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Abstract Floor storage systems are used in the shoe 
industry to store fashion products of seasonal collections 
of low quantity and high variety. Since space is valuable 
and order picking must be sped up, stacking of shoeboxes 
should be optimized. The problem is modelled based on 
shoe features (model, type, colour, and size) and with the 
goal of forcing similar boxes into locations close to each 
other in order to improve workers’ ability to retrieve 
orders fast. The model is encoded in Constraint Logic 
Programming and solved comparing different strategies, 
also using Large Neighbourhood Search. Simulation 
experiments are run to evaluate how the stacking model 
affects picking performance. 
 
Keywords Fashion shoe industry, floor storage systems, 
Storage Location Assignment, Constraint Logic 
Programming, Large Neighbourhood Search 

                                         
1. Introduction  
 
Order picking is generally recognized as the most 
expensive warehouse operation, because it tends to be 
very labour- or capital-intensive [1, 2]. Furthermore, it 
determines the level of service experienced by 
downstream customers [3]. 

Studies have shown that if products are stored in 
convenient locations, they are easier to retrieve when 
requested by customers, leading to smaller picking times 
[4]. As underlined in [5], what is meant by “convenience” 
depends on models of labour and of space. In this 
research attention is focused on manual floor storage 
systems in the particular context of the shoe industry. 
Floor storage systems allow very flexible configurations 
within a warehouse since no additional structure other 
than pallets is needed to stack stock keeping units (SKUs). 
Thus, space can be quickly made available for different 
SKUs and adapted to their characteristics in terms of size, 
inventory quantity, and picking frequency; the stocking 
area can then be easily reconfigured to optimize 
operations. This is the reason why these simple systems 
are suitable for industries characterized by seasonal 
productive campaigns. Furthermore, floor storage 
systems can be used as a temporary solution in response 
to volume increases, avoiding other costs while waiting 
for the construction of more sophisticated structures. 
 
Floor storage systems are often adopted in the shoe 
industry to manage reorders of collections by retail points 
during each season. Every shoe model (M) proposed 
within a seasonal collection can be offered in different 
material types (T) (leather, tissue, etc.) and colours (C). 
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Production plants all over the world send cartons 
containing shoes of identical MTC and sometimes 
different sizes (S) to satisfy reorders of the main collection 
during any fashion season. When not all these shoes are 
required to satisfy client orders during a working period, 
this produces a certain number of “free pairs”. Free pairs 
enter the floor storage system, where they are stacked 
until used to satisfy another retail point demand. Among 
free pairs, the so-called “fashion products” are proposed 
only in a given collection and usually with a great variety 
of MTC combinations. The floor storage system used for 
the free pairs must manage a great variety of SKUs with 
very small quantities and hardly predictable 
arrivals/retrievals during each seasonal collection. Since it 
is coupled with the other storage systems (the full  
cartonwarehouse and the classic product warehouse) at 
the downstream sorting facility, the fashion free pair 
storage system becomes a potential bottleneck of the 
whole system. Therefore, any improvement in picking 
time of fashion free pairs can positively affect the overall 
response time, even if relatively small quantities are 
retrieved from the floor storage system during any 
working period. 
 
Organizing picking operations and optimizing stacking of 
different shoeboxes within a reasonable number of pallets 
become important to enhance both fast order retrieval 
and space-saving. The aim of this paper is therefore to 
enable fast picking operations through a re-configuration 
of the floor storage system, according particular attention 
to the storage location assignment phase. Since real 
operations show how pickers spend most of their time 
searching for the required shoeboxes among pallets, the 
main idea is to speed up the identification process by 
stacking free pairs based on their model-materials-colour-
size (MTCS) features, so that similar shoes are likely to be 
stored in locations close to each other and pickers can 
recognize them more easily. To this end, we modelled the 
problem as a constraints satisfaction problem and 
encoded it using Constraint Logic Programming. The 
effectiveness of the proposed optimization model in 
comparison with common stacking options is proven by 
simulation: the results show a significant reduction in 
picking times. 
 
Concerning the optimization methodology, our attention 
was focused on selecting a solving technique allowing 
easy encoding and maintainability. To be actually applied 
in such a dynamic environment as the fashion industry, 
every mathematical model should be flexible in terms of 
fast adaptation to changing features of seasonal 
collections, which reflect on characteristics of the 
variables and on constraints to be added or modified. 
Beside flexibility, the particular structure of the problem 
in the shoe industry should be exploited by ad hoc 
heuristics and therefore the possibility of customizing 

techniques also becomes crucial. These considerations 
have led to the selection of Constraint Logic 
Programming as the main optimization methodology, 
which is further enforced by a local search approach to 
enhance the ability to find very good solutions in 
reasonable times. Our main goal is to create a conceptual 
model and a solving tool that can be effectively adopted 
in real applications: even though other techniques could 
probably have better computational performance, they 
are more rigid and the risk of having to start from scratch 
when passing to the next fashion collection was 
considered too high. 
 
The paper is organized as follows: a literature review is 
presented and the best organization for the free pairs 
picking order system is proposed in section 2. In section 3 
the adopted Constraint Programming approach is 
described; the model for assigning shoeboxes to their 
locations in the floor storage system is analysed in section 
4. In section 5 the implementation of the model is 
described and computational results are summarized. 
Simulation experiments, described in section 6, are 
performed in order to evaluate the proposed model from 
an operational point of view. Finally, conclusions are 
proposed in section 7. 
 
2.  The manual order picking system:  
literature review and proposed organization 
 
The three main decisions involved in the order picking 
process are the storage policy, i.e., how to store the stock-
keeping units (SKUs) in the warehouse facilities, the 
picking policy, concerning which SKUs should be placed 
on the list of a single picker, and the routing policy, 
identifying the picking travel path to be followed when 
retrieving SKUs to fulfil customer orders [2, 6]. 
 
