SPOT EDUCATION MODEL AND SELF-DETERMINATION THEORY: AN INTERVENTION IN SECONDARY SCHOOL CHILDREN

Ricardo Cuevas¹, Luis Miguel García-López¹, and Jaime Serra-Olivares²

¹University of Castilla-La Mancha, Spain
²Temuco Catholic University, Chile

Abstract:
Using self-determination theory as a guiding framework, this study analyzed the impact of the Sport Education Model in self-determination and motivation, psychological basic need thwarting, enjoyment-satisfaction, boredom, and intention to be physically active in Physical Education (PE) of secondary school students in Spain. Two groups were selected for the study: an experimental group (EG; n=43), which received 19 volleyball lessons following the Sport Education Model, and a control group (CG; n=43), which received 19 traditional Physical Education lessons. Pre- and post-intervention measures were taken in both groups. The results showed significant improvements in intrinsic motivation in EG. The results are discussed, and the suitability of the Sport Education Model to improve self-determined behaviors in Physical Education is emphasized.

Key words: motivation, basic psychological needs, adolescents, intention to be physically active, physical activity

Introduction
Motivation in physical education classes is essential to furthering learning outcomes and achieving course objectives. Several studies have confirmed a positive impact of the Sport Education Model (Siedentop, 1994) on motivation (Wallhead & Ntoumanis, 2004; Hastie, Martínez de Ojeda, & Calderón Luquín, 2011; Perlman, 2011) and positive development of students (Wallhead & O’Sullivan, 2005). Thus, this paper analyzes an intervention program based on the Sport Education model and its influence on motivation, well-being, and the intention to engage in sports among adolescent students.

Self-determination theory provides a useful framework for understanding motivational processes (Deci & Ryan, 1985; Ryan & Deci, 2002). The cornerstone of this theory relates to motivational regulation mechanisms that subjects use while performing an activity, such as the activities involved in a physical education class. In examining an individual’s autonomy over his/her own behavior, Ryan and Deci (2000) distinguish between intrinsic motivation (based on the pleasure and fun of participating in an activity), identified regulation (when the behavior is considered beneficial to the subject), introjected regulation (based on the feelings of guilt when not performing the behavior), external regulation (when the conduct is carried out for external rewards), and amotivation (lack of motivation). Some studies on physical education have associated the several self-determined types of motivation (intrinsic and identified) with positive outcomes, such as effort, interest, self-esteem, and vitality. By contrast, motives based on external and introjected regulation, as well as on amotivation, are associated with negative outcomes, such as unhappiness and boredom (see Ntoumanis & Standage, 2009).

Self-determination theory outlines three basic psychological needs (competence, autonomy, and relatedness) that must be satisfied to guarantee the functioning and psychological health of individuals (Deci & Ryan, 2000). Competence is related to a level of mastery that the individual feels while performing a task. The concept of autonomy refers to the perceived level of control that the subject has over his or her behavior. Finally, relatedness represents the feeling of acceptance and connection that the subject experiences with other people engaged in the activity. Satisfaction of these needs has been associated with several benefits, including increased self-determined motivation, con-
centration, persistence, positive affect, and well-being (Ntoumanis, 2005; Standage, Duda, & Ntoumanis, 2005). However, these needs may also be thwarted by a hostile environment. This tendency has recently led to the development of the concept of psychological needs thwarting (Bartholomew, Ntoumanis, Ryan, & Thøgersen-Ntoumani, 2011), which is defined as the negative state experienced by a subject when he or she believes that his or her psychological needs are being actively obstructed through the actions of others. The thwarting of needs thus involves a different construct from that which occurs when the needs are satisfied (Bartholomew, et al., 2011). Thus, some physical education students cannot feel competent when they do not master certain skills; however, other students may feel incompetent because their teacher does not provide opportunities for them to demonstrate their proficiencies. The first case refers to a low satisfaction of the need for competence, while the second case refers to an instance in which this need is thwarted.

