tau = \tau_1$; $\tau_2 = 0$ we get the following results

$$P_\times(i \cdot \omega) = -a_2 \cdot \omega^2 + a_0 = -\omega^2$$

$$P_\times(i \cdot \omega) = -a_3 \cdot \omega^3 + a_1 \cdot \omega = \omega \cdot \frac{1}{C_1 \cdot R_1}$$

$$Q_\times(i \cdot \omega) = -c_2 \cdot \omega^2 + c_0 = \frac{1}{C_1 \cdot f_0}$$

$$Q_\times(i \cdot \omega) = c_1 \cdot \omega = 0 \; ; \; F(\omega)=0$$

yield to

$$\omega = \pm \sqrt{\frac{1}{2 \cdot (C_1 \cdot R_1)^2} \pm \frac{1}{2} \sqrt{\frac{1}{(C_1 \cdot R_1)^4} + 4 \cdot \frac{1}{[C_1 \cdot f_0]^2}}} \; (127)$$

$$\frac{1}{(C_1 \cdot R_1)^2} + 4 \cdot \frac{1}{[C_1 \cdot f_0]^2} > 0 \; \text{always and additional for}$$

$$\omega \in R : \frac{1}{2 \cdot (C_1 \cdot R_1)^2} \pm \frac{1}{2} \sqrt{\frac{1}{(C_1 \cdot R_1)^4} + 4 \cdot \frac{1}{[C_1 \cdot f_0]^2}} > 0 \; (128)$$

There are two options: first, it is always true that

$$\frac{1}{2 \cdot (C_1 \cdot R_1)^2} \pm \frac{1}{2} \sqrt{\frac{1}{(C_1 \cdot R_1)^4} + 4 \cdot \frac{1}{[C_1 \cdot f_0]^2}} > 0 \; (129)$$

Second

$$\frac{1}{2 \cdot (C_1 \cdot R_1)^2} \pm \frac{1}{2} \sqrt{\frac{1}{(C_1 \cdot R_1)^4} + 4 \cdot \frac{1}{[C_1 \cdot f_0]^2}} > 0 \; (130)$$

Not exist and always negative for any RFID TAG overall parameters values.

When writing $P(\lambda) = P_\times(\lambda) + i \cdot P_\times(\lambda)$ and $Q(\lambda) = Q_\times(\lambda) + i \cdot Q_\times(\lambda)$, and inserting $\lambda = i \cdot \omega$

into RFID characteristic equation , ω must satisfy the following :

$$\sin \omega \cdot \tau = g(\omega) = -\frac{P_\times(i \cdot \omega) \cdot Q_\times(i \cdot \omega) + P_\times(i \cdot \omega) \cdot Q_\times(i \cdot \omega)}{\mid Q(i \cdot \omega) \mid^2} \; (131)$$

$$\cos \omega \cdot \tau = h(\omega) = -\frac{P_\times(i \cdot \omega) \cdot Q_\times(i \cdot \omega) + P_\times(i \cdot \omega) \cdot Q_\times(i \cdot \omega)}{\mid Q(i \cdot \omega) \mid^2} \; (132)$$

Where $\mid Q(i \cdot \omega) \mid^2 \neq 0$ in light of requirement (a) above, and $(g, h) \in R$. Furthermore, it follows that in the $\sin \omega \cdot \tau$ and $\cos \omega \cdot \tau$ equations, by squaring and adding the sides, ω must be a positive root of $F(\omega) = P(i \cdot \omega)^2 - |Q(i \cdot \omega)|^2 = 0$.

Note that $F(\omega)$ is independent of τ. It is important to notice that if $\tau \notin I$ (assume that $I \subseteq R_{\tau}$) is the set where $\omega(\tau)$ is a positive root of $F(\omega)$ and for $\tau \notin I$, $\omega(\tau)$ is not define. Then for all τ in I $\omega(\tau)$ it satisfies that $F(\omega, \tau) = 0$.