Concerning the picking policy, Ackerman [7] identifies 
three basic picking approaches: strict-order picking, 
where a picker is responsible for retrieving all the items 
of a single order per tour; batch picking, where a picker 
retrieves a set of orders per picking tour; zone picking, 
where a picker is responsible for retrieving all items 
stored in a given zone. Two main criteria can be 
identified for batching [8]: the proximity of pick locations, 
or time windows. In the latter case, all orders arriving 
during the same time period are grouped as a batch. 
 
These basic approaches can be combined as described in 
[9] to form mixed picking strategies. In particular, wave 
picking can be considered for time-based batching with 
zone picking, i.e., a picker is responsible for retrieving all 
SKUs in his zone within a given period (the pick wave). 
Yu and de Koster [10] developed a queuing network 
theory model to assess the impact of batching and zoning 
on the order picking performance of a given system. 
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In the case of the free pair floor storage system, initial 
benefits can be achieved by organizing pallets into 
picking zones corresponding to the different classes of 
final consumers, i.e., women, men, children, and babies, 
leading to a family-based storage assignment strategy as 
described in [11]. This retains the major advantages of 
zone picking, i.e., the limited space the picker has to 
traverse to pick an order, the increased familiarity of the 
picker with a subset of the SKUs, and the reduced order 
picking time if zones are picked in parallel [3]. In the 
apparel market the aggregation of SKUs in such families 
is natural or is induced by speciality catalogues [11]. 
 
Since in the analysed shoe firm shipment truck 
departures are at fixed times within a day, we can fix pick 
waves so that items retrieved from the floor storage 
systems and from the  carton warehouse can be properly 
sorted and loaded into trucks. 
 
Petersen and Aase [12] underlined how the capacity of 
the routing policy to affect time performance in a manual 
order picking system is significantly lower than for the 
batching or storage policy. Therefore, we imagine pickers 
adopting a simple return policy [13], i.e., the picker enters 
and exits an aisle from the same side, rather than 
adopting more sophisticated routes such as those 
recognized in [14] for their Travelling Salesman Problem 
optimal algorithm, which are rather difficult to be 
followed by pickers. 
 
Because of the great variety of SKUs and hardly 
predictable arrivals/retrievals, a picker should be aided in 
his or her simple route within an aisle of his zone by a 
storage policy which supports shoebox identification. In 
the Italian shoe company analysed, a major problem in 
managing the floor storage system is the time spent by a 
picker to find the locations where the required shoeboxes 
are stacked. If shoeboxes were stacked so that a picker 
could rely on a physical scheme that resembles the 
aggregation by Model, Type, Colour and Sizes of shoes for 
a given family, this could be expected to reduce picking 
time dramatically. This leads to a particular kind of Storage 
Location Assignment Problem (SLAP), which has been 
modelled and solved as described in the following sections. 
 
3. The Constraint Programming methodology 
 
The Storage Location Assignment Problem for fashion 
free pairs can be formalized as a Constraint Satisfaction 
Problem (CSP), where values representing the MTCS 
characteristics of shoeboxes to be stored are assigned to 
available locations (variables), subject to a set of 
constraints. A cost function can be associated with 
variable assignments, so that the minimum cost solution 
can be identified, leading to a Constraint Optimization 
Problem (COP).  

Constraint Programming (CP) is a programming 
methodology that allows encoding and solving of CSPs 
and COPs [15]. CP splits problem encoding into two 
parts: the modelling phase and the solving phase. In the 
former, the problem is modelled using constraints 
between variables that need not be linear, unlike in 
Linear Programming, Integer Linear Programming, or 
Mixed Integer Programming; non-linear cost functions 
can also be used. The programmer can then rely on a 
constraint solver to find solutions. The constraint solver 
systematically explores the whole solution space, 
alternating assignment steps with constraint propagation 
steps. The programmer can improve the performance of 
this phase by adding heuristics based on the particular 
structure of the problem. 
 
As underlined in [16], due to their expressive 
representation constraint-based systems are good for 
modelling complex problems, including real-life and day-
to-day decision-making processes in an enterprise. 
Compared with techniques such as genetic algorithms, 
simulated annealing, and tabu-search, they are usually 
easier to modify and maintain. Moreover, these 
techniques can be embedded within the search heuristics 
of a constraint solver, so that advantages of both 
approaches can be exploited. 
 
Among the various systems for CP, Constraint Logic 
Programming (CLP) is the most mature constraint 
programming methodology (the first definition can be 
traced back to [17]). CLP languages allow a declarative 
easy encoding, where the focus is on describing 
properties the desired solution should have, rather than 
on establishing a procedure to find it.  
 
Free CLP systems such as Gprolog and ECLiPse Prolog 
are available, as well as commercial systems such as 
SICStus Prolog and B-Prolog that are easy to install and 
used in all the platforms, and which allow code 
portability from one system to another. These 
characteristics can be suitable especially for small 
enterprises, traditionally affected by lack of resources, 
which can access CLP tools at low cost. 
 
CLP has been successfully used in several industrial 
applications since the 1990s [18], while more recent 
research fields embrace alert system location [19], 
computational biology [20], and project-driven 
manufacturing [16]. Recent surveys on both CLP and its 
applications can be found in [21]. 
 
Thus, CLP is adopted as the main methodology in this 
paper; however, it is combined with the local search 
method Large Neighbourhood Search [22] in order to 
improve its performance. 
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4. Modelling the storage location assignment  
problem for fashion free pairs 
 
The warehouse is considered as a sequence of floor pallets, 
organized into aisles. One side of each pallet is associated 
with a given aisle; the other side belongs to the 
previous/following aisle (see Figure 1). Given standard sizes 
of both pallets and shoeboxes, each pallet can contain up to 
maxcol columns of shoeboxes on both sides, stacked up to 
maxbox units (usually maxbox ≤ 10 to ensure stack stability), for 
a maximum of maxcol×maxbox boxes per pallet side. 
 
