
International Journal of Engineering Business Management
Special Issue on Innovations in Fashion Industry

Exploiting Fashion Features for Floor
Storage Systems in the Shoe Industry

Regular Paper

Antonella Meneghetti1,*

1 DIEG – Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica, University of Udine, Italy
* Corresponding author E-mail: meneghetti@uniud.it

Received 1 June 2013; Accepted 15 July 2013

DOI: 10.5772/56834

© 2013 Meneghetti; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Floor storage systems are used in the shoe
industry to store fashion products of seasonal collections
of low quantity and high variety. Since space is valuable
and order picking must be sped up, stacking of shoeboxes
should be optimized. The problem is modelled based on
shoe features (model, type, colour, and size) and with the
goal of forcing similar boxes into locations close to each
other in order to improve workers’ ability to retrieve
orders fast. The model is encoded in Constraint Logic
Programming and solved comparing different strategies,
also using Large Neighbourhood Search. Simulation
experiments are run to evaluate how the stacking model
affects picking performance.

Keywords Fashion shoe industry, floor storage systems,
Storage Location Assignment, Constraint Logic
Programming, Large Neighbourhood Search

1. Introduction

Order picking is generally recognized as the most
expensive warehouse operation, because it tends to be
very labour- or capital-intensive [1, 2]. Furthermore, it
determines the level of service experienced by
downstream customers [3].

Studies have shown that if products are stored in
convenient locations, they are easier to retrieve when
requested by customers, leading to smaller picking times
[4]. As underlined in [5], what is meant by “convenience”
depends on models of labour and of space. In this
research attention is focused on manual floor storage
systems in the particular context of the shoe industry.
Floor storage systems allow very flexible configurations
within a warehouse since no additional structure other
than pallets is needed to stack stock keeping units (SKUs).
Thus, space can be quickly made available for different
SKUs and adapted to their characteristics in terms of size,
inventory quantity, and picking frequency; the stocking
area can then be easily reconfigured to optimize
operations. This is the reason why these simple systems
are suitable for industries characterized by seasonal
productive campaigns. Furthermore, floor storage
systems can be used as a temporary solution in response
to volume increases, avoiding other costs while waiting
for the construction of more sophisticated structures.

Floor storage systems are often adopted in the shoe
industry to manage reorders of collections by retail points
during each season. Every shoe model (M) proposed
within a seasonal collection can be offered in different
material types (T) (leather, tissue, etc.) and colours (C).

Antonella Meneghetti: Exploiting Fashion Features for Floor Storage Systems in the Shoe Industry 1www.intechopen.com

ARTICLE

www.intechopen.com Int. j. eng. bus. manag., 2013, Vol. 5,
Special Issue Innovations in Fashion Industry, 24:2013

Production plants all over the world send cartons
containing shoes of identical MTC and sometimes
different sizes (S) to satisfy reorders of the main collection
during any fashion season. When not all these shoes are
required to satisfy client orders during a working period,
this produces a certain number of “free pairs”. Free pairs
enter the floor storage system, where they are stacked
until used to satisfy another retail point demand. Among
free pairs, the so-called “fashion products” are proposed
only in a given collection and usually with a great variety
of MTC combinations. The floor storage system used for
the free pairs must manage a great variety of SKUs with
very small quantities and hardly predictable
arrivals/retrievals during each seasonal collection. Since it
is coupled with the other storage systems (the full
cartonwarehouse and the classic product warehouse) at
the downstream sorting facility, the fashion free pair
storage system becomes a potential bottleneck of the
whole system. Therefore, any improvement in picking
time of fashion free pairs can positively affect the overall
response time, even if relatively small quantities are
retrieved from the floor storage system during any
working period.

Organizing picking operations and optimizing stacking of
different shoeboxes within a reasonable number of pallets
become important to enhance both fast order retrieval
and space-saving. The aim of this paper is therefore to
enable fast picking operations through a re-configuration
of the floor storage system, according particular attention
to the storage location assignment phase. Since real
operations show how pickers spend most of their time
searching for the required shoeboxes among pallets, the
main idea is to speed up the identification process by
stacking free pairs based on their model-materials-colour-
size (MTCS) features, so that similar shoes are likely to be
stored in locations close to each other and pickers can
recognize them more easily. To this end, we modelled the
problem as a constraints satisfaction problem and
encoded it using Constraint Logic Programming. The
effectiveness of the proposed optimization model in
comparison with common stacking options is proven by
simulation: the results show a significant reduction in
picking times.

Concerning the optimization methodology, our attention
was focused on selecting a solving technique allowing
easy encoding and maintainability. To be actually applied
in such a dynamic environment as the fashion industry,
every mathematical model should be flexible in terms of
fast adaptation to changing features of seasonal
collections, which reflect on characteristics of the
variables and on constraints to be added or modified.
Beside flexibility, the particular structure of the problem
in the shoe industry should be exploited by ad hoc
heuristics and therefore the possibility of customizing

techniques also becomes crucial. These considerations
have led to the selection of Constraint Logic
Programming as the main optimization methodology,
which is further enforced by a local search approach to
enhance the ability to find very good solutions in
reasonable times. Our main goal is to create a conceptual
model and a solving tool that can be effectively adopted
in real applications: even though other techniques could
probably have better computational performance, they
are more rigid and the risk of having to start from scratch
when passing to the next fashion collection was
considered too high.