Then there are no positive $\omega(\tau)$ solutions for $F(\omega, \tau) = 0$, and we cannot have stability switches. For any $\tau \in I$ where $\omega(\tau)$ is a positive solution of...
\(F(\omega, \tau) = 0 \), we can define the angle
\(\theta(\tau) \in [0, 2 \cdot \pi] \) as the solution of
\[
\sin \theta(\tau) = -\frac{P_x(i \cdot \omega) \cdot Q_x(i \cdot \omega) + P_y(i \cdot \omega) \cdot Q_y(i \cdot \omega)}{|Q(i \cdot \omega)|^2} \quad (133)
\]
\[
\cos \theta(\tau) = -\frac{P_y(i \cdot \omega) \cdot Q_x(i \cdot \omega) + P_x(i \cdot \omega) \cdot Q_y(i \cdot \omega)}{|Q(i \cdot \omega)|^2} \quad (134)
\]
And the relation between the argument \(\theta(\tau) \) and \(\omega(\tau) \cdot \tau \) for \(\tau \in I \) must be
\[
\omega(\tau) \cdot \tau = \theta(\tau) + n \cdot 2 \cdot \pi \quad \forall \ n \in \mathbb{N}_0.
\]
Hence, we can define the maps \(r_n : I \rightarrow R_{\omega} \) given by
\[
r_n(\tau) = \theta(\tau) + n \cdot 2 \cdot \pi ; \ n \in \mathbb{N}_0, \tau \in I.
\]
Let us introduce the functions \(f_1 \rightarrow R ; S_n(\tau) = r_n(\tau), \ \tau \in I, \ n \in \mathbb{N}_0 \) which are continuous and differentiable in \(I \). In the following, the subscripts \(\lambda, \omega, R, C \) and RFID TAG antenna parameters \((w.g.B_0, A_0, A_{AVG}, B_{AVG}, \text{etc.}) \) indicate the corresponding partial derivatives. Let us first concentrate
\[
\text{in } \lambda(R, C), \ w.g.B_0, A_0, A_{AVG}, B_{AVG}, \text{etc.}
\]
And \(\omega(R, C), \ w.g.B_0, A_0, A_{AVG}, B_{AVG}, \text{etc.} \), and keeping all parameters except one \((x) \) and \(\tau \). The derivation closely follows that in reference [BK]. Differentiating RFID characteristic equation
\[
P(\lambda) + Q(\lambda) \cdot e^{-\lambda \cdot \tau} = 0
\]
with respect to specific parameter \((x) \), and inverting the derivative for convenience, one calculates:

Remark: \(x = R, C, w.g.B_0, A_0, A_{AVG}, B_{AVG}, \text{etc.} \),

\[
\frac{\partial \lambda}{\partial x}^{-1} = -\frac{P_x(\lambda, x) \cdot Q(\lambda, x) + Q_x(\lambda, x) \cdot P(\lambda, x) - \tau \cdot P(\lambda, x) \cdot Q(\lambda, x)}{P(\lambda, x) \cdot Q(\lambda, x) - Q_x(\lambda, x) \cdot P(\lambda, x)} \quad (135)
\]
Where \(P_x = \frac{\partial P}{\partial \lambda} \), etc., substituting \(\lambda = i \cdot \omega \), and

bearing \(i \cdot P(i \cdot \omega) = P(i \cdot \omega), \ Q(-i \cdot \omega) = Q(i \cdot \omega) \)

Then \(i \cdot P_y(i \cdot \omega) = P_y(i \cdot \omega) \) and \(i \cdot Q_y(i \cdot \omega) = Q_y(i \cdot \omega) \) and that on the surface \(|P(i \cdot \omega)|^2 = |Q(i \cdot \omega)|^2 \), one obtains

\[
\frac{\partial \lambda}{\partial x}^{-1} |_{x=i\omega} = \frac{i \cdot P_x(i \cdot \omega, x) \cdot P(i \cdot \omega, x) + i \cdot Q_x(i \cdot \omega, x) \cdot Q(i \cdot \omega, x) - \tau \cdot P(i \cdot \omega, x) \cdot Q(i \cdot \omega, x)}{P_x(i \cdot \omega, x) \cdot P(i \cdot \omega, x) - Q_x(i \cdot \omega, x) \cdot Q(i \cdot \omega, x)} \quad (136)
\]