The Sport Education Model is premised on offering students an authentic sports experience that has been adapted to the school context (Siedentop, Hastie, & van der Mars, 2011). The model thus draws from a number of specific elements from various sports (preseason phases, competition and final tournaments, stable teams, data recording, and festive events) and integrates them into the physical education class (Siedentop, et al., 2011). According to Vallerand’s hierarchical model of motivation (2007), support for basic psychological necessities encourages more self-determined levels of motivation. Hence, the features and performance standards of the Sport Education Model offer students a venue in which stated needs may be supported, which may in turn encourage students to have a more self-determined behavior (Sinel’nikov, Hastie, & Prusak, 2007). The model thus focuses on activities that support autonomy (Wallhead, Hagger, & Smith, 2010), in which students are given considerable independence in making decisions on class assignments. In addition, the necessary level of interaction required between students during these activities provides students with opportunities to improve relatedness and socialization skills (Carlson & Hastie, 1997). Previous studies have also shown that perceptions of competence tend to increase among students engaging in this model (MacPhail, Gorely, Kirk, & Kinchin, 2008; Spittle & Byrne, 2009). By contrast, the traditional model of games teaching is based on direct instruction (Metzler, 2011). In this model, decisions are exclusively dictated by the teacher; thus, the basic psychological needs of the individuals could be thwarted by the environment (Balaguer, et al., 2012).

In general terms, studies (see Hastie, et al., 2011; Wallhead & O’Sullivan, 2005) have found positive effects of the Sport Education Model on the personal and social development of students. On the other hand, the traditional model of games teaching is based on high levels of control of pupils’ behaviors, which could thwart their feelings of competence, autonomy, and relatedness (Bartholomew, Ntoumanis, & Thøgersen-Ntoumani, 2009). In this line, several studies have found that the traditional model is not associated with the support of basic psychological needs and self-determined motivation in the context of PE (Perlman, 2011; Wallhead & Ntoumanis, 2004). Positive impacts of the Sport Education Model with respect to the fun and enjoyment that the student body experiences have also been shown in several studies (Gutiérrez, García-López, Hastie, & Calderón-Luquín, 2013; Kinchin, Wardle, Roderick, & Sprosen, 2004; MacPhail, et al., 2008; Perlman, 2010; Wallhead & Ntoumanis, 2004). Several works have also indicated that the Sport Education Model may encourage students’ intentions to participate in extracurricular sports activities (Wallhead, et al., 2010, 2013). The theory of planned behavior (Ajzen, 1985) indicates that the intention to engage in physical activity best predicts performance of the actual stated behavior (Goudas, Biddle, & Underwood, 1995). As a consequence, the present study also analyzes the impact of the Sport Education Model on student intentions to become physically active.

As noted before, studies that have analyzed motivation related to Sport Education are extensive. However, to increase levels of involvement and student learning, it is necessary to continue expanding knowledge within this field of research (Hastie, et al., 2011). Thus, the present study presents a number of novel features not found in prior studies. First, this study employs a method of analysis that examines motivational regulation types (including the introjected type) separately. Furthermore, an assessment of basic psychological need thwarting is employed. Additionally, through a quasi-experimental study, the influence of the Sport Education Model on the intention to become physically active after the end of compulsory education is analyzed. This study thus aims to understand the impact of Sport Education programming on physical education students with respect to the different types of motivational regulation, thwarting of basic psychological needs, satisfaction-enjoyment, boredom, and the intention to be physically active. Four hypotheses are proposed: (1) students in the Sport Education group will, after the intervention, experience improvements in intrinsic motivation, identified regulation, and the self-determination index, combined with reductions in introjected regulation, extrinsic regulation, and amotivation;
(2) these students will experience less basic psychological need thwarting; (3) satisfaction-enjoyment levels will improve in the Sport Education students, and boredom levels will decrease; and (4) these students will experience an increased intention to be physically active. Also, it is assumed that the students completing traditional PE sessions would demonstrate the same levels of the variables analyzed during both the pre-test and post-test.

Method

Participants

The sample was composed of 86 physical education students (49 girls and 37 boys) between 15 and 17 years of age (M=15.65; SD=.78) attending their fourth year of secondary education at two educational centers in Spain. Four class education groups of students were intentionally selected: the experimental group consisted of two class education groups (n=43), and the control group consisted of the other two class education groups (n=43). Permission was obtained from the educational centers to conduct the study. All participants and their parents also approved the study by giving their informed consent.

