INTECH

open science | open minds

ARTICLE

International Journal of Engineering Business Management

Lot Sizing Heuristics Performance

Regular Paper

Luca Baciarello', Marco D'Avino?, Riccardo Onori® and Massimiliano M. Schiraldi*”

1 FIAT Group Purchasing S.r.I, SQE Supplier Quality, Torino, Italy

2 "Tor Vergata” University of Rome, Department of Enterprise Engineering, Roma, Italy

3 Business Process Management & Improvement S.r.l., Roma, Italy
* Corresponding author E-mail: schiraldi@uniroma2.it

Received 22 November 2012; Accepted 30 January 2013

DOI: 10.5772/56004

© 2013 Baciarello et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Each productive system manager knows that
finding the optimal trade-off between reducing inventory
and decreasing the frequency of production/
replenishment orders a great cut-back in
operations costs. Several authors have focused their
contributions, trying to demonstrate that among the
various dynamic lot sizing rules there are big differences
in terms of performance, and that these differences are
not negligible. In this work, eight of the best known lot
sizing algorithms have been described with a unique
modelling approach and have then been exhaustively
tested on several different scenarios, benchmarking
versus Wagner and Whitin’s optimal solution. As distinct
from the contributions in the literature, the operational

allows

behaviour has been evaluated in order to determine
which one is more suitable to the characteristics of each
scenario.

Keywords Lot Sizing, Heuristics Performances,
Unconstrained Single Item Lot Sizing Problem

1. Introduction

The lot sizing problem represents a traditional issue in
operations management and operations research since
1913, when Harris [1] first published the economic order
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quantity model in his famous article “how many parts to
make at once.” Moreover, those software houses which
develop enterprise resource planning (ERP) and materials
requirement planning (MPR) applications continuously
confirm their appreciation for every lot sizing rule, which
is able to approach those critical problems providing
fairly good sub—optimal results in a few seconds. Indeed,
lot sizing heuristics are embedded in MRP software [2,3];
thus, their efficiency and effectiveness reflects on the
company’s flexibility and key performance indicators.
The lot size problem was modelled in various ways and
several solutions were proposed. The incapacitated
single-item lot size problem (USILP) represents the
starting point for each research investigation on lot sizing
problems: indeed, the “single item” or “incapacitated”
simplifications do not always prevent the model from
being applied in real cases to solve industrial problems.
Its most general model - the USILP - takes as an input a
vector D[d:...dr] of T values representing the production
requirements in each period f :1...T and provides a
solution in a similar vector L[li...Ir] in which, for each
period, the lot size to be ordered is determined taking
into account only the inventory carrying cost (1) and the
order launch cost (S). This problem was solved to the
optimum in 1958 by Wagner and Whitin [4] and several
improvements [5, 6,7, 8, 9, 10] have enabled the reduction
of its complexity to O(TlogT).
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Historically, research has seen an effort in trying to
modify the USILP in order to contemplate all those
specific issues which could have brought back the
scenario model to the real industrial problem. The Harris
model was first modified by Rogers [11] and then by
Hanssmann [12] in order to insert limited capacity [13, 14,
15] and multiple items, thus introducing the so-called
economic lot scheduling problem and bringing it to the NP-
hard level [16, 17, 18, 19]. In 1969, Zangwill [20]
introduced backlogging into the USILP; afterwards, a new
formulation was given by Pochet and Wolsey in 1988 [21].
Zangwill even treated the case of multiple facilities,
introducing the use of Wik “transfer variables” which
represented the quantities that must be transferred from
plane j to plane k at period t. A similar approach was
used in 2000 by Sambasivam and Schmidt [22]. Perishable
goods complications were introduced in the general
problem in 1963 by Ghare and Shrader [23], and
afterwards analysed in the case of continuous-time [24,
25, 26, 27, 28, 29]. Concerning the latter category, in 2000
Hsu [30] proposed a dynamic programming algorithm
which found the optimal solution in O(T*). Other
extensions of the lot-sizing problem include the analysis
of reworking issues — a first complete analysis can be
found in Simpson [31] and later in Richter and
Sombrutzki [32] — or the case of bounded production [33].
In order to include priorities among lots, Eppen and
Martin [34] introduced the distinction between big time
bucket and small time bucket models, which are brought
back respectively to the classes of discreet lot sizing
problems (DLPs) and discreet lot scheduling problems
(DLSPs). More recent studies concern the introduction of
the concept of time windows: specifically, Lee et al. [35]
recall that a real industrial supply agreement may
provide that demand can be satisfied in a certain period
of time instead of a at due date; thus, the supplier should
rely on grace periods. They analyse this aspect either in the
case in which backlogging is allowed or where it is not,
and propose two algorithms: O(T%) and O(T?). On the
other hand, for Dauzere-Peres et al. [36] the time window
has another meaning, indicating indeed the period of
time in which the lot may be processed. They approach
this problem with a O(T*) pseudo-polynomial algorithm.
As can be sees, lots of contributions are present in the
literature on all the possible variants of the lot sizing
problem. devoted
publications to the classification of general lot sizing
problems [37,38]. However, according to Haddock and
Hubicky [39], the most commonly used lot sizing
technique in real industrial contexts is the simple lot-for-
lot rule, followed by fixed order quantity and fixed period
quantity; this, despite the fact that, since the 1960s,
research has concentrated on finding better performing
techniques. In our opinion, this is due to the fact that the
results from complete and fair comparisons have not been
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adequately disseminated.
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2. USILP heuristics performances