Upon separating this into real and imaginary parts, with
\[
P = P_x + i \cdot P_y ; Q = Q_x + i \cdot Q_y ; P_\text{av} = P_{\text{av}} + i \cdot P_{\text{av}} \quad (137)
\]
\[
Q_\text{av} = Q_{\text{av}} + i \cdot Q_{\text{av}} ; P_\text{av} = P_{\text{av}} + i \cdot P_{\text{av}} \quad (138)
\]
\[
P^2 = P_x^2 + P_y^2. \quad \text{When } (x) \text{ can be any RFID TAG parameters } R_i, C_i \text{ and time delay } \tau \text{ etc.}
\]
For convenience, we have dropped the arguments \((i \cdot \omega, x) \), and

\[
F_{\omega} = 2 \cdot \{(P_{\text{av}} \cdot P_x + P_{\text{av}} \cdot P_y) - (Q_{\text{av}} \cdot Q_x + Q_{\text{av}} \cdot Q_y)\} \quad (139)
\]
\[
F_x = 2 \cdot \{(P_{\text{av}} \cdot P_x + P_{\text{av}} \cdot P_y) - (Q_{\text{av}} \cdot Q_x + Q_{\text{av}} \cdot Q_y)\} \quad (140)
\]
\[
\omega_\tau = -F_x / F_\omega. \text{ We define } U \text{ and } V:
\]
\[
U = (P_X \cdot P_{\text{av}} - P_{\text{av}} \cdot P_x) - (Q_X \cdot Q_{\text{av}} - Q_{\text{av}} \cdot Q_x) \quad (141)
\]
\[
V = (P_X \cdot P_{\text{av}} - P_{\text{av}} \cdot P_x) - (Q_X \cdot Q_{\text{av}} - Q_{\text{av}} \cdot Q_x) \quad (142)
\]
We choose our specific parameter as time delay \(x = \tau \).

\[
U = \frac{\omega_\tau^2}{C_i \cdot R_i} ; P^2 = \omega_\tau^4 + \omega^2 \cdot \frac{1}{(C_i \cdot R_i)} ; V = 0 \quad (143)
\]
\[
P_{\text{av}} = 0 ; P_{\text{av}} = 0 ; Q_{\text{av}} = 0 ; Q_{\text{av}} \Rightarrow V = 0
\]
\[
\frac{\partial F}{\partial \omega} = F_{\omega} = 2 \cdot [2 \cdot \omega^2 + \omega \cdot \frac{1}{(C_1 \cdot R_1)}] ; F(\omega_\tau) = 0 \quad (144)
\]
Differentiating with respect to \(\tau \), we get

\[
F_{\omega} \cdot \frac{\partial \omega}{\partial \tau} + F_\tau = 0 ; \tau \in I \Rightarrow \frac{\partial \omega}{\partial \tau} = -\frac{F_\tau}{F_{\omega}} \quad (145)
\]
\[
\lambda^{-1}(\tau) = \frac{\partial \text{Re} \lambda}{\partial \tau} \bigg|_{x=i\omega} \quad (146)
\]
\[
\lambda^{-1}(\tau) = \text{Re} \left\{ -2 \cdot \left[U + \tau \cdot |P_x|^2 \right] + i \cdot F_x \right\} = \frac{2 \cdot \omega^2 + \frac{1}{(C_1 \cdot R_1)^2}}{\omega^4 + \omega^2 \cdot \frac{1}{(C_1 \cdot R_1)^2}} \quad (147)
\]

www.intechopen.com
\[
\text{sign} \{\wedge^{-1}(\tau)\} = \text{sign}\left\{\frac{\partial \text{Re} \lambda}{\partial \tau}\right\}_{M=0}
\]
(148)

\[
\text{sign} \{\wedge^{-1}(\tau)\} = \text{sign}\{F_{\omega}\} \cdot \text{sign}\{\omega\} \cdot \frac{U + \frac{\partial \omega}{\partial \tau} + V}{|F|^2}
\]
(149)

\[
\frac{\partial \omega}{\partial \tau} = \omega, \quad F, \quad \tau = 0 \Rightarrow \frac{\partial \omega}{\partial \tau} = 0 \text{ then we get}
\]

\[
\text{sign} \{\wedge^{-1}(\tau)\} = \text{sign}\{2 \cdot \omega^2 + 2 \cdot \omega^2 + \frac{1}{(C_1 \cdot R_1)}\} \cdot \text{sign}\{\omega\}
\]
(150)