The paper is organized as follows: a literature review is
presented and the best organization for the free pairs
picking order system is proposed in section 2. In section 3
the adopted Constraint Programming approach is
described; the model for assigning shoeboxes to their
locations in the floor storage system is analysed in section
4. In section 5 the implementation of the model is
described and computational results are summarized.
Simulation experiments, described in section 6, are
performed in order to evaluate the proposed model from
an operational point of view. Finally, conclusions are
proposed in section 7.

2. The manual order picking system:
literature review and proposed organization

The three main decisions involved in the order picking
process are the storage policy, i.e., how to store the stock-
keeping units (SKUs) in the warehouse facilities, the
picking policy, concerning which SKUs should be placed
on the list of a single picker, and the routing policy,
identifying the picking travel path to be followed when
retrieving SKUs to fulfil customer orders [2, 6].

Concerning the picking policy, Ackerman [7] identifies
three basic picking approaches: strict-order picking,
where a picker is responsible for retrieving all the items
of a single order per tour; batch picking, where a picker
retrieves a set of orders per picking tour; zone picking,
where a picker is responsible for retrieving all items
stored in a given zone. Two main criteria can be
identified for batching [8]: the proximity of pick locations,
or time windows. In the latter case, all orders arriving
during the same time period are grouped as a batch.

These basic approaches can be combined as described in
[9] to form mixed picking strategies. In particular, wave
picking can be considered for time-based batching with
zone picking, i.e., a picker is responsible for retrieving all
SKUs in his zone within a given period (the pick wave).
Yu and de Koster [10] developed a queuing network
theory model to assess the impact of batching and zoning
on the order picking performance of a given system.

Int. j. eng. bus. manag., 2013, Vol. 5,
Special Issue Innovations in Fashion Industry, 24:2013

2 www.intechopen.com

In the case of the free pair floor storage system, initial
benefits can be achieved by organizing pallets into
picking zones corresponding to the different classes of
final consumers, i.e., women, men, children, and babies,
leading to a family-based storage assignment strategy as
described in [11]. This retains the major advantages of
zone picking, i.e., the limited space the picker has to
traverse to pick an order, the increased familiarity of the
picker with a subset of the SKUs, and the reduced order
picking time if zones are picked in parallel [3]. In the
apparel market the aggregation of SKUs in such families
is natural or is induced by speciality catalogues [11].

Since in the analysed shoe firm shipment truck
departures are at fixed times within a day, we can fix pick
waves so that items retrieved from the floor storage
systems and from the carton warehouse can be properly
sorted and loaded into trucks.

Petersen and Aase [12] underlined how the capacity of
the routing policy to affect time performance in a manual
order picking system is significantly lower than for the
batching or storage policy. Therefore, we imagine pickers
adopting a simple return policy [13], i.e., the picker enters
and exits an aisle from the same side, rather than
adopting more sophisticated routes such as those
recognized in [14] for their Travelling Salesman Problem
optimal algorithm, which are rather difficult to be
followed by pickers.

Because of the great variety of SKUs and hardly
predictable arrivals/retrievals, a picker should be aided in
his or her simple route within an aisle of his zone by a
storage policy which supports shoebox identification. In
the Italian shoe company analysed, a major problem in
managing the floor storage system is the time spent by a
picker to find the locations where the required shoeboxes
are stacked. If shoeboxes were stacked so that a picker
could rely on a physical scheme that resembles the
aggregation by Model, Type, Colour and Sizes of shoes for
a given family, this could be expected to reduce picking
time dramatically. This leads to a particular kind of Storage
Location Assignment Problem (SLAP), which has been
modelled and solved as described in the following sections.

3. The Constraint Programming methodology

The Storage Location Assignment Problem for fashion
free pairs can be formalized as a Constraint Satisfaction
Problem (CSP), where values representing the MTCS
characteristics of shoeboxes to be stored are assigned to
available locations (variables), subject to a set of
constraints. A cost function can be associated with
variable assignments, so that the minimum cost solution
can be identified, leading to a Constraint Optimization
Problem (COP).

Constraint Programming (CP) is a programming
methodology that allows encoding and solving of CSPs
and COPs [15]. CP splits problem encoding into two
parts: the modelling phase and the solving phase. In the
former, the problem is modelled using constraints
between variables that need not be linear, unlike in
Linear Programming, Integer Linear Programming, or
Mixed Integer Programming; non-linear cost functions
can also be used. The programmer can then rely on a
constraint solver to find solutions. The constraint solver
systematically explores the whole solution space,
alternating assignment steps with constraint propagation
steps. The programmer can improve the performance of
this phase by adding heuristics based on the particular
structure of the problem.