Lot sizing heuristics analysis still represents a major field
of research in operations research and management.
Recently, several authors have focused on classifying
different solution approaches for various classes of lot
sizing problems (LP): dynamic capacitated LP [40],
stochastic LP [41], rolling horizon LP [42] and online LP
[43]. Regarding the unconstrained LP, some authors
provided interesting insights on specific
techniques: genetic algorithms [44], evolutionary
algorithms [45] and neighbourhood searches [46].

solution

As far as USILP algorithms' performance is concerned,
various authors cite the work of Nydick and Weiss [47],
in which it is shown how the traditional techniques
economic order quantity (EOQ) and lot-for-lot (L4L) may
perform poorly while other algorithms — part period
balancing (PPB), silver meal (SM) and Groff’s method (GM) —
achieve much better results. Jeunet and Jonard [48]
measured the performance of some algorithms in
uncertain environments - i.e., demand variability and a
certain grade of flexibility of the production system - a
modified heuristic which copes with this matter is shown
even in Kropp et al. [49]. In this sense, they found that
certain algorithms seem to be more suitable for stable
environments, while others for unstable environments;
silver meal (SM) and the part period simplified (PPS)
algorithms represent the best trade-off between cost-
effectiveness and robustness. One of the most complete
analysis is that of Simpsons [50]: he analyses the
following nine heuristics: least unit cost (LUC), least total
cost (LTC), silver meal (SM), part period balancing (PPB),
Groff’'s method (GM), McLaren’s order moment (MOM),
economic order interval (EOI), maximum part period
gain algorithm (MPG), considering even Wagner and
Whitin’s (WW). The reason for including WW in a
benchmark test among other heuristics resides in the fact
that Simpson tested these algorithms on a rolling refresh
scenario — which is the standard way of managing
production planning in the great part of manufacturing
industries — into which the WW algorithm is not optimal
anymore; actually, rolling refresh may even be
considered as an extension of the case of USILP [38].
Simpsons’ test is performed through simulation and
analysing the algorithms' behaviour on a planning
horizon which varies from 4 to 20 periods. The demand
distribution variability (Gaussian distribution) is set to
three different levels. The inventory holding cost is
constant while the order launch cost is a parameter of the
simulation. In his article, Simpsons shows that the MPG
algorithm performs better than the others, as well as WW
on a rolling refresh scenario, while LUC achieves the
worst results. However, the classification resulting from
Simpsons’ analysis does not seem to be so useful in
depicting application scenarios for each algorithm;
moreover, simulating algorithms' behaviour on a rolling
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refresh scenario implies assuming certain hypotheses
during the system's frozen period — moreover, such results
may significantly change depending upon whether the
frozen period is order-based or period-based [51] and
involves safety stock usage [52].

For this reason, in this work, the most known USILP
algorithms have been exhaustively tested across several
different scenarios; the operational behaviour has been
evaluated, while the pure mathematical point of view —
which is what industry still refuses to acknowledge — has
momentarily been set aside.