Result: \(\wedge^{-1}(\tau) > 0\) for all \(\omega, R_1, C_1\) values. The sign of \(\wedge^{-1}(\tau)\) is independent of \(\tau\) values so in the first case \(\tau_1 = \tau; \quad \tau_2 = 0\) there is no stability switch for different values of \(\tau\).

We now inspect the third interesting case wherein \(\tau_1 = \tau; \quad \tau_2 = \tau\) when there are delays both in RFID Label voltage and voltage time derivative [4] [5].

\[
D(\lambda, \tau_1 = \tau, \tau_2 = \tau)
\]

\[
= \lambda^2 + \lambda \cdot \frac{1}{C_1 \cdot R_1} \cdot e^{-\lambda \cdot \tau} + \frac{1}{C_1 \cdot f_a} \cdot e^{\lambda \cdot \tau}
\]
(151)

Taylor expansion: \(e^{-\lambda \cdot \tau} \approx 1 - \lambda \cdot \tau + \frac{\lambda^2 \cdot \tau^2}{2}\) since we need \(n > m\) [BK] analysis we choose \(e^{-\lambda \cdot \tau} \approx 1 - \lambda \cdot \tau\) and then we get our RFID system second order characteristic equation:

\[
D(\lambda, \tau) = \lambda^2 + a(\tau) \cdot \lambda + b(\tau) \cdot \lambda \cdot e^{-\lambda \cdot \tau} + c(\tau) + d(\tau) - e^{-\lambda \cdot \tau}
\]
(152)

\[
a(\tau) = 0; \quad b(\tau) = \frac{1}{C_1 \cdot R_1} \cdot \left(\frac{1}{R_i} - \frac{\tau}{f_s}\right); \quad c(\tau) = 0; \quad d(\tau) = -\frac{1}{C_1 \cdot f_a}
\]

\[
F(\omega, \tau) = |P(\cdot, \omega, \tau)|^2 - |Q(\cdot, \omega, \tau)|^2
\]
(153)

\[
= (c - \omega^2)^2 + \omega^2 \cdot a^2 - (\omega^2 \cdot b^2 + d^2)
\]
(154)

\[
F(\omega, \tau) = \omega^4 - \omega^2 \cdot \left(\frac{1}{(C_1 \cdot R_i)^2} - \frac{1}{(C_1 \cdot f_a)^2}\right)
\]

Hence \(F(\omega, \tau) = 0\) implies

\[
\omega^4 - \omega^2 \cdot \frac{1}{(C_1 \cdot R_i)^2} - \frac{1}{(C_1 \cdot f_a)^2} = 0
\]
(155)

And its roots are given by

\[
\omega^4 = \frac{1}{2} \cdot \{(b^2 + 2 \cdot c - a^2) + \sqrt{\Delta}\}
\]
(156)

\[
\omega^2 = \frac{1}{2} \cdot \{(b^2 + 2 \cdot c - a^2) - \sqrt{\Delta}\}
\]
(157)

\[
\Delta = (b^2 + 2 \cdot c - a^2) - 4 \cdot (c^2 - d^2)
\]
(158)