As underlined in [16], due to their expressive
representation constraint-based systems are good for
modelling complex problems, including real-life and day-
to-day decision-making processes in an enterprise.
Compared with techniques such as genetic algorithms,
simulated annealing, and tabu-search, they are usually
easier to modify and maintain. Moreover, these
techniques can be embedded within the search heuristics
of a constraint solver, so that advantages of both
approaches can be exploited.

Among the various systems for CP, Constraint Logic
Programming (CLP) is the most mature constraint
programming methodology (the first definition can be
traced back to [17]). CLP languages allow a declarative
easy encoding, where the focus is on describing
properties the desired solution should have, rather than
on establishing a procedure to find it.

Free CLP systems such as Gprolog and ECLiPse Prolog
are available, as well as commercial systems such as
SICStus Prolog and B-Prolog that are easy to install and
used in all the platforms, and which allow code
portability from one system to another. These
characteristics can be suitable especially for small
enterprises, traditionally affected by lack of resources,
which can access CLP tools at low cost.

CLP has been successfully used in several industrial
applications since the 1990s [18], while more recent
research fields embrace alert system location [19],
computational biology [20], and project-driven
manufacturing [16]. Recent surveys on both CLP and its
applications can be found in [21].

Thus, CLP is adopted as the main methodology in this
paper; however, it is combined with the local search
method Large Neighbourhood Search [22] in order to
improve its performance.

Antonella Meneghetti: Exploiting Fashion Features for Floor Storage Systems in the Shoe Industry 3www.intechopen.com

4. Modelling the storage location assignment
problem for fashion free pairs

The warehouse is considered as a sequence of floor pallets,
organized into aisles. One side of each pallet is associated
with a given aisle; the other side belongs to the
previous/following aisle (see Figure 1). Given standard sizes
of both pallets and shoeboxes, each pallet can contain up to
maxcol columns of shoeboxes on both sides, stacked up to
maxbox units (usually maxbox ≤ 10 to ensure stack stability), for
a maximum of maxcol×maxbox boxes per pallet side.

Pallets are set in “U shape” and numbered progressively as
shown in Figure 1. All available locations (the variables) in
our storage system are uniquely identified by a tuple (a, p, c, i)
of integers describing the number of the aisle (a), the number
of the pallet (p) within a given aisle (p∈[1..maxpal]), the
number of the column c occupied in the pallet (c∈[1..maxcol]),
and the slot i (i∈[1..maxbox]) in the analysed column.

The maximum allowed number of pallets per aisle maxpal
can be increased during a season to face periods of
increasing storage requirements by simple adding pallets
at the back front (upper side of Fig. 1). On the other hand,
when space-saving becomes crucial in order to devolve
space for the successive season collection, maxpal can be
reduced.

When warehouse floor size, inventory quantities, and
available operators lead to a preference for long aisles,
then the model should support different stocking/picking
behaviours or a different number of operators for each
long front of a given aisle. This can be easily achieved by
splitting aisles into their two fronts (left and right sides of
aisle axis) and by assigning a different aisle index to each
of them in the model.

Figure 1. The a-th aisle with 10 pallets in U shape and five
boxes/pallet side

Each SKU is represented by a shoebox, which is
characterized by an integer code ranging from 1000 to
99999.

Thousand digits represent the model of shoes; given the
high variety required by fashion products, 99 different
models are considered in the current case. The model
codes should be assigned consecutively to similar models.
Every shoe model can be realized in different materials
coded by the hundred digit, thus allowing 10 different
combinations (numbered 0-9) per model. Each model-
material combination can be proposed to customers in
different colours, represented by the decade digit, thus
considering 10 alternatives. Finally, shoes are
characterized by their size, described in our code by the
unit digit. Ten different sizes per shoe model are
considered, taking into account the different measures
required by men, women, children, and babies. Therefore,
an integer code of four to five digits of the type MTCS
(Model 1-99, material Type 0-9, Colour 0-9, and Size 0-9)
is assigned to each shoebox. If more
models/parts/colours/sizes are needed to match with
actual cases, the number of related digits can be
appropriately increased, moving to greater integers.
When a location is assigned to a shoebox, the related
variable is set to its MTCS code; otherwise it is set to zero.

4.1 Constraints and cost functions

A set of constraints is imposed so that symmetries of
solutions are broken: the goal is to avoid spreading of
solutions generated by permutation of the same boxes
within a column or the same columns within a pallet.
Therefore, columns are filled in a bottom-up way
resembling actual stacking of shoeboxes during storage
operations. Each pallet is filled from the first to the last
column without empty stacks in the middle.