Pallets are set in “U shape” and numbered progressively as 
shown in Figure 1. All available locations (the variables) in 
our storage system are uniquely identified by a tuple (a, p, c, i) 
of integers describing the number of the aisle (a), the number 
of the pallet (p) within a given aisle (p∈[1..maxpal]), the 
number of the column c occupied in the pallet (c∈[1..maxcol]), 
and the slot i (i∈[1..maxbox]) in the analysed column. 
 
The maximum allowed number of pallets per aisle maxpal 
can be increased during a season to face periods of 
increasing storage requirements by simple adding pallets 
at the back front (upper side of Fig. 1). On the other hand, 
when space-saving becomes crucial in order to devolve 
space for the successive season collection, maxpal can be 
reduced. 
 
When warehouse floor size, inventory quantities, and 
available operators lead to a preference for long aisles, 
then the model should support different stocking/picking 
behaviours or a different number of operators for each 
long front of a given aisle. This can be easily achieved by 
splitting aisles into their two fronts (left and right sides of 
aisle axis) and by assigning a different aisle index to each 
of them in the model. 
 

Figure 1. The a-th aisle with 10 pallets in U shape and five 
boxes/pallet side 

Each SKU is represented by a shoebox, which is 
characterized by an integer code ranging from 1000 to 
99999.  
 
Thousand digits represent the model of shoes; given the 
high variety required by fashion products, 99 different 
models are considered in the current case. The model 
codes should be assigned consecutively to similar models. 
Every shoe model can be realized in different materials 
coded by the hundred digit, thus allowing 10 different 
combinations (numbered 0-9) per model. Each model-
material combination can be proposed to customers in 
different colours, represented by the decade digit, thus 
considering 10 alternatives. Finally, shoes are 
characterized by their size, described in our code by the 
unit digit. Ten different sizes per shoe model are 
considered, taking into account the different measures 
required by men, women, children, and babies. Therefore, 
an integer code of four to five digits of the type MTCS 
(Model 1-99, material Type 0-9, Colour 0-9, and Size 0-9) 
is assigned to each shoebox. If more 
models/parts/colours/sizes are needed to match with 
actual cases, the number of related digits can be 
appropriately increased, moving to greater integers. 
When a location is assigned to a shoebox, the related 
variable is set to its MTCS code; otherwise it is set to zero. 
 
4.1 Constraints and cost functions  
 
A set of constraints is imposed so that symmetries of 
solutions are broken: the goal is to avoid spreading of 
solutions generated by permutation of the same boxes 
within a column or the same columns within a pallet. 
Therefore, columns are filled in a bottom-up way 
resembling actual stacking of shoeboxes during storage 
operations. Each pallet is filled from the first to the last 
column without empty stacks in the middle. 
 
Another set of constraints is related to similarity 
characteristics of shoeboxes. To force similar shoes to be 
stacked together, boxes assigned to a column must belong 
at least to the same shoe model. Thus, all values xa,p,c,_ 
assigned to every location of a given column c in pallet p 
of aisle a must present the same thousand digits (see Eq. 
1, where i and j are any two locations within the same 
column c). Furthermore, boxes stacked in the same pallet 
must be characterized by similar models. We define the 
parameter maxmod as half the length of the range of 
consecutive models, centred on the first column model. 
By the constraints in Eq. 2 a number of only 2×maxmod 
consecutive models can be assigned to a given pallet. For 
example, if the column 1 model has the code 12 and 
maxmod is set to 4, then only model codes from 8 to 16 are 
allowed in that pallet. Maxmod should be selected based on 
the number of models to be stored in the planning 
horizon (i.e., fashion models of a seasonal collection) and 
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available columns. When very little space is available in 
the warehousing system, this constraint should be 
removed so that model variability within a pallet is 
enhanced. 
 

int(xa,p,c,i/1000)  =  int(xa,p,c,j /1000)     ∀(a,p,c)           (1) 
 

|int(xa,p,1,_/1000) - int(xa,p,c,_/1000)| ≤  maxmod   ∀(a,p,c)    (2) 
 
Finally, the number of non-zero variables (i.e., the 
locations to be occupied) should be exactly equal to the 
number of new entering boxes and their values must be 
chosen from among their integer codes. 
 
When multiple zones are managed together, a family-
based allocation should be preserved to enhance pickers’ 
capability of fast retrieval, and constraints linking models 
of the same family (e.g., woman, man, child, or baby 
shoes) to a zone (i.e., to a set of aisles) should be added. 
 
To speed up manual retrieval operations, workers should 
rely on a logical scheme of shoe distribution along aisles, 
so that similar shoes (i.e., characterized by consecutive 
integers) are stacked as close together as possible. The 
cost function ����	to be minimized is made up of five 
different contributions, which resemble the proximity 
requirement of similar shoeboxes, as shown in Equation 
(3): 
 
���� � 	∑ ������ � �������� � ������� � �	∑ ������ � �������� �	��    (3) 

 
It is desirable to store shoes so that they differ only in size 
(the unit digit) in the same column, so that workers can 
easily retrieve them based on client reorders. To force 
boxes with similar integer codes to enter the same stack, a 
column cost ����� 	is calculated for every column c with a 
new entering box, as the sum of the difference between 
each in-box code and the codes of shoeboxes already 
stacked, plus the difference of codes between every 
combination (without repetition) of any two entering 
boxes assigned to that column. If R is the set of locations 
within a column already filled with shoeboxes during 
past replenishments, and V is the set of available locations 
that are being evaluated for the current solution, then: 
 

����� ������������ � ���������
������

�																				

∑ ��������� � ���������������� 					∀��� �� ��     (4) 
 

For example, if two boxes with codes 1001 and 1002 are 
assigned to column s, where a box of code 1000 has 
already been stacked in a previous replenishment, then 
the cost of column s will be:  
 

�����  = |1001-1000|+|1002-1000|+|1001-1002| = 4 
 

In order to minimize the number of different shoe codes 
within a column, the cost contribution is set to zero for a 
new box with a code already present in the stack, and 
new boxes with the same code are counted only once for 
a given column. 
 