Therefore the following holds:

\[
2 \cdot \omega^2 - (b^2 + 2 \cdot c - a^2) = \pm \sqrt{\Delta}
\]
(159)

\[
\sin \theta(\tau) = \frac{-P_a(i \cdot \omega, \tau) \cdot Q_a(i \cdot \omega, \tau) + P_g(i \cdot \omega, \tau) \cdot Q_g(i \cdot \omega, \tau)}{|Q(i \cdot \omega, \tau)|^2}
\]
(160)

\[
\cos \theta(\tau) = \frac{-P_a(i \cdot \omega, \tau) \cdot Q_a(i \cdot \omega, \tau) + P_g(i \cdot \omega, \tau) \cdot Q_g(i \cdot \omega, \tau)}{|Q(i \cdot \omega, \tau)|^2}
\]
(161)

\[
\sin \theta(\tau) = \frac{-(c - \omega^2) \cdot \omega \cdot b + \omega \cdot a \cdot d}{\omega^2 \cdot b^2 + d^2}
\]
(162)

\[
\cos \theta(\tau) = \frac{-(c - \omega^2) \cdot d + \omega^2 \cdot a \cdot b}{\omega^2 \cdot b^2 + d^2}
\]
(163)

For our stability switching analysis we choose typical RFID parameter values:

\[
C_i = 23 \cdot pF; \quad R_i = 100k\Omega; \quad L_{calc} = f_a = 2.65mH
\]
Then \(\frac{1}{C_i^2} = 1.89 \times 10^{21} \); \(\frac{1}{C_i^2} \cdot f_i^2 = 2.69 \times 10^{26} \)

We find those \(\omega, \tau \) values which fulfill \(F(\omega, \tau) = 0 \). We ignore negative, complex, and imaginary values of \(\omega \) for specific \(\tau \) values. The following table gives the list. \(\tau \in [0.001..10] \) and can be expressed using a straight line \((\omega = \tau \cdot 1.64 \times 10^{13}) \)

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>(\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>1.64 \times 10^{10}</td>
</tr>
<tr>
<td>0.01</td>
<td>1.64 \times 10^{11}</td>
</tr>
<tr>
<td>0.05</td>
<td>8.2 \times 10^{11}</td>
</tr>
<tr>
<td>0.1</td>
<td>1.64 \times 10^{12}</td>
</tr>
<tr>
<td>0.2</td>
<td>3.28 \times 10^{12}</td>
</tr>
<tr>
<td>1</td>
<td>1.64 \times 10^{13}</td>
</tr>
<tr>
<td>5</td>
<td>8.2 \times 10^{13}</td>
</tr>
<tr>
<td>10</td>
<td>1.64 \times 10^{14}</td>
</tr>
</tbody>
</table>

Figure 3. RFID TAG \(F(\omega, \tau) \) function for \(\tau = \tau^{+} \)

Remark: In the above figure \(\omega \) variable is \(10^{10} \) units.

Matlab: [w,t]=meshgrid(1:1:1640,0:0.01:10); f=w.^2*w,w,w,w,w.w.*1.89*10^21.*(10^6-5.0/(2.65*10^3).^3).^2.-2.69*10^26; meshc(f); \% \(\omega \rightarrow W, \tau \rightarrow t \)

We plot the stability switch diagram based on different delay values of our RFID TAG system.

\[
\Lambda^{-1}(\tau) = \left(\frac{\partial \text{Re} \lambda}{\partial \tau} \right)_{\lambda=\omega, \tau}
\]

\[
\text{Re} \left\{ \frac{-2 \cdot [U + \tau \cdot P |^2] + i \cdot F_{\omega}}{F_{\tau} + i \cdot 2 \cdot [V + \omega | P |^2]} \right\}
\]

\[
= \frac{2 \cdot [F_{\omega} \cdot (V + \omega \cdot P^2) - F_{\tau} \cdot (U + \tau \cdot P^2)]}{F_{\tau}^2 + 4 \cdot (V + \omega \cdot P^2)^2}
\]

The stability switch occur only on those delay values \((\tau) \) that fit the equation: \(\tau = \theta_{\tau}(\tau) \) and \(\theta_{\tau}(\tau) \) is the solution of

\[
\sin \theta(\tau) = \frac{\omega^3 \cdot \frac{1}{\text{Cl}} \cdot \left(\frac{1}{R_i} \cdot \frac{\tau}{f_s} \right)}{\omega^3 \cdot \frac{1}{\text{Cl}^2} \left(\frac{1}{R_i} - \frac{\tau}{f_s} \right)^2 + \frac{1}{(\text{Cl} \cdot f_s)^2}}
\]

\[
\cos \theta(\tau) = \frac{1}{\omega^2 \cdot \frac{1}{\text{Cl} \cdot f_s} + \frac{1}{(\text{Cl} \cdot f_s)^2}}
\]