Design and procedure

The study design was a quasi-experimental one, in which an experimental group, a control group, and their measurements were extracted before and after the intervention. The groups were randomly assigned to each treatment. However, randomized participant assignment was not conducted for the dependent variable (the Sport Education Model and traditional PE model) because the student class groups had already been formed. For this reason, a non-equivalent control group design was used (Campbell & Stanley, 1963), which assumes that the groups may not be similar due to prior class group determination.

The study involved three phases. First, the initial measurements were taken from the two groups. The experimental group then participated in a Sport Education program, while the control group was engaged in the traditional PE sessions. After the intervention program was completed, a post-test measurement was organized for the two groups. Questionnaires were completed in class over an approximate duration of 20 minutes. An external researcher explained the questionnaire instructions to the students and answered questions.

Intervention program

The intervention program for the experimental group involved a teaching unit on volleyball that consisted of 19 55-minute sessions (two per week in the regular PE schedule) that were structured based on the Sport Education Model (Siedentop, et al., 2011). In order to offer an authentic sport experience to the students, this model introduces several elements of the sport in the units of PE learning (preseason, regular competition, and final championship; regular teams; final party; etc.). Likewise, Sport Education Model uses different roles of the sports teams and games (referee, coach, player, etc.), which allows the students to live sport experience from different viewpoints. The first seven sessions were used for presenting the model, roles, and strategies for team creation, technical-tactical learning, and competition preparation. The following eight sessions involved regular competitions, with three between-competition sessions reserved for training. The final phase and a festive event were held over the last four sessions. The length of the program was considered suitable following the previous studies (García-López & Gutiérrez, 2013; Hastie & Sinelnikov, 2006). An external researcher ensured the correct application of the model in the experimental group following an observational record sheet (Ko, Wallhead, & Ward, 2006) used in prior research (García-López & Gutiérrez, 2013; Sinelnikov, 2009). The PE teacher who facilitated the intervention program had more than 10 years of experience in the discipline, was formally trained to conduct the program, and met all the indicators listed on the stated record sheet.

Meanwhile, the control group participated in the 19-session teaching unit on volleyball that followed the conventions of the traditional model, which included technical-tactical features that made use of teaching styles based on reproduction (Metzler, 2011). Additionally, the PE teacher who facilitated this control-group program was trained to implement the treatment, and an external researcher analyzed the correct implementation following the Direct Instruction teacher benchmarks (Metzler, 2011). Table 1 shows the principal contents and activities in the lessons of both programs.

Measures

Motivational regulation. The Questionnaire for Evaluating Motivation in Physical Education was used (CMEF; Sánchez-Oliva, Leo, Amado, González-Ponce, & García-Calvo, 2012). Motivational regulation was evaluated for the students in PE classes based on the self-determination theory (Deci & Ryan, 1985; Ryan & Deci, 2002). The items were preceded by “I participate in physical education classes...” and grouped into five dimensions with four items each: intrinsic motivation (e.g. “because this subject is enjoyable and interesting”), identified regulation (e.g. “because I value the benefits that this subject offers me in terms of my development as a person”), introjected regulation (e.g. “because it is what I should do to feel good”), external regulation (e.g. “because I want my
peers to value what I do”), and amotivation (e.g. “I don’t know. I have the impression that it is useless to continue attending this class”). The responses were structured using a five-point Likert scale ranging from one (strongly disagree) to five (strongly agree). Following (Vallerand, 2001), the scores of each subscale determined the level of global self-determination motivation of the students through the use of the self-determination index (SDI = (2 x intrinsic motivation) + identified regulation – (introjected regulation + external regulation) / 2 – 2 x amotivation). Sánchez-Oliva et al. (2012) reported adequate reliability and validity of this instrument.