Another set of constraints is related to similarity
characteristics of shoeboxes. To force similar shoes to be
stacked together, boxes assigned to a column must belong
at least to the same shoe model. Thus, all values xa,p,c,_
assigned to every location of a given column c in pallet p
of aisle a must present the same thousand digits (see Eq.
1, where i and j are any two locations within the same
column c). Furthermore, boxes stacked in the same pallet
must be characterized by similar models. We define the
parameter maxmod as half the length of the range of
consecutive models, centred on the first column model.
By the constraints in Eq. 2 a number of only 2×maxmod
consecutive models can be assigned to a given pallet. For
example, if the column 1 model has the code 12 and
maxmod is set to 4, then only model codes from 8 to 16 are
allowed in that pallet. Maxmod should be selected based on
the number of models to be stored in the planning
horizon (i.e., fashion models of a seasonal collection) and

Int. j. eng. bus. manag., 2013, Vol. 5,
Special Issue Innovations in Fashion Industry, 24:2013

4 www.intechopen.com

available columns. When very little space is available in
the warehousing system, this constraint should be
removed so that model variability within a pallet is
enhanced.

int(xa,p,c,i/1000) = int(xa,p,c,j /1000) ∀(a,p,c) (1)

|int(xa,p,1,_/1000) - int(xa,p,c,_/1000)| ≤ maxmod ∀(a,p,c) (2)

Finally, the number of non-zero variables (i.e., the
locations to be occupied) should be exactly equal to the
number of new entering boxes and their values must be
chosen from among their integer codes.

When multiple zones are managed together, a family-
based allocation should be preserved to enhance pickers’
capability of fast retrieval, and constraints linking models
of the same family (e.g., woman, man, child, or baby
shoes) to a zone (i.e., to a set of aisles) should be added.

To speed up manual retrieval operations, workers should
rely on a logical scheme of shoe distribution along aisles,
so that similar shoes (i.e., characterized by consecutive
integers) are stacked as close together as possible. The
cost function ����	to be minimized is made up of five
different contributions, which resemble the proximity
requirement of similar shoeboxes, as shown in Equation
(3):

���� � 	∑ ������ � �������� � ������� � �	∑ ������ � �������� �	�� (3)

It is desirable to store shoes so that they differ only in size
(the unit digit) in the same column, so that workers can
easily retrieve them based on client reorders. To force
boxes with similar integer codes to enter the same stack, a
column cost ����� 	is calculated for every column c with a
new entering box, as the sum of the difference between
each in-box code and the codes of shoeboxes already
stacked, plus the difference of codes between every
combination (without repetition) of any two entering
boxes assigned to that column. If R is the set of locations
within a column already filled with shoeboxes during
past replenishments, and V is the set of available locations
that are being evaluated for the current solution, then:

����� ������������ � ���������
������

�																				

∑ ��������� � ���������������� 					∀��� �� �� (4)

For example, if two boxes with codes 1001 and 1002 are
assigned to column s, where a box of code 1000 has
already been stacked in a previous replenishment, then
the cost of column s will be:

����� = |1001-1000|+|1002-1000|+|1001-1002| = 4

In order to minimize the number of different shoe codes
within a column, the cost contribution is set to zero for a
new box with a code already present in the stack, and
new boxes with the same code are counted only once for
a given column.

To force boxes with the same model, type and colour
(MTC) into the same stack without excessive column
fragmentation, cost �������� 	is introduced to fill a new
column (c* in Equation 3). In this way, splitting of boxes
differing only by their unit digit (i.e., their size) is
discouraged. We set �������� 	equal to the column cost ������ in
the worst of still-desirable cases, when new boxes are
characterized by the same MTC but all different
sequential sizes. If codes are sorted in decreasing order,
any box code differs from the successive ones for a
quantity growing from 1 to its unit value n, as can be seen
in Figure 2 for maxbox = 10.

Based on Eq. 4, ������ can be evaluated as:

������ � ∑ ��� � ��/2����������
��� (5)

�������� 	should be greater than ������ 	to discourage a new
column occupation, when boxes are characterized by the
same MTC. Thus, we set �������� equal to the nearest integer
multiple of 5. In the case shown in Figure 2, where five
columns are allowed and 10 boxes are stacked per
column, ������ =165 and �������� =170.

Figure 2. A pallet filled by identical-MTC shoeboxes within a
column and by successive colours in stacks

Sometimes, boxes with similar integer codes, can present
the same cost ����� 	and could be forced into the same
column even if they have different colours (e.g., boxes
1009 and 1011 have two units difference just as boxes
1007 and 1009, but they have different colours, not just
different sizes). Thus, a weight equal to �������� 	is added to
Eq. 4 to distinguish these particular cases, so that filling
another column is allowed when enough space is
available in the warehouse.

Antonella Meneghetti: Exploiting Fashion Features for Floor Storage Systems in the Shoe Industry 5www.intechopen.com

Within a given pallet p, it is desirable to obtain the most
similar shoes, so comparisons between all the boxes in
that pallet are performed by calculating a pallet cost ����� .
This is very similar to the column cost ����� , but
encompasses all the (maxbox×maxcol) possible locations,
considered as a unique column of maxbox×maxcol elements.
Therefore, the same rules for column cost calculation (see
Eq. 4) are applied to the pallet cost component ����� ,
without adding any weight.