When \(\omega = \omega_{\tau}(\tau) \) if only \(\omega_{\tau} \) is feasible. Additionally when all RFID TAG parameters are known, the stability switch due to various time delay values \(\tau \) is described in the following expression:

\[
\text{sign}(\Lambda^{-1}(\tau)) = \text{sign}(F_{\omega}(\omega(\tau), \tau)) \cdot \text{sign}(\tau \cdot \omega_{\tau}(\omega(\tau)) + \omega(\tau) + \frac{U(\omega(\tau)) - \omega_{\tau}(\omega(\tau)) \cdot V(\omega(\tau))}{|P(\omega(\tau))|^2})
\]
Remark: we know $F(\omega, \tau) = 0$ implies it roots $\omega_i(\tau)$ and finding those delay values τ for which ω_i is feasible. There are τ values for which ω_i is complex or imaginary number, leaving us unable to analyze stability [4] [5].

7. Conclusion

A RFID TAG environment is characterize by electromagnetic interferences which can influence RFID TAGs stability in time. There are two main RFID TAGs variables which are affected by electromagnetic interferences– voltage developed on the RFID Label and the voltage time derivative. Each RFID Label variable under electromagnetic interference is characterized by respective time delay. The two time delays are not the same but can be categorized to some subcases due to interference behaviors.

The first case is when there is RFID Label voltage time delay but no voltage derivative time delay. The second case is when there is no RFID Label voltage time delay but there is a voltage derivative time delay. The third case is when both RFID Label voltage time delay and voltage derivative time delay exist. For simplicity we consider the two delays in the third case to be the same (the difference exists but it is negligible in our analysis). In each case we derive the related characteristic equation. The characteristic equation is dependent on the RFID Label’s overall parameters and interference time delays. Following mathematical manipulation and [BK] theorems and definitions, we derived the expression which gives us a clear understanding of the RFID Label stability map. The stability map gives all possible options for stability segments where each segment belongs to different time delay values segments. RFID Label stability analysis can be influenced by TAG overall parameter values. We do not discuss this analysis in the current article.

Appendix A: Lemma 1.1

Assume that $\omega(\tau)$ is a positive and real root of $F(\omega, \tau) = 0$

Defined for $\tau \in I$, which is continuous and differentiable. Assume further that if $\lambda = i \omega, \ \omega \in \mathbb{R}$, then $P_n(i \omega, \tau) + Q_n(i \omega, \tau) \neq 0, \ \tau \in \mathbb{R}$ hold true. Then the functions $S_n(\tau), n \in \mathbb{N}_0$, are continuous and differentiable on I.

Appendix B : Theorem 1.2

Assume that $\omega(\tau)$ is a positive real root of $F(\omega, \tau) = 0$ defined for $\tau \in I$, $I \subseteq \mathbb{R}_{\omega}$, and at some $\tau^* \in I$, $S_n(\tau^*) = 0$ for some $n \in \mathbb{N}_0$, then a pair of simple conjugate pure imaginary roots $\lambda(\tau) = i \omega(\tau)$, $\lambda(\tau) = -i \omega(\tau)$ of $D(\lambda, \tau) = 0$ exist at $\tau = \tau^*$ which crosses the imaginary axis from left to right if $\delta(\tau^*) > 0$ and crosses the imaginary axis from right to left if $\delta(\tau^*) < 0$ where

$$\delta(\tau^*) = \text{sign}\left\{ \frac{d \text{Re} \lambda}{d \tau} \bigg|_{\lambda=i\omega(\tau^*)} \right\} = \text{sign}\left\{ \frac{d S_n(\tau)}{d \tau} \bigg|_{\tau=\tau^*} \right\}$$

(170)