Psychological need thwarting. A Spanish version of the Psychological Need Thwarting Scale (PNTS; Bartholomew, et al., 2011) was previously developed (Cuevas, Sánchez-Oliva, Bartholomew, Ntoumanis, & Garcia-Calvo, 2015). The scale is composed of the opening header “In my physical education classes…” followed by 12 items (four for each subscale). The subscales evaluated levels of thwarting of autonomy (e.g. “I feel pressured to accept predetermined modes of learning”), competence (e.g. “certain situations make me feel incompetent”), and relatedness (e.g. “I feel I am rejected by those around me”). Responses were given on a five-point Likert scale ranging from one (strongly disagree) to five (strongly agree). Bartholomew, Ntoumanis, Cuevas, and Lonsdale (2014) confirmed adequate levels of reliability and validity for this scale.

Satisfaction-enjoyment and boredom. The Spanish adaptation to the PE (Baena-Extremera, Granero-Gallegos, Bracho-Amador, & Pérez-Quero, 2012) of the Sport Satisfaction Instrument (SSI; Balaguer, Atienza, Castillo, Moreno, & Duda, 1997; Duda & Nicholls, 1992) was used. The framework was composed of two dimensions: satisfaction-enjoyment, which had five items (e.g. “I usually have fun in physical education classes”), and boredom, which had three items (e.g. “in physical education classes, I usually get bored”). Responses were given on a five-point Likert scale ranging from one (strongly disagree) to five (strongly agree). Baena-Extremera et al. (2012) reported acceptable levels of validity and reliability for this scale.

Intention to be physically active. The Spanish version of the Intention to be Physically Active Scale (IPAS; Hein, Müür, & Koka, 2004) was used (Moreno, Moreno, & Cervelló, 2007). The scale consisted of five items, preceded by the heading “Regarding your intention to practice sports…”. It assessed the students’ intention to be physically active during their leisure time and after they would have finished high school (e.g. “after completing high school, I want to join a training sports club”). Responses were given on a five-point Likert scale ranging from one (strongly disagree) to five (strongly agree). Moreno et al. (2007) reported adequate rates of validity and reliability for this instrument.
Analysis of data

Once missing data were excluded, calculations were performed using the IBM-SPSS 19.0 software. Scale reliability was obtained for the pre- and post-test using Cronbach’s alpha, and comparisons of means, and standard deviation values were calculated. Following the previous studies with a similar design (Papaoannou, Evaggelinou, Barkoukis, & Block, 2013; Perlman, 2010; Wallhead & Ntoumanis, 2004), to analyze the significance of changes found after the program was implemented, repeated measures analysis of variance (ANOVA) calculations were performed for every dependent variable. Time was assigned as an intra-subjects variable (pre- and post-test), and the membership to a group (experimental and control) was used as an inter-subjects variable. Bonferroni’s correction, which, for this study, sets a significance level at $p \leq .0125$ for the comparison of the four measurements of analysis, was used to interpret the analysis results. The effect size was also determined for each variable using the partial eta-squared. Levine and Hullett (2002) emphasized the utility of calculating and reporting these data when comparing groups, especially when groups consist of a small number of individuals.

Results

Table 2 shows Cronbach’s alpha as well as mean and standard deviation values demonstrating acceptable reliability for all the variables measured (Hair, Anderson, Tatham, & Black, 1998). The differences between the means of all the variables for both groups were significant in the pre-test, which confirmed the nonequivalence of the groups.

Regarding the interaction effects (time x group) of the 2x2 ANOVA (Table 3), the significant changes were found for intrinsic motivation, revealing that the Sport Education program caused substantial improvements in this variable ($p=.011$) for the participants in EG. Improvements in intrinsic motivation were also confirmed with a consid-

Table 2. Means, standard deviations and Cronbach’s alphas of the pre- and post-test measures in the experimental and control group