To force boxes with the same model, type and colour 
(MTC) into the same stack without excessive column 
fragmentation, cost �������� 	is introduced to fill a new 
column (c* in Equation 3). In this way, splitting of boxes 
differing only by their unit digit (i.e., their size) is 
discouraged. We set �������� 	equal to the column cost ������  in 
the worst of still-desirable cases, when new boxes are 
characterized by the same MTC but all different 
sequential sizes. If codes are sorted in decreasing order, 
any box code differs from the successive ones for a 
quantity growing from 1 to its unit value n, as can be seen 
in Figure 2 for maxbox = 10.  
 
Based on Eq. 4, ������  can be evaluated as: 
 

������ � ∑ ��� � ��/2����������
���                    (5)   

       
�������� 	should be greater than ������ 	to discourage a new 
column occupation, when boxes are characterized by the 
same MTC. Thus, we set ��������  equal to the nearest integer 
multiple of 5. In the case shown in Figure 2, where five 
columns are allowed and 10 boxes are stacked per 
column, ������  =165 and ��������  =170. 
 

 

Figure 2. A pallet filled by identical-MTC shoeboxes within a 
column and by successive colours in stacks 
 
Sometimes, boxes with similar integer codes,  can present 
the same cost ����� 	and could be forced into the same 
column even if they have different colours (e.g., boxes 
1009 and 1011  have two units difference just as boxes 
1007 and 1009, but they have different colours, not just 
different sizes). Thus, a weight equal to �������� 	is added to 
Eq. 4 to distinguish these particular cases, so that filling 
another column is allowed when enough space is 
available in the warehouse. 
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Within a given pallet p, it is desirable to obtain the most 
similar shoes, so comparisons between all the boxes in 
that pallet are performed by calculating a pallet cost ����� . 
This is very similar to the column cost ����� , but 
encompasses all the (maxbox×maxcol) possible locations, 
considered as a unique column of maxbox×maxcol elements. 
Therefore, the same rules for column cost calculation (see 
Eq. 4) are applied to the pallet cost component ����� , 
without adding any weight. 
 
As in the column case, it is desirable to discourage 
occupation of an excessive number of pallets. In the worst 
of desirable cases for a new pallet, boxes in each column 
differ only by size (the unit digit), and columns differ 
from each other only in their shoe colours (i.e., 
progressive decade digits are considered). In such a 
situation, the pallet cost component will be equal to ������  
(see Eq. 6). We introduce a slightly greater empty pallet 
cost ��_����∗ , equal to the nearest integer multiple of 10 
whenever a new pallet p* is occupied, to avoid splitting of 
same size and colour boxes among too many pallets. 
 

������ � ∑ ��� � �� �⁄�����������������
���                  (6) 

 
Finally, a proximity cost is introduced to force similar 
shoes to occupy adjacent pallets. This cost component is 
calculated by the average sum of difference between the 
model code of any new column c* (see constraints in sect. 
4.1) and model codes of non-empty stacks (�� in total) 
occupying the previous and the following pallet, as 
shown in the following (Eq. 7). 
 

������∗ � �
�� �∑ ���� ���,�,�∗,_���� � � ��� ���,���,�,_���� ��������

��� �
																					∑ ���� ���,�,�∗,_���� � � ��� ���,���,�,_���� ��������

��� �        (7) 
 
Since cost components have different magnitudes because 
of the different numbers of pair-wise comparisons 
involved, weights are introduced in order to 
counterbalance them. 
 
This problem differs from the classic bin-packing 
formulation [23], where the aim is maximizing the value 
of items packed or minimizing wasted space. In our case, 
instead, space is regarded as a constraint rather than as 
the objective function, and shoeboxes have no different 
values. Our goal is to enhance fast picking operations, so 
pallets can be left empty or only partially filled 
intentionally, if this is expected to aid pickers in SKU 
identification. This is also a major difference in 
comparison with so-called bin-oriented heuristics, in 
which bins are added and packed one at a time [24]. The 
analysed problem cannot be considered as variable-size 
bin-packing, as termed in [25], where bins have different 
sizes and the goal is to pack items into the set of bins with 
the smallest total size. Even if during a fashion season 

stack height (maxbox) can be varied based on inventory 
levels, this constraint is maintained equal for all the 
pallets within a given picking zone. It cannot even be 
regarded as an extensible bin-packing problem, as 
defined in [26], where bins may be extended to hold more 
than the usual unit capacity. The cost of a bin is 1 if it is 
not extended, and is equal to its size if it is extended. The 
goal is to pack a set of items of given sizes into a specified 
number of bins so as to minimize the total cost. In our 
case, pallet capacity can be increased as described above; 
however, the number of pallets to be filled is not an input 
of the problem, but only a capacity constraint. 
 
5. Solving by Constraint Logic Programming 
 
A program was written in SICStus Prolog to solve the 
problem, encompassing the three typical steps of the CLP 
approach: (1) define the domain of each variable; (2) 
declare problem constraints; (3) search for a good feasible 
solution or find the optimal one exploring the whole 
search tree by branch and bound techniques. 
 