As in the column case, it is desirable to discourage
occupation of an excessive number of pallets. In the worst
of desirable cases for a new pallet, boxes in each column
differ only by size (the unit digit), and columns differ
from each other only in their shoe colours (i.e.,
progressive decade digits are considered). In such a
situation, the pallet cost component will be equal to ������
(see Eq. 6). We introduce a slightly greater empty pallet
cost ��_����∗ , equal to the nearest integer multiple of 10
whenever a new pallet p* is occupied, to avoid splitting of
same size and colour boxes among too many pallets.

������ � ∑ ��� � �� �⁄�����������������
��� (6)

Finally, a proximity cost is introduced to force similar
shoes to occupy adjacent pallets. This cost component is
calculated by the average sum of difference between the
model code of any new column c* (see constraints in sect.
4.1) and model codes of non-empty stacks (�� in total)
occupying the previous and the following pallet, as
shown in the following (Eq. 7).

������∗ � �
�� �∑ ���� ���,�,�∗,_���� � � ��� ���,���,�,_���� ��������

��� �
																					∑ ���� ���,�,�∗,_���� � � ��� ���,���,�,_���� ��������

��� � (7)

Since cost components have different magnitudes because
of the different numbers of pair-wise comparisons
involved, weights are introduced in order to
counterbalance them.

This problem differs from the classic bin-packing
formulation [23], where the aim is maximizing the value
of items packed or minimizing wasted space. In our case,
instead, space is regarded as a constraint rather than as
the objective function, and shoeboxes have no different
values. Our goal is to enhance fast picking operations, so
pallets can be left empty or only partially filled
intentionally, if this is expected to aid pickers in SKU
identification. This is also a major difference in
comparison with so-called bin-oriented heuristics, in
which bins are added and packed one at a time [24]. The
analysed problem cannot be considered as variable-size
bin-packing, as termed in [25], where bins have different
sizes and the goal is to pack items into the set of bins with
the smallest total size. Even if during a fashion season

stack height (maxbox) can be varied based on inventory
levels, this constraint is maintained equal for all the
pallets within a given picking zone. It cannot even be
regarded as an extensible bin-packing problem, as
defined in [26], where bins may be extended to hold more
than the usual unit capacity. The cost of a bin is 1 if it is
not extended, and is equal to its size if it is extended. The
goal is to pack a set of items of given sizes into a specified
number of bins so as to minimize the total cost. In our
case, pallet capacity can be increased as described above;
however, the number of pallets to be filled is not an input
of the problem, but only a capacity constraint.

5. Solving by Constraint Logic Programming

A program was written in SICStus Prolog to solve the
problem, encompassing the three typical steps of the CLP
approach: (1) define the domain of each variable; (2)
declare problem constraints; (3) search for a good feasible
solution or find the optimal one exploring the whole
search tree by branch and bound techniques.

Two heuristics are proposed to be used while exploring
the search tree, in order to reach good solutions faster
than built-in procedures provided by the CLP over finite
domains (CLP(FD)) solver of SICStus Prolog [27]. The
variable choice heuristic and the value choice heuristic
are described in the following sect. 5.1. In sect. 5.2
computational results of the CLP implementation are
provided, while in sect. 5.3 a local search approach is
added in order to improve performances.

5.1 The search heuristics

The variable-choice heuristic controls the order in which the
next variable is selected for assignment. Empty locations in
partially occupied columns are selected as the first variables
to be assigned, then empty columns in partially occupied
pallets are considered, and empty pallets are selected at the
end. This selection should force new in-boxes to be stacked
near similar already-stored SKUs, whenever possible. To
enhance the ability to find good solutions fast, random
permutation within the two groups of empty columns is
performed.

In the value-choice heuristic, instead, a hierarchical
procedure is proposed to identify alternative values to be
assigned to a given variable when a branch fail occurs. The
following hierarchy of choices is adopted:

1. The value assigned to the previous selected variable, if
different from zero;

2. A feasible value with same MTC as the last assigned
variable, if different from zero, in increasing order;

3. A feasible value with same MT as the last assigned
variable if different from zero, in increasing order;

4. A feasible value with same M as the last assigned

Int. j. eng. bus. manag., 2013, Vol. 5,
Special Issue Innovations in Fashion Industry, 24:2013

6 www.intechopen.com

variable if different from zero, in increasing order;
5. A feasible value with characteristics different from the

last assigned one, if different from zero, in increasing
order;

6. If the last assigned value was zero, a feasible positive
value should be chosen in increasing order;

7. Eventually, set the variable to zero, thus leaving the
related location empty.

The reference value for the first variable is set to the lowest
entering box code. The position of step 7 within the above
hierarchy of choice is made dynamic based on the
percentage of space available in the floor storage system.
When the warehouse has less than 20% of locations already
occupied, enough space is available to storage boxes
preserving their MTC characteristics, i.e., stacking into the
same column boxes differing only by their size. In this case
step 7 is shifted soon after step 2 and the selected variable is
set to zero immediately after failing step 2. As the number of
available locations becomes lower and lower, stacking of
boxes with different characteristics in the same or a nearby
column becomes more probable. Therefore, step 7 is
progressively moved after each following step with every
20% increase of occupied space, becoming the last possible
choice if more than 60% of locations are already occupied.