<table>
<thead>
<tr>
<th></th>
<th>Pre-test</th>
<th></th>
<th>Post-test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Control</td>
<td>Experimental</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>M, SD</td>
<td>α</td>
<td>M, SD</td>
</tr>
<tr>
<td>Intrinsic motivation</td>
<td>.85</td>
<td>4.15, .80</td>
<td>.81</td>
<td>4.45, .49</td>
</tr>
<tr>
<td>Identified regulation</td>
<td>.79</td>
<td>3.63, .82</td>
<td>.81</td>
<td>4.10, .71</td>
</tr>
<tr>
<td>Introjected regulation</td>
<td>.75</td>
<td>3.07, .93</td>
<td>.74</td>
<td>3.22, 1.10</td>
</tr>
<tr>
<td>External regulation</td>
<td>.74</td>
<td>3.27, .86</td>
<td>.80</td>
<td>3.42, 1.07</td>
</tr>
<tr>
<td>Amotivation</td>
<td>.72</td>
<td>1.44, .69</td>
<td>.86</td>
<td>1.50, .93</td>
</tr>
<tr>
<td>Self-determination Index</td>
<td>.74</td>
<td>5.88, 3.38</td>
<td>.81</td>
<td>6.69, 2.97</td>
</tr>
<tr>
<td>Thwarting competence</td>
<td>.75</td>
<td>1.92, .93</td>
<td>.76</td>
<td>1.81, .85</td>
</tr>
<tr>
<td>Thwarting autonomy</td>
<td>.73</td>
<td>2.11, .89</td>
<td>.73</td>
<td>2.07, .96</td>
</tr>
<tr>
<td>Thwarting relatedness</td>
<td>.77</td>
<td>1.70, .83</td>
<td>.76</td>
<td>1.72, .87</td>
</tr>
<tr>
<td>Satisfaction-enjoy</td>
<td>.84</td>
<td>4.26, .81</td>
<td>.86</td>
<td>4.57, .47</td>
</tr>
<tr>
<td>Boredom</td>
<td>.70</td>
<td>1.98, .74</td>
<td>.78</td>
<td>1.83, 1.02</td>
</tr>
<tr>
<td>Intention</td>
<td>.82</td>
<td>4.09, .96</td>
<td>.77</td>
<td>4.23, .88</td>
</tr>
</tbody>
</table>

Table 3. Time effects and interaction of time and group effects in 2x2 ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th></th>
<th>η^2</th>
<th>Time * group</th>
<th></th>
<th>η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic motivation</td>
<td>.063</td>
<td>.803</td>
<td>.001</td>
<td>6.850</td>
<td>.011</td>
<td>.075</td>
</tr>
<tr>
<td>Identified regulation</td>
<td>1.48</td>
<td>.147</td>
<td>.025</td>
<td>5.020</td>
<td>.028</td>
<td>.056</td>
</tr>
<tr>
<td>Introjected regulation</td>
<td>1.774</td>
<td>.190</td>
<td>.001</td>
<td>.76</td>
<td>.784</td>
<td>.001</td>
</tr>
<tr>
<td>External regulation</td>
<td>2.481</td>
<td>.119</td>
<td>.029</td>
<td>.261</td>
<td>.611</td>
<td>.003</td>
</tr>
<tr>
<td>Amotivation</td>
<td>.724</td>
<td>.397</td>
<td>.009</td>
<td>.207</td>
<td>.650</td>
<td>.002</td>
</tr>
<tr>
<td>Self-determination Index</td>
<td>.366</td>
<td>.547</td>
<td>.004</td>
<td>4.421</td>
<td>.038</td>
<td>.050</td>
</tr>
<tr>
<td>Thwarting competence</td>
<td>.445</td>
<td>.418</td>
<td>.008</td>
<td>1.832</td>
<td>.102</td>
<td>.031</td>
</tr>
<tr>
<td>Thwarting autonomy</td>
<td>.001</td>
<td>.981</td>
<td>.000</td>
<td>.92</td>
<td>.763</td>
<td>.001</td>
</tr>
<tr>
<td>Thwarting relatedness</td>
<td>4.084</td>
<td>.046</td>
<td>.046</td>
<td>3.236</td>
<td>.076</td>
<td>.037</td>
</tr>
<tr>
<td>Satisfaction-enjoy</td>
<td>.054</td>
<td>.816</td>
<td>.001</td>
<td>4.410</td>
<td>.039</td>
<td>.050</td>
</tr>
<tr>
<td>Boredom</td>
<td>.763</td>
<td>.385</td>
<td>.009</td>
<td>1.521</td>
<td>.221</td>
<td>.018</td>
</tr>
<tr>
<td>Intention</td>
<td>.29</td>
<td>.886</td>
<td>.061</td>
<td>1.258</td>
<td>.265</td>
<td>.015</td>
</tr>
</tbody>
</table>
improvements in perceived competence among the students participating in this model (Gutiérrez, et al., 2013; MacPhail, et al., 2008; Spittle & Byrne, 2009). This phenomenon may be attributed to students’ tendency to improve their tactical domain (Browne, Carlson, & Hastie, 2004; Clarke & Quill, 2003), their performance (Hastie, 1998; Hastie & Trost, 2002; Hastie, Sinelnikov, & Guarino, 2009; Pritchard, Hawkins, Wiegand, & Metzler, 2008), and their perceived learning levels under the Sport Education model (Browne, et al., 2004).