Two heuristics are proposed to be used while exploring 
the search tree, in order to reach good solutions faster 
than built-in procedures provided by the CLP over finite 
domains (CLP(FD)) solver of SICStus Prolog [27]. The 
variable choice heuristic and the value choice heuristic 
are described in the following sect. 5.1. In sect. 5.2 
computational results of the CLP implementation are 
provided, while in sect. 5.3 a local search approach is 
added in order to improve performances. 
 
5.1 The search heuristics  
 
The variable-choice heuristic controls the order in which the 
next variable is selected for assignment. Empty locations in 
partially occupied columns are selected as the first variables 
to be assigned, then empty columns in partially occupied 
pallets are considered, and empty pallets are selected at the 
end. This selection should force new in-boxes to be stacked 
near similar already-stored SKUs, whenever possible. To 
enhance the ability to find good solutions fast, random 
permutation within the two groups of empty columns is 
performed. 
 
In the value-choice heuristic, instead, a hierarchical 
procedure is proposed to identify alternative values to be 
assigned to a given variable when a branch fail occurs. The 
following hierarchy of choices is adopted: 

1. The value assigned to the previous selected variable, if 
different from zero; 

2.  A feasible value with same MTC as the last assigned 
variable, if different from zero, in increasing order; 

3. A feasible value with same MT  as the last assigned 
variable if different from zero, in increasing order; 

4. A feasible value with same M  as the last assigned 
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variable if different from zero, in increasing order; 
5. A feasible value with characteristics different from the 

last assigned one, if different from zero, in increasing 
order; 

6. If the last assigned value was zero, a feasible positive 
value should be chosen in increasing order; 

7. Eventually, set the variable to zero, thus leaving the 
related location empty. 

 
The reference value for the first variable is set to the lowest 
entering box code. The position of step 7 within the above 
hierarchy of choice is made dynamic based on the 
percentage of space available in the floor storage system. 
When the warehouse has less than 20% of locations already 
occupied, enough space is available to storage boxes 
preserving their MTC characteristics, i.e., stacking into the 
same column boxes differing only by their size. In this case 
step 7 is shifted soon after step 2 and the selected variable is 
set to zero immediately after failing step 2. As the number of 
available locations becomes lower and lower, stacking of 
boxes with different characteristics in the same or a nearby 
column becomes more probable. Therefore, step 7 is 
progressively moved after each following step with every 
20% increase of occupied space, becoming the last possible 
choice if more than 60% of locations are already occupied.  
 
This heuristic, which exploits the features of the analysed 
problem, was easily encoded in the CLP solver; this would 
be more difficult in other optimization frameworks (like ILP 
for instance). 
 
An iterative procedure moving towards lower and lower 
cost values was implemented in order to find the best 
feasible solution available when the time-out condition is 
eventually reached. Its performances are compared to those 
of the built-in “minimize” procedure, when the number of 
available locations in the floor storage systems (i.e., the 
variables) and the number of in-boxes are progressively 
increased. 
 
5.2 CLP computational results 
 
Experiments were run on a Windows Vista laptop (Intel 
Core 2 Duo, 2.4 GHz, 3 GB).  
 
Any input configuration can be described by three different 
parameters: the number of in-boxes to be stored, the size of 
the floor storage system (i.e., number of locations), and the 
percentage of locations already occupied. The last two 
parameters are related to the number of variables to be 
assigned and therefore to the size of the problem. The former 
is associated with the number of non-zero variables to be 
assigned. 
 
Initially, experiments were performed involving three pallets 
and five boxes per stack, for a maximum of 75 available 

locations when the floor storage system were empty, i.e., at 
the beginning of reorders for a seasonal collection. This 
relatively small sample allowed testing of all the “minimize” 
labelling options provided by SictusProlog, which required 
very similar runtimes (about 7 s). Generally, when entering 
boxes are more similar (e.g., same M, MT or even MTC) 
runtimes increase (see Table 1). The variable choice and 
value choice heuristics do not improve the built-in minimize 
procedure performance and this is because all the solutions 
must be generated in order to identify the optimal one. 
 

In Boxes 75 vars 250 vars 500 vars
5 different M 0.12 47.58 271.90 
5 consecutive M 0.78 173.41 708.63 
5 same MTCS 0.05 4.22 17.62 
5 same MTC 5.19 455.74  > 1500.00 
5 same MT 6.78 549.13  > 1500.00 
5 same M 6.87 554.85  > 1500.00 

 

Table 1. Runtimes of the built-in minimize procedure [min] 
 
Relative performances of labelling options remain even 
when a partially filled storage system is adopted (20%, 
40%, 60% and 80% of already-filled locations were 
considered), but runtimes become lower and lower as the 
number of available locations decreases. The ability of the 
heuristics to find the best solution faster than the built-in 
procedures, however, results when fewer than all the 
solutions are generated, for example when it is required 
to find the assignment related to  a given cost. In Table 2, 
runtimes of the built-in procedure are compared to those 
of the proposed heuristics, when the best solution is 
already known. Heuristics lead to dramatically lower 
runtimes (from a minimum of 52 times for consecutive M 
to 3890 times for boxes with same MTC). 
 
When the size of the floor storage system is increased in 
terms of locations to be assigned, and the size of the 
problem (i.e., the number of variables) consequently 
grows, runtimes of the minimize approach become 
unacceptable. With 10 pallets per aisle, several hours are 
required to reach the optimum, even when only five 
boxes per column are considered (i.e., 250 variables; see 
Table 1). If 10 boxes are allowed to be stacked into a 
column (the extreme situation in real applications), 
runtimes for some instances exceed one day of 
computation. Furthermore, increasing the number of 
entering boxes to be located (i.e., the number of non-zero 
variables to be assigned) dramatically raises runtimes. 
For 10 boxes with very different models and 75 available 
locations, runtime is 4 hours (versus 7.2 seconds for five 
entering boxes). 
 