This heuristic, which exploits the features of the analysed
problem, was easily encoded in the CLP solver; this would
be more difficult in other optimization frameworks (like ILP
for instance).

An iterative procedure moving towards lower and lower
cost values was implemented in order to find the best
feasible solution available when the time-out condition is
eventually reached. Its performances are compared to those
of the built-in “minimize” procedure, when the number of
available locations in the floor storage systems (i.e., the
variables) and the number of in-boxes are progressively
increased.

5.2 CLP computational results

Experiments were run on a Windows Vista laptop (Intel
Core 2 Duo, 2.4 GHz, 3 GB).

Any input configuration can be described by three different
parameters: the number of in-boxes to be stored, the size of
the floor storage system (i.e., number of locations), and the
percentage of locations already occupied. The last two
parameters are related to the number of variables to be
assigned and therefore to the size of the problem. The former
is associated with the number of non-zero variables to be
assigned.

Initially, experiments were performed involving three pallets
and five boxes per stack, for a maximum of 75 available

locations when the floor storage system were empty, i.e., at
the beginning of reorders for a seasonal collection. This
relatively small sample allowed testing of all the “minimize”
labelling options provided by SictusProlog, which required
very similar runtimes (about 7 s). Generally, when entering
boxes are more similar (e.g., same M, MT or even MTC)
runtimes increase (see Table 1). The variable choice and
value choice heuristics do not improve the built-in minimize
procedure performance and this is because all the solutions
must be generated in order to identify the optimal one.

In Boxes 75 vars 250 vars 500 vars
5 different M 0.12 47.58 271.90
5 consecutive M 0.78 173.41 708.63
5 same MTCS 0.05 4.22 17.62
5 same MTC 5.19 455.74 > 1500.00
5 same MT 6.78 549.13 > 1500.00
5 same M 6.87 554.85 > 1500.00

Table 1. Runtimes of the built-in minimize procedure [min]

Relative performances of labelling options remain even
when a partially filled storage system is adopted (20%,
40%, 60% and 80% of already-filled locations were
considered), but runtimes become lower and lower as the
number of available locations decreases. The ability of the
heuristics to find the best solution faster than the built-in
procedures, however, results when fewer than all the
solutions are generated, for example when it is required
to find the assignment related to a given cost. In Table 2,
runtimes of the built-in procedure are compared to those
of the proposed heuristics, when the best solution is
already known. Heuristics lead to dramatically lower
runtimes (from a minimum of 52 times for consecutive M
to 3890 times for boxes with same MTC).

When the size of the floor storage system is increased in
terms of locations to be assigned, and the size of the
problem (i.e., the number of variables) consequently
grows, runtimes of the minimize approach become
unacceptable. With 10 pallets per aisle, several hours are
required to reach the optimum, even when only five
boxes per column are considered (i.e., 250 variables; see
Table 1). If 10 boxes are allowed to be stacked into a
column (the extreme situation in real applications),
runtimes for some instances exceed one day of
computation. Furthermore, increasing the number of
entering boxes to be located (i.e., the number of non-zero
variables to be assigned) dramatically raises runtimes.
For 10 boxes with very different models and 75 available
locations, runtime is 4 hours (versus 7.2 seconds for five
entering boxes).

By adopting a feasible solution strategy instead of an
optimal one, floor storage system size and entering boxes
can be increased obtaining good solutions in more
reasonable times.

Antonella Meneghetti: Exploiting Fashion Features for Floor Storage Systems in the Shoe Industry 7www.intechopen.com

In Boxes Built-in [s] Heuristics [s]
5 same MTCS 2.761 0.016
5 different M 2.012 0.063
5 consecutive M 12.303 0.234
5 same MTC 120.619 0.031
5 same MT 114.751 0.062
5 same M 117.016 0.062

Table 2. Run times [s] when the minimum cost is imposed and
75 available locations considered

Heuristics prove their force in managing similar entering
boxes, which obtained the worst runtimes with the
minimize approach (see Table 2). For five same-MT
entering boxes we obtained the optimal solution in one
iteration in 0.079 s, 0.25 s and 0.749 s for 75, 250, 500
available locations respectively in an empty system,
which are dramatically lower times than the related ones
in row 5 of Table 1. For five different M boxes, runtime is
0.063 s.