Because no significant changes in satisfaction-enjoyment and boredom levels were identified, the third hypothesis was not confirmed. However, it is interesting to note that satisfaction-enjoyment, a construct that is closely linked to intrinsic motivation, improved in the experimental group with a moderate effect size. These results complement those of previous works (Gutiérrez, et al., 2013; Hastie & Sinelnikov, 2006; Kinchin, et al., 2004; MacPhail, et al., 2008; Perlman, 2010) that noted higher levels of enjoyment among students in Sport Education classes. Hence, it should be noted that this model favors a more active participation and shorter periods of waiting between class assignments (Vidoni & Ward, 2009), which may also increase a sense of fun within the student body.

With respect to students’ intentions to become physically active, we found a slight and non-significant increase with a modest effect size after the intervention. Although intrinsic motivation (a variable that improved significantly in this study) is one of the main predictors of the intention to become physically active (Cuevas, Contreras, Fernández, & González-Martí, 2014; Hein, et al., 2004), the intention to practice sports is not substantially affected by the model in this study. These data diverge from those of other studies (Wallhead, Garn, & Vidoni, 2013; Wallhead, et al., 2010), highlighting the potential of Sport Education for increasing not only motivation levels but also participation in sports activities outside of school settings.

From the data generated in this study, a number of theoretical and practical implications can be identified. From a theoretical perspective, the utility of separately analyzing different forms of motivational regulation in generating more precise information on student behaviors in class must be emphasized. Additionally, although significant changes were not found, it is useful to experimentally examine behaviors arising from the thwarting of basic needs, given that this is a recently developed psychological construct. On a practical level, the results suggest the suitability of the Sport Education Model in PE classes because of its positive impact on intrinsic motivation. Significant improvements in intrinsic motivation spur an interest in sports activities even after the initial goals have been achieved (Moreno & Martinez, 2006). Thus, higher levels of self-
determined motivation facilitate higher degrees of sports practice and learning in students.

Despite effectively elucidating these findings, the present study exhibits a number of limitations. The sample size, method of sample selection, and intervention duration warrant caution regarding the generalization of conclusions. Consequently, it would be beneficial to plan quasi-experimental studies over longer periods of time including more participants to obtain more conclusive results. A study of longer duration may confirm or contradict fluctuating trends exhibited by certain variables in this study, such as improvements in satisfaction-enjoyment and the intention to be physically active, as well as reductions in the thwarting of the need of competence. Also, in the present study we used a non-equivalent control group design, which can make difficult to analyze the effects of the treatment. Hence, it will be desirable to use equivalent control group in future studies in order to clarify the analysis. Furthermore, the results generate new questions to be resolved in the field of Sport Education, such as the influence of the model on basic psychological needs. As we have demonstrated, this model is based on an approach that is centered on principles of autonomy (Wallhead, et al., 2010) and socialization (Carlson & Hastie, 1997). However, the perceptions of the thwarting of autonomy and relatedness did not change through the application of the Sport Education program. This finding may be attributable to the fact that the personal autonomy of certain students may be restricted by the decision-making process applied in each team. Similarly, through the application of group work, the model provides considerable social interaction opportunities to team members; however, these opportunities may be reduced considerably by other classmates who are members of the opposing teams. Improved understanding of these issues will certainly result in more effective educational applications of the Sport Education Model.

References

Submitted: March 11, 2015
Accepted: October 20, 2015

Correspondence to:
Ricardo Cuevas, Ph.D.
Faculty of Education
Ronda de la Mata, 3. C.P. 13071
University of Castilla-La Mancha, Ciudad Real, Spain
E-mail: ricardo.cuevas@uclm.es