By adopting a feasible solution strategy instead of an 
optimal one, floor storage system size and entering boxes 
can be increased obtaining good solutions in more 
reasonable times. 
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In Boxes Built-in [s] Heuristics [s] 
5 same MTCS 2.761 0.016 
5 different M 2.012 0.063 
5 consecutive M 12.303 0.234 
5 same MTC 120.619 0.031 
5 same MT 114.751 0.062 
5 same M 117.016 0.062 

 

Table 2. Run times [s] when the minimum cost is imposed and 
75 available locations considered 
 
Heuristics prove their force in managing similar entering 
boxes, which obtained the worst runtimes with the 
minimize approach (see Table 2). For five same-MT 
entering boxes we obtained the optimal solution in one 
iteration in 0.079 s, 0.25 s and 0.749 s for 75, 250, 500 
available locations respectively in an empty system, 
which are dramatically lower times than the related ones 
in row 5 of Table 1. For five different M boxes, runtime is 
0.063 s. 
 
To simulate actual situations in the shoe industry, 
experiments were run taking into account 10 up to 40 
entering boxes and a floor storage system of 10 pallets in 
one aisle (multiple aisles are managed by a family-based 
allocation policy and zone picking; therefore, heuristics 
are supposed to be applied to each family/zone 
separately). A 60% available storage capacity is 
considered: for a five-boxes-per-column configuration, 
100 filled locations and 150 empty ones are taken into 
account. With 10 very different M in-boxes, the minimize 
approach requires about one day of computational time, 
while the heuristic-based CLP search is able to reach a 
solution 7% from the optimal one in one hour and a half 
(see Table 3).  
 
Even if runtime has been drastically reduced, it is still 
much too long for real applications. 
 
Table 3 highlights how heuristics are able to reach a 
solution 15% from the optimal one in a very low time (100 
s), but further improvements are quite time-consuming. 
This is the reason why a local search approach was 
introduced, as explained in the following section. 
 

Strategy Cost Δ% 
[min] 

Runtime
[min] 

Minimize 2415 0% 1473.3 

Heuristics 
2775 15% 1.7 
2595 7% 92.8 

Heur + LNS1 2415 0% 2.2 
 

Table 3. Runtimes for a 250 location system with 60% available 
capacity and 10 very different M in-boxes. 
 
5.3 Coupling CLP with Large Neighbourhood Search 
 
To further improve the ability to obtain a near-
optimal/optimal solution with lower and lower 

computational times, a local search procedure is added 
after obtaining a good solution with the above-mentioned 
heuristics.  
 
In particular a Large Neighbourhood Search (LNS) is 
adopted [22]. An LNS algorithm is an iterative process 
that destroys a part of the current solution at each 
iteration using a chosen neighbourhood definition 
procedure and re-optimizes it, hoping to find a better 
solution. The neighbourhood procedure selects a subset 
of variables, the so-called “free variables” (FV) that 
should be reassigned, while maintaining the others 
unchanged as in the current solution. The constraint 
structure of the model is preserved in order to find only 
feasible solutions, and this makes LNS particularly 
suitable to be coupled with Constraint Programming. 
Moreover, any local search technique is a particular case 
of LNS, where a small number (typically two) of 
variables can be chosen as free variables at each 
iteration.  
 
In our case, top positions of the good solution are 
randomly made variable again and reassigned in order to 
lower the cost function. In the first strategy (LNS1), two 
kinds of moves are allowed for a given solution: two 
boxes on the top of related columns can be switched, or a 
box can be removed from the top of its column and 
stacked on the top of another column. Thus, the first 
empty location of each column and the top location 
occupied by an entering box are selected to become FV 
and be reassigned. The number of FV to be managed by 
an LNS1 run is kept low by randomly extracting from 
among the selected top locations (2×maxcol×maxpal in the 
worst case), starting with a narrow group of variables and 
increasing its size if no improved solutions can be found. 
To this end, LNS1 resembles a standard local search 
strategy based on hill climbing. 
 
After obtaining a good solution in a relatively small time 
(total time-out at 100 s), the iterative LNS1 procedure 
(sect. 5.3) is added with a global time-out of 100 s, in 
order to make the improvement phase faster. Results are 
shown in the last row of Table 3: only 132 s are needed on 
average to reach the optimal solution. 
 
The number of entering boxes was then increased to 20, 
30 and 40 with 10 different models, thus introducing a 
certain degree of similarity (for 40 boxes, two same-MTCS 
+ two same-MT boxes per model), as the actual “free 
pairs” generation process suggested. The number of runs 
for the CLP heuristic phase and the maximum number of 
runs and time-out per run for the LNS1 phase had to be 
identified by trial and error to find a proper balance.  
 
Since heuristics (H) are more time–consuming because of 
the greater number of variables, the mixed CLP + LNS1 
approach consists of one iterative heuristic-based 
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procedure and two iterative LNS1 procedures in turn, 
starting from the same initial good solution (every two 
LNS1 solutions are compared and the worst discharged). 
Results for a maximum number of 150 LNS1 runs per 
time are shown in Table 4). 
 

In box 

R
uns H

 

Tim
e  H

 [s] 

Tout LN
S1 

[s] 

M
in cost 

Best found cost 

M
ean cost 

Std dev 

Total tim
e[m

in] 

20 8 27 2 5152 5152 5174 15 2.6 
30 5 96 4 8779 8779 8951 156 5.5 
40 3 20 5 13,306 14,177 14,869 411 4.3 

 

Table 4. Results for mixed heuristics (H) + LNS1 strategy 
 
While for 10 and 20 in-box instances performances are very 
good in terms of both costs and runtimes (see Table 4, last 
row, and Table 5), the ability of the LNS1 strategy to reach 
the minimum-cost solution becomes worse and worse as 
the number of in-boxes is increased up to 40 entering boxes 
and four boxes per model. Moving only two boxes per time 
during the LNS phase does not allow very low-cost 
solutions to be reached, and local minima are encountered. 
In order to improve performances while maintaining 
runtimes at reasonably low levels, the LNS2 strategy is 
introduced. 
 