The algorithms that have been tested are: least unit cost
(LUC), silver meal (SM), Groff's method (GM), Freeland
and Colley (FC), part period simplified (PPS), part period
balancing (PPB), McLauren’s order moment (MOM),
maximum part period gain (MPG); as in Simpsons” work,
the Wagner Whithn algorithm (WW) has been used as a
benchmark, provided that in this specific case (the fixed
planning horizon) WW returns the optimal solution.

The algorithms target is to find the lot sizing solution,
which corresponds to the minimum cost — inventory
holding cost plus order launch cost — in different scenarios
with uncertain demand on a fixed planning horizon. The
performance of the algorithms, indeed, is measured with
two parameters that are recorded in each run:

Optimality Distance (OD): this value represents the
cost-delta between the solution given by the
algorithm and the minimum cost of the optimal
solution, obtained from WW.

Optimality Percentage (OP): this value represents the
percentage of the optimal solution found by the
algorithm - i.e., the number of times out of 2000 -
that the tested algorithm reached the performance of
the WW algorithm.

The inventory holding cost and order launch cost have
been kept fixed throughout the simulation, so that the
economic part period (EPP) was constant, thus obtaining
a fair comparison among the performances of each
algorithm in all the different scenarios.

3. A review of the main USILP heuristics

In order to compare the algorithms, they need to be
brought back to a common formulation framework. Let R
be a vector [Ri, Rz,... R:] where R« is the number of
periods of which the requirements are grouped in the xth-
order launch. Clearly, from R, the lot size vector L[/1...Ir]
can be easily derived.

In almost all the following heuristics, R can be found

through a simple procedure that can be formalized in
pseudo C++ code as follows:
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Begin
n=T, ’Tis thelength of the planning period’
i=1; ‘i is the last period’
j =1,  ‘jis the first period’
x =1;  ‘xis the order number’
R = {0}, ‘number of periods grouped in an order
launch’
While j<n
{
if (condition) then j = j+1;
else
{
Re=j+1-i;
j=i+1
i=j;
x=x+1;
}
}
End

This algorithm follows a forward approach evaluating -
period by period - the condition in order to decide
whether to launch the order or not. Besides the condition,
the complexity of this approach is O(T). The differences
among the first 7 heuristics out of the 8 presented here
are, then, only in terms of the condition.

1. Least Unit Cost [53]: through this simple rule, the
requirements in the various periods are aggregated in a
single order launch unless the unit cost for period k + 1 is
greater than that of period k. Recalling that:

diis the requirement in period k ;
Sis the order launch cost;
his the inventory holding cost per period,

the order launched in period 7 will group the
requirements of all the periods from i to j until:

S+hY)" (k-i)d, S+hY) (k-i)d,
, y .

j+1 j
k:idk k:idk

that is, given i, find the greater value of j subject to the
condition:

j+1

F=3(j-k+1)d, <

k=i

= EPP 1)

= lw»n

where EPP is the economic part period, defined as S /h.

2. Silver-Meal Algorithm (also called Minimum Cost per
Period) [54]: the criterion is similar to that used in the least
unit cost heuristic but, instead of considering the cost per
unit, the cost per period is evaluated. Thus, the order
launched in period i will group the requirements of all
the periods from i to j until:
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stf}i(k—i)dk S+hZL_i(k—i)dk
, N _
j+1 j

that is, given i, find the greater value of j subject to the
condition:

L, o S
F= Z(l—k)dkﬂ(]—lu)dj+l <t ()
=

4. Part-period Simplified (often referred as Least Total Cost)
[65]: PPM simply operates with the part—period criteria:
recalling that, for each order, its part-period is defined as
the sum of the amounts stored multiplied for their
storage periods; for each alternative lot-sizing, it chooses
the solution in which the part-period is much nearer to
but not bigger than the economic part period. Thus, the
condition becomes:

F- Zi(:i(k—i)dksg 3)

5. Part-period Balancing [56]: this technique is very similar
to the previous one except for the fact that j is chosen so
that the part-period is the nearest to the EPP; thus, the
condition is:
i . j—i+1
F=3%" (k-i)d, LUy )
3. Groff's Method [57]: with this heuristic, k periods are

grouped in the order launch from period i = j +1-k to
period j, and the condition is:

_ G-1)(j-i+1)
2

S
F d, SE ®)
Despite the apparently nonlinear formulation of the
constraint, the GM heuristic is based on a part-period
comparison criteria as well. It has been shown in (3) that
the computation of the part-period in period i up to
period j results as follows:

dijy +2d;, +3d; 5+ +(j-i=1)d; +(j-i)d,

GM assumes the hypothesis of constant demand
(i.e., dr = dj, Vke[l...n ]) with the value of the last period
requirement. Thus, the series becomes:

di'ZLi(k—i):
:dj'Zi:o(n):dj %2—14'1)

6. Freeland and Colley [58]: in this heuristic, only the
demand in the analysed period, multiplied by the
number of periods of storage, is compared to the EPP.
The condition becomes:
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F= (j-i+1)d;<> (6)

7. McLaren’s Order Moment [59]: this heuristics tries to
combine the advantages of economic order quantity with
the part-period criteria. The number of grouped periods k
is determined with two checks: the part-period must not
exceed the order moment target value (OMT), but the
Freeland and Colley rule is applied anyway to the last
analysed period. In other words, at first k is found
searching the greatest value of j so that the condition is:

Fi=3) (k-i)d, <OMT @)

Subsequently, a second condition is checked:

.. S
Pz—(]—l—l)djsE ®)
so that if F2 > EPP, then the number of grouped periods
will be k-1 instead of k. The order moment target is
defined as follows:

OMT:ﬂ[ZtT;H(TBo—T*)T*) ©)
where:
)7 is the average value of the demand, in all periods;
TBO is the Time Between Orders, equal to EOQ /u;

T"  isequal to TBO truncated in two decimals.

8. The Maximum Part-period Gain [60]: as distinct from the
previous heuristics, MPG does not follow a forward
procedure. Briefly, in step 0, all of the part—periods PPx in
each period k are set equal to the requirements dx, thus
starting from a lot-for-lot condition. Then, the algorithm
searches for the smallest PP on the entire planning
horizon; the requirement d is satisfied with storage from
the previous k-1 period. Thus, the part-periods valued
are updated and period k is deleted. The algorithm
iterates until all the part—periods in each period are
greater than EPP. Note the fact that MPG does not suffer
the disadvantages of the algorithms based on forward
procedures and so renders as unfair the performance
comparison. This has been taken in into account in the
rest of the analysis.

4. Performances analysis results

For each algorithm, 152 different scenarios were tested.
The stochastic variable which describes the demand
follows a normal distribution; thus, each scenario is
characterized by an average demand and a different
demand standard deviation. Each scenario was tested
2,000 times with randomly generated samples. The
average demand value (mean, x ) varies from 2,000 < u <
40,000 units per period with an interval of 250 units,
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while the demand standard deviation value (0 ) varies
from 1,000 < ¢ < 7000 with an interval of 500 units. The
length of the planning horizon is set to T = 12 periods.
EPP is set equal to 20,000 units.

The following graphs show the OD (optimality distance)
and OP (optimality percentage) of each heuristic in
accordance with the average value and to the standard
deviation in order to determine the performances of the
algorithms in various different scenarios. Increasing the
standard deviation, the colour of the lines varies from
black (lower o) to white (higher o). In the general case,
we would reasonably expect poorer performances (higher
OD and lower OP) in more uncertain scenarios (higher o).

4.1 Least Unit Cost

The performance graphs of LUC clearly show great
sensitivity to the standard deviation: when the average
demand is lower than EPP, the OP in higher ¢ scenarios
falls below 10% (white lines), while in lower ¢ scenarios it
can reach 100% (black lines). On top of this, LUC graphs
show poor performance when the average demand gets
nearer to the EPP. This is evident in the N-shaped OP
pattern represented in Figure 2.