The theorem becomes

$$\text{sign}\left\{ \frac{d \text{Re} \lambda}{d \tau} \bigg|_{\lambda=i\omega(\tau^*)} \right\} = \text{sign}\left\{ \pm \Delta^{1/2} \right\} \cdot \text{sign}\left\{ \frac{d S_n(\tau)}{d \tau} \bigg|_{\tau=\tau^*} \right\}$$

(171)

Appendix C : Theorem 1.3

The characteristic equation: $\tau_1 = \tau, \tau_2 = \tau$; $\tau_1 = 0, \tau_2 = \tau$

$D(\lambda, \tau) = \lambda^2 + a(\tau) \cdot \lambda + b(\tau) \cdot e^{-\delta \tau} + c(\tau) + d(\tau) \cdot e^{-\delta \tau}$

(172)

$D(\lambda, \tau_1, \tau_2) = \lambda^2 + \frac{1}{\text{Cl} \cdot \text{R} \cdot \text{C}} \cdot e^{-\delta \tau} + \frac{1}{\text{Cl} \cdot \text{F}_0} \cdot e^{-\delta \tau}$

(173)

has a pair of simple and conjugate pure imaginary roots $\lambda = \pm \omega(\tau^*)$, $\omega(\tau^*)$ real at $\tau^* \in \mathbb{R}$ if $S_n(\tau) = 0$ for some $n \in \mathbb{N}_0$. If $\omega(\tau^*) = \omega_k(\tau^*)$. This pair of simple conjugate pure imaginary roots crosses the imaginary axis from left to right if $\delta_+(\tau^*) > 0$ and crosses the imaginary axis from right to left if $\delta_-(\tau^*) < 0$ where

$$\delta_+(\tau^*) = \text{sign}\left\{ \frac{d \text{Re} \lambda}{d \tau} \bigg|_{\lambda=\omega_k(\tau^*)} \right\} = \text{sign}\left\{ \frac{d S_n(\tau)}{d \tau} \bigg|_{\tau=\tau^*} \right\}$$

(174)

If $\omega(\tau^*) = \omega_k(\tau^*)$, this pair of simple conjugate pure imaginary roots cross the imaginary axis from left to right if $\delta_-(\tau^*) > 0$ and crosses the imaginary axis from right to left if $\delta_+(\tau^*) < 0$ where

$$\delta_-(\tau^*) = \text{sign}\left\{ \frac{d \text{Re} \lambda}{d \tau} \bigg|_{\lambda=\omega_k(\tau^*)} \right\} = -\text{sign}\left\{ \frac{d S_n(\tau)}{d \tau} \bigg|_{\tau=\tau^*} \right\}$$

(175)
If \(\omega_\xi (\tau^*) = \omega_\xi (\tau^*) = \omega (\tau^*) \) then \(\Delta(\tau^*) = 0 \) and
\[
\text{sign}\left\{ \frac{d \text{Re} \lambda}{d \tau} \right\}_{\tau = \omega (\tau^*)} = 0 \), the same is true when
\[S_\xi (\tau^*) = 0 \]

The following result can be useful in identifying values of \(\tau \) where there have been stability switches.

Appendix D: Theorem 1.4

Assume that for all \(\tau \in I \), \(\omega(\tau) \) is defined as a solution of \(F(\omega, \tau) = 0 \) then

\[
\delta_\pm (\tau) = \text{sign}\{\pm \Delta^{1/2}(\tau)\} \cdot \text{sign} D_\pm (\tau)
\]

\[
D_\pm (\tau) = \omega_\xi \cdot \left[(\omega_\xi \cdot b^2 + d^2) + a \cdot (c - \omega_\xi) + b' \cdot d' - b' + c' \right]
+ \omega_\xi \cdot \omega_\xi \cdot \left[r \cdot (\omega_\xi \cdot b^2 + d^2) - b' \cdot d' + a \cdot (c - \omega_\xi) + 2 \cdot \omega_\xi \cdot a \right]
\]

\[
(176)
\]

\[
\frac{da(\tau)}{d\tau} = \frac{db(\tau)}{d\tau}; \quad \frac{dc(\tau)}{d\tau} = \frac{dd(\tau)}{d\tau}
\]

8. **References**