In this second strategy, FV identification is based on 
characteristics of the shoeboxes to be stored: we call 
maxImod the greatest number of boxes with the same 
model in the input flow. Thus, we make assignable a 
random number of locations ranging from 1 to maxImod of 
each empty column in the current good solution, i.e., we 
allow empty columns to be filled in the improved 
solution. For partially occupied columns, a random 
number of top locations ranging from 1 to maxImod are 
made potentially re-assignable, i.e., we allow some in-
boxes to be removed from a column and stacked into 
another one, if this move improves the solution. To lower 
the number of FV to be managed by an LNS2 run, 
however, we randomly extract from among the selected 
partially occupied columns, increasing the probability of 
re-assigning as no improved solutions can be found with 
the current FV cardinality. 
 
FV are then reassigned by using the CLP heuristics 
strategy, using the iterative backtracking approach. Since 
LNS2 is itself based on a random extraction of variables, 
random permutation within the three groups of variables 
in the variable-choice heuristic (see sect. 5.1) is removed. 
In this way, we capitalize on the sorting process provided 
by the CLP heuristics to obtain a good starting solution 
and leave shifting of boxes to LNS’s ability to improve a 
given configuration faster. 
 

To overcome the problem of local minima typical of a 
local search approach, LNS2 strategy is empowered with 
a sort of Monte Carlo method, i.e., the current solution is 
randomly worsened to allow different search paths to be 
undertaken. 
 

In box 

Tim
e H

 [s] 

R
uns LN

S2 

Tout  [s] 

M
in C

ost 

Best f. cost 

M
ean cost 

Std dev 

Δ%
 m

in 

Total tim
e   

[m
in] 

30 89 150 4 8779 8779 8847 56 0.8 6.9

40 20 100 8 13,306 13,311 13,463 109 1.2 7.7
 

Table 5. Results for mixed heuristics (H) + LNS2 strategy 
 
To keep runtimes as low as possible while decreasing the 
solution cost, only one iterative LNS2 procedure is 
performed after the heuristics phase. Results are shown in 
Table 5. 
 
The percentage difference of the mean cost to minimum 
cost is drastically lower for the LNS2 strategy than for the 
LNS1 one (1.17% versus 10.51% for 40 in-boxes); standard 
deviation of solutions is also reduced. These results 
confirm how LNS moves should be linked to the number 
of entering boxes per model to be effective. The best 
solution found in 10 successive runs equals the minimum 
cost for 30 in-boxes and approximates it for 40 in-boxes 
(see Table 5). If a multiprocessor machine is used, several 
runs can be concurrently launched and therefore the best 
cost can be detected from among all the solutions found. 
In this case, there are very good chances of finding the 
optimal solution in a few minutes. 
 
6. Assessing picking performance by simulation 
 
In order to assess if stacking shoeboxes by the proposed 
model leads to improved picking time, experiments were 
performed by using Arena simulation software. 
 
Actual data on arrivals and retrievals of free pairs during a 
whole seasonal collection were gathered from a well-
known Italian shoe company and used in simulation runs. 
 
The “women’s” zone was modelled, since female 
consumers are more sensitive to fashion developments 
and women’s catalogues generally propose the greatest 
variety of MTC combinations. For the analysed spring 
collection, 35 different models, with an average of two 
materials and two colours per model, became free pairs 
and entered the shop floor system, with 10 boxes per 
replenishment and five boxes per pick tour on average. 
 
Based on actual data, a single aisle of 10 pallets was 
sufficient to face fashion free pairs space requirements. 
The column height was set to five shoeboxes to avoid 
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stack tumble during picking operations, but was 
increased up to 10 boxes whenever an entering MTCS 
combination presented more than five units to be stored. 
When a column is made up of identical shoeboxes, a 
picker can pull boxes from the top of higher stacks 
without any fall problem. Therefore, stack height can be 
increased up to upper bounds of stability, in order to 
enhance fast identification and space savings.  
 
We imagine storage operations to be performed during 
idle periods, i.e., when workers are not involved in 
picking operations (e.g., in later afternoon or early 
morning). Therefore, the floor storage system is updated 
with new assignments once a day before pick waves 
start.  
 
We consider as a basic scenario for comparisons a closest 
storage policy as termed in [28], or equivalently the “First 
Fit” heuristic as it is usually called in the bin-packing 
problem [23]. Every item to be stored is put on the first 
column on which it fits, starting from partially occupied 
pallets and opening a new one whenever needed. This 
choice comes from the evidence stated in [3] that if order 
pickers could choose the location for storage themselves it 
would be likely to be the first empty location 
encountered.  
 
As underlined in [5], one can affect the behaviour of this 
simple heuristic by choosing how to sort the SKUs on the 
list. Therefore we tried two different sorting methods: the 
arriving order in the shop-floor system and the increasing 
code number. The rationale for the former is to allow 
replenishments to be split in order to exploit idle periods; 
for the latter, it is to weakly introduce MTCS 
characteristics while preserving the First Fit heuristic ease 
of use. The former heuristic is marked simply as FF and 
the latter FFmtcs; the proposed storage assignment model 
is referred to as CLP. 
 