B
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Figure 1. Optimality distance for the LUC heuristic
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Figure 2. Optimality percentage for the LUC heuristic

This far from optimal behaviour of LUC has already been
put forward as evidence in previous works [50 ,61] and it
is mainly due to the fact that LUC does not use the part-
period ratio to determine the lot size but, as can easily be
shown in the following example. Let us take (i = 4; j = 7);
in accordance with (1), the LUC algorithm compares as:

$ 1-k)d 5
= ivt1— <=
F Z(]+ ) kfh

k=i

therefore:
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F= 4d4+3d5+2d6+d7£%

Meanwhile, a more appropriate comparison should have
been made among the EPP and the part-period, resulting
from the chosen solution - i.e., in accordance with the
DeMatteis criteria (3):

i . S
F=3" (k-i)d, < N
therefore:

F= d5+2d6+3d7s%

The differences between using (1) or (3) clearly increases
with the TBO and this explains why LUC achieves higher
performances when TBO values are low (when p=10,000, the
average TBO is 2; when p=15,000 the average TBO is 1,65).

4.2 Silver Meal

The SM algorithm is based on a criteria that is almost
identical to LUC. Indeed, and similar to the LUC graph, it
shows the “N-pattern” of OP in Figure 4, with poor
performances when the average demand corresponds to
EPP. However, a significant improvement comes from the
introduction of the cost-per-period ratio: the differences in
OD between higher and lower o scenarios in Figure 3 are
much smaller with respect to the LUC case shown in Figure
1. As far as OP is concerned, Figure 4 shows that the SM
algorithm reached approximately 50% of optimal solutions
when the average demand equals EPP, guaranteeing at least
approximately 25% of optimal solutions, even in those
scenarios with higher standard deviations.

s03c oaco 1503¢ 20009 25000 20000 25000

Figure 3. Optimality distance for the SM heuristic

5000 10000 15000 20000 25300 30000 35000 40000

Figure 4. Optimality percentage for the SM heuristic
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4.3 Part-period Simplified

PPS performances are apparently slightly inferior to those
of SM, being present in the OP N-pattern with a
minimum percentage 20% of optimal solutions for low
values of the average demand, even in low ¢ scenarios
(black lines in Figure 6).

Figure 5. Optimality distance for the PPS heuristic

110%

e

Figure 6. Optimality percentage for the PPS heuristic

However, comparing the cost variance of the solutions
found by both heuristics in the graphs shown below, PPS
shows itself to be a more precise algorithm: the PPS cost
variance (Figure 7) is reduced with respect to that of SM
(Figure 8).

IS EERERERRE

Figure 7. Cost variance of the PPS solutions

o i REEEIEGE

Figure 8. Cost variance of the SM solutions
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4.4 Part-period Balancing

The PPB does not succeed in guaranteeing a minimum
percentage of optimal solutions, and the performance is
very poor when the average demand is lower than EPP/2,
as is clearly shown either by the high values of OD or by
the low values of OP in Figure 9 and 10 respectively. In
the latter, the N-pattern is again evident.

Figure 9. Optimality distance for the PPB heuristic

Figure 10. Optimality percentage for the PPB heuristic

4.5 Groff’s Method

Figure 12. Optimality percentage for the GM heuristic

The GM heuristic shows a good performance; the peak
OD values (white lines) in Figure 11 are the lowest so far.
With respect to the results of SM and PPS, the OD graphs
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clearly show that the distances among the solutions
found by the algorithm and the optimal ones are minor;
However, even its OP graph follows the previously
shown “N-pattern”, with a lower peak near EPP. The
speed at which the optimal solutions are found - when
the mean goes over EPP - is roughly the same while the
lower bound of the percentage of optimal solutions is
slightly higher at approximately 30%.

4.6 Freeland and Colley

“am

™

am

Figure 14. Optimality percentage for the FC heuristic

As is clear from the OD graph, the Freeland and Colley
heuristic is quite precise when coping with average
demand greater than EPP/2. On the other hand, when x <
EPP/2, and according to the OP graphs, increased
percentages of optimal solutions are counterintuitive in
the case of high variance. In this demand interval, the
heuristic displays critical behaviour.