To simulate actual situations in the shoe industry,
experiments were run taking into account 10 up to 40
entering boxes and a floor storage system of 10 pallets in
one aisle (multiple aisles are managed by a family-based
allocation policy and zone picking; therefore, heuristics
are supposed to be applied to each family/zone
separately). A 60% available storage capacity is
considered: for a five-boxes-per-column configuration,
100 filled locations and 150 empty ones are taken into
account. With 10 very different M in-boxes, the minimize
approach requires about one day of computational time,
while the heuristic-based CLP search is able to reach a
solution 7% from the optimal one in one hour and a half
(see Table 3).

Even if runtime has been drastically reduced, it is still
much too long for real applications.

Table 3 highlights how heuristics are able to reach a
solution 15% from the optimal one in a very low time (100
s), but further improvements are quite time-consuming.
This is the reason why a local search approach was
introduced, as explained in the following section.

Strategy Cost Δ%
[min]

Runtime
[min]

Minimize 2415 0% 1473.3

Heuristics
2775 15% 1.7
2595 7% 92.8

Heur + LNS1 2415 0% 2.2

Table 3. Runtimes for a 250 location system with 60% available
capacity and 10 very different M in-boxes.

5.3 Coupling CLP with Large Neighbourhood Search

To further improve the ability to obtain a near-
optimal/optimal solution with lower and lower

computational times, a local search procedure is added
after obtaining a good solution with the above-mentioned
heuristics.

In particular a Large Neighbourhood Search (LNS) is
adopted [22]. An LNS algorithm is an iterative process
that destroys a part of the current solution at each
iteration using a chosen neighbourhood definition
procedure and re-optimizes it, hoping to find a better
solution. The neighbourhood procedure selects a subset
of variables, the so-called “free variables” (FV) that
should be reassigned, while maintaining the others
unchanged as in the current solution. The constraint
structure of the model is preserved in order to find only
feasible solutions, and this makes LNS particularly
suitable to be coupled with Constraint Programming.
Moreover, any local search technique is a particular case
of LNS, where a small number (typically two) of
variables can be chosen as free variables at each
iteration.

In our case, top positions of the good solution are
randomly made variable again and reassigned in order to
lower the cost function. In the first strategy (LNS1), two
kinds of moves are allowed for a given solution: two
boxes on the top of related columns can be switched, or a
box can be removed from the top of its column and
stacked on the top of another column. Thus, the first
empty location of each column and the top location
occupied by an entering box are selected to become FV
and be reassigned. The number of FV to be managed by
an LNS1 run is kept low by randomly extracting from
among the selected top locations (2×maxcol×maxpal in the
worst case), starting with a narrow group of variables and
increasing its size if no improved solutions can be found.
To this end, LNS1 resembles a standard local search
strategy based on hill climbing.

After obtaining a good solution in a relatively small time
(total time-out at 100 s), the iterative LNS1 procedure
(sect. 5.3) is added with a global time-out of 100 s, in
order to make the improvement phase faster. Results are
shown in the last row of Table 3: only 132 s are needed on
average to reach the optimal solution.

The number of entering boxes was then increased to 20,
30 and 40 with 10 different models, thus introducing a
certain degree of similarity (for 40 boxes, two same-MTCS
+ two same-MT boxes per model), as the actual “free
pairs” generation process suggested. The number of runs
for the CLP heuristic phase and the maximum number of
runs and time-out per run for the LNS1 phase had to be
identified by trial and error to find a proper balance.

Since heuristics (H) are more time–consuming because of
the greater number of variables, the mixed CLP + LNS1
approach consists of one iterative heuristic-based

Int. j. eng. bus. manag., 2013, Vol. 5,
Special Issue Innovations in Fashion Industry, 24:2013

8 www.intechopen.com

procedure and two iterative LNS1 procedures in turn,
starting from the same initial good solution (every two
LNS1 solutions are compared and the worst discharged).
Results for a maximum number of 150 LNS1 runs per
time are shown in Table 4).

In box

R
uns H

Tim
e H

 [s]

Tout LN
S1

[s]

M
in cost

Best found cost

M
ean cost

Std dev

Total tim
e[m

in]

20 8 27 2 5152 5152 5174 15 2.6
30 5 96 4 8779 8779 8951 156 5.5
40 3 20 5 13,306 14,177 14,869 411 4.3

Table 4. Results for mixed heuristics (H) + LNS1 strategy

While for 10 and 20 in-box instances performances are very
good in terms of both costs and runtimes (see Table 4, last
row, and Table 5), the ability of the LNS1 strategy to reach
the minimum-cost solution becomes worse and worse as
the number of in-boxes is increased up to 40 entering boxes
and four boxes per model. Moving only two boxes per time
during the LNS phase does not allow very low-cost
solutions to be reached, and local minima are encountered.
In order to improve performances while maintaining
runtimes at reasonably low levels, the LNS2 strategy is
introduced.