Picking time was split into three main components: travel 
time, identification time, and handling time. Travel time 
involves times for entering and exiting the floor storage 
system and routing among pallets. Identification time is 
mainly related to the number of boxes a picker should 
scan in order to recognize the shoe pair to be retrieved, 
plus other minor contributions for reading the picking list 
and memorizing box codes. As concerns the handling 
process, it comprises removing a shoe box from its stack, 
placing it on the cart and re-stacking boxes dropped on 
the floor, if necessary. Based on the position of the 
shoebox to be retrieved within a column, we can 
differentiate between a slow pick and a fast pick. If the 
shoebox is on the top, it can be fast removed by the 
picker, but whenever it occupies middle or bottom 
locations, extraction time increases, depending on the 
stack height loading the served location.  

 

Figure 3. Picking times for First Fit-, FFmtcs- and CLP-based 
allocations for a whole female collection 
 
The walking speed was set to 110 feet/minute lowering 
common values for manual picking (see [11, 12, 29]) to 
adhere to the particular configuration of a floor storage 
system. Identification and handling times were 
determined by both time study and predetermined time 
standards [30]. 
 
Results for the analysed women’s collection are shown in 
Figure 3. Picking time is recorded from the moment a 
picker enters the floor storage system to the moment all 
free pairs in the picking list have been retrieved and can 
be moved to the sorting station, where they will be 
coupled with boxes from the main shelves-based 
warehouse in order to meet demand. The picking list is 
completely known when a pick wave starts and no idle 
times are considered. 
 
Adopting the proposed CLP methodology, 51% total time 
savings in comparison with FF and 48% in comparison with 
FFmtcs were achieved across the whole seasonal collection.  
 
As expected, reduction in identification time is the most 
important contribution: CLP leads to a 75% decrease in 
comparison with FF and a 73% reduction compared to 
FFmtcs. This is directly linked to the number of boxes to 
be scanned. If the CLP storage policy is adopted, a 
picker can estimate the range of models that are stacked 
within a pallet by simply reading the code of a single 
box, due to the constraint in Eq. 2. If none of the boxes 
to be retrieved can be allocated in the current pallet, he 
or she can move immediately to the next pallet. With FF 
and FFmtcs policies, all boxes should be scanned pallet 
after pallet. Furthermore, with CLP storage a picker can 
read the code of only the top box in each column to 
recognize whether it contains the desired model, thanks 
to the constraint in Eq. 1.  
 
Handling time is also reduced by 21% in comparison with 
FF and 17% compared to FFmtcs by adopting the CLP 
policy, since similarity of shoeboxes within a column 
improves the probability of fast removals. 
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Travel time, on the other hand, increases by 65% 
compared with FF and by 61% in comparison with 
FFmtcs by adopting the CLP policy, because a greater 
number of pallets is employed to store shoeboxes based 
on their characteristics, while the First Fit heuristics 
occupy as few pallets as possible. As can be seen in 
Figure 3, however, travel time accounts for a minor part 
of total picking time and therefore it is counterbalanced 
by improvements gained in the other two time 
components. 
 
FFmtcs is not able to fully capitalize on MTCS 
characteristics of shoeboxes to the same extent as the CLP 
assignment model. Sorting the storage list by MTCS code 
leads to weak improvements in picking time, but even 
this highlights how involving MTCS characteristics in 
assignment models positively affects picking 
performance. 
 
7. Conclusions 
 
Floor storage systems represent a highly flexible low-cost 
solution for a temporary inventory or a seasonal business. 
When a great variety of products in very small quantities 
should be managed in the short term, the effort of 
combining space savings and fast picking operations 
leads to the need for rational allocation of items along 
aisles and within pallets. 
 
In the shoe industry, where different fashion products are 
proposed collection after collection, a picker should rely 
on a logical stacking of shoeboxes, based on their 
characteristics in terms of model, material, colour and 
size. In this way, similar products are likely to be stored 
in positions close to each other and their identification 
can be faster, even in the absence of sophisticated 
recognition systems. Simulation experiments show how 
storing shoeboxes by adopting the proposed shoe 
features-based allocation model halves total picking time 
in comparison with common closest-open-location 
techniques. 
 
Mixing Constraint Programming and Large 
Neighbourhood Search (thus generalizing either CP or 
LS) was revealed as a powerful methodology for solving 
such allocation problems in floor storage systems. 
Computation times for very good solutions are low 
enough to allow the proposed methodology to be applied 
in real warehousing of seasonal low-quantity high-variety 
products. A case study of a well-known Italian shoe 
company highlighted how allocations of fashion 
shoeboxes in the floor storage system are generally 
performed once or twice per day. Runtimes provided by 
the CP+LNS solving methodology appear adequate for 
such a planning period, even when a high number of 
product classes and aisles should be considered to 

efficiently manage order picking. Given the complexity of 
the problem, even with a small number of entering 
shoeboxes, such timely results could hardly be reached 
by traditional optimizing approaches.  
 
Furthermore, the declarative nature of CLP allows the 
programmer to easily describe what properties are 
required for the desired solution. Requirements can be 
modified, added or deleted to adapt to a dynamic 
industrial environment without changing the basic 
model, only declaring new constraints, which are not 
limited to being linear. This enables adaptation to and 
transfer into different industrial realities. Furthermore, 
search heuristics exploiting the features of the particular 
problem are easily embedded in the CLP method. 
 
In the analysed decision-making scenario, the flexibility 
of CLP is invaluable for developing a warehousing tool 
that can be used collection after collection. Shoe 
collections differ from one another in seasonal and 
fashion characteristics, thus affecting stacking 
requirements. Moreover, different clients’ behaviours can 
impact on picking strategy;  storage solutions should 
therefore be able to speed up operations and offer a quick 
response to clients, according to the demands of the 
fashion market. The proposed CLP-based methodology 
provides the required ability to customize solution 
properties while still maintaining the basic conceptual 
model. 
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