4.7 McLaren’s Order Moment

The graphs displays behaviour similar to PPB, but the
introduction of the second constraint (8) manages to
slightly

lower the OD
performances.

values, improving  the

Figure 15. Optimality distance for the MOM heuristic
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Figure 16. Optimality percentage for the MOM heuristic
4.8 Maximum Part-period Gain

MPG is not a forward algorithm; indeed, as was expected,
this heuristic does not perform like the previous ones:
darker lines are at the bottom of the OP graph (Figure 18)
and at the top of the OD graph (Figure 17). Thus,
performance increases with the variance of the demand.
On top of this, no N-pattern is evident. However, the
optimality distance is very low with respect to the results
of the other heuristics, while the percentage of optimal
solutions found for < EPP is higher than 90%. In any
case, it is important to recall that MPG may increase the
nervousness of the heuristic when facing schedule
updating [50]

Figure 17. Optimality distance for the MPG heuristic

Figure 18. Optimality percentage for the MPG heuristic

LUC | SM GM | PPS | PPB | FC |MOM| MPG
UB OD [927,23| 163,6 | 93,48 | 133,15 [344,05|407,68|267,93 | 123,85
LB OP |0,05% |22,30%|27,70% [18,30%| 0% 0% [0,05% |15,25%
AvgOD | 208,2 | 42,79 | 28,98 | 40,19 | 81,11 | 52,52 | 70,07 | 9,81
AvgOP | 44% | 67% | 70% | 68% | 61% | 63% | 62% | 84%

Table 1. Numerical performance indicators

Table 1 shows the numerical results of some performance
indicators: Upper Bound OD, Lower Bound OP (as a
percentage), average OD, average OP (as a percentage). It
is possible to see that MPG guarantees a superior average
in terms of performance but GM follows immediately

Luca Baciarello, Marco D'Avino, Riccardo Onori and Massimiliano M. Schiraldi:
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afterwards, guaranteeing an average percentage of 70%.
Figure 12 shows a minimum percentage of 27,70%
optimal solutions for GM, in 26,000 experiments.

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500 1
6000
§500
7000

Sigma

5000

10000 15000

20000

Identifying a scenario through its main characteristics (u,
0), the heuristic that may offer the best performance can
be located on the map, as shown in Figure 19.

40000
Mean

[(Impc [ Jom  [lrPs

Ilrc [ JreB

[Ism

Figure 19. Suitability of presented heuristics

1000
1500
2000
2500 ]
3000
3500
4000
4500
5000
5500
6000
6500
7000

I"I.l

Sigma

5000 10000 15000

20000
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Figure 20. Suitability of the GM, PPS, FC, PPB and SM heuristics

Clearly, MPG results to be the most effective heuristics in
the bulk of all possible scenarios, while GM and PPS are
suitable for a small number of cases of deterministic
scenarios with quite small average demand. In order to
perform a fairer comparison, in Figure 20, MPG has been
excluded and only the forward algorithms have been
located on the map.

Excluding MPG, as far as the experiment presented is
concerned, Groff's Method and Freeland and Colley’s
heuristics seem to be the most adaptable lot sizing
methods.

5. Conclusions

For each period inside a planning time horizon, lot sizing
procedures determine the opportunity for launching an
order or - by way of contrast - carrying the inventory
from the previous phases. Input data is represented by
(net) requirements. Thus, different scenarios can be
characterized by two main elements: the mean value of
the period’s requirements and its standard deviation. All
the presented heuristics show variable performance in
different scenarios and so it is opportune to choose the
most appropriate in relation to the case that needs to be
approached. For this reason, this paper presented an
extensive experiment for 8 of the main basic lot sizing

Int. j. eng. bus. manag., 2013, Vol. 5, 6:2013

techniques, which have been translated into a comparable
mathematical framework and then benchmarked against
Wagner and Whitin’s exact algorithm.

Two main indicators were considered: the percentage of
the optimal solution (OP) and the average cost increase
(OD) of the solutions found by each analysed heuristic.
Once more, Orlicky’s least unit cost algorithm — the only
one that does not consider a part-period criterion — has
shown the worst performance. It is noticeable that all
the heuristics that followed a forward computation
approach —i.e., that determine the lot sizing alternatives
scanning the planning period from the beginning to the
end — show a performance trend that depicts a peculiar
“N-pattern”, with local minimum in correspondence
with the economical part-period value. The N-pattern is
absent in the only algorithm that does not follow a
forward computation approach - the maximum part-
period gain.

Future works on of LP heuristics
performance should on testing these
approaches in real industrial cases. Thus, the authors are
now working on the implementation of a subset of these
heuristics in the MRP software of one of the largest Italian
manufacturing companies of home appliances - which at
present only works with the fixed order quantity and fixed

the analysis
concentrate

www.intechopen.com



period quantity rules - in order to verify the theoretical
results on a real data set.
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