In this second strategy, FV identification is based on
characteristics of the shoeboxes to be stored: we call
maxImod the greatest number of boxes with the same
model in the input flow. Thus, we make assignable a
random number of locations ranging from 1 to maxImod of
each empty column in the current good solution, i.e., we
allow empty columns to be filled in the improved
solution. For partially occupied columns, a random
number of top locations ranging from 1 to maxImod are
made potentially re-assignable, i.e., we allow some in-
boxes to be removed from a column and stacked into
another one, if this move improves the solution. To lower
the number of FV to be managed by an LNS2 run,
however, we randomly extract from among the selected
partially occupied columns, increasing the probability of
re-assigning as no improved solutions can be found with
the current FV cardinality.

FV are then reassigned by using the CLP heuristics
strategy, using the iterative backtracking approach. Since
LNS2 is itself based on a random extraction of variables,
random permutation within the three groups of variables
in the variable-choice heuristic (see sect. 5.1) is removed.
In this way, we capitalize on the sorting process provided
by the CLP heuristics to obtain a good starting solution
and leave shifting of boxes to LNS’s ability to improve a
given configuration faster.

To overcome the problem of local minima typical of a
local search approach, LNS2 strategy is empowered with
a sort of Monte Carlo method, i.e., the current solution is
randomly worsened to allow different search paths to be
undertaken.

In box

Tim
e H

 [s]

R
uns LN

S2

Tout [s]

M
in C

ost

Best f. cost

M
ean cost

Std dev

Δ%
 m

in

Total tim
e

[m
in]

30 89 150 4 8779 8779 8847 56 0.8 6.9

40 20 100 8 13,306 13,311 13,463 109 1.2 7.7

Table 5. Results for mixed heuristics (H) + LNS2 strategy

To keep runtimes as low as possible while decreasing the
solution cost, only one iterative LNS2 procedure is
performed after the heuristics phase. Results are shown in
Table 5.

The percentage difference of the mean cost to minimum
cost is drastically lower for the LNS2 strategy than for the
LNS1 one (1.17% versus 10.51% for 40 in-boxes); standard
deviation of solutions is also reduced. These results
confirm how LNS moves should be linked to the number
of entering boxes per model to be effective. The best
solution found in 10 successive runs equals the minimum
cost for 30 in-boxes and approximates it for 40 in-boxes
(see Table 5). If a multiprocessor machine is used, several
runs can be concurrently launched and therefore the best
cost can be detected from among all the solutions found.
In this case, there are very good chances of finding the
optimal solution in a few minutes.

6. Assessing picking performance by simulation

In order to assess if stacking shoeboxes by the proposed
model leads to improved picking time, experiments were
performed by using Arena simulation software.

Actual data on arrivals and retrievals of free pairs during a
whole seasonal collection were gathered from a well-
known Italian shoe company and used in simulation runs.

The “women’s” zone was modelled, since female
consumers are more sensitive to fashion developments
and women’s catalogues generally propose the greatest
variety of MTC combinations. For the analysed spring
collection, 35 different models, with an average of two
materials and two colours per model, became free pairs
and entered the shop floor system, with 10 boxes per
replenishment and five boxes per pick tour on average.

Based on actual data, a single aisle of 10 pallets was
sufficient to face fashion free pairs space requirements.
The column height was set to five shoeboxes to avoid

Antonella Meneghetti: Exploiting Fashion Features for Floor Storage Systems in the Shoe Industry 9www.intechopen.com

stack tumble during picking operations, but was
increased up to 10 boxes whenever an entering MTCS
combination presented more than five units to be stored.
When a column is made up of identical shoeboxes, a
picker can pull boxes from the top of higher stacks
without any fall problem. Therefore, stack height can be
increased up to upper bounds of stability, in order to
enhance fast identification and space savings.

We imagine storage operations to be performed during
idle periods, i.e., when workers are not involved in
picking operations (e.g., in later afternoon or early
morning). Therefore, the floor storage system is updated
with new assignments once a day before pick waves
start.

We consider as a basic scenario for comparisons a closest
storage policy as termed in [28], or equivalently the “First
Fit” heuristic as it is usually called in the bin-packing
problem [23]. Every item to be stored is put on the first
column on which it fits, starting from partially occupied
pallets and opening a new one whenever needed. This
choice comes from the evidence stated in [3] that if order
pickers could choose the location for storage themselves it
would be likely to be the first empty location
encountered.

As underlined in [5], one can affect the behaviour of this
simple heuristic by choosing how to sort the SKUs on the
list. Therefore we tried two different sorting methods: the
arriving order in the shop-floor system and the increasing
code number. The rationale for the former is to allow
replenishments to be split in order to exploit idle periods;
for the latter, it is to weakly introduce MTCS
characteristics while preserving the First Fit heuristic ease
of use. The former heuristic is marked simply as FF and
the latter FFmtcs; the proposed storage assignment model
is referred to as CLP.

Picking time was split into three main components: travel
time, identification time, and handling time. Travel time
involves times for entering and exiting the floor storage
system and routing among pallets. Identification time is
mainly related to the number of boxes a picker should
scan in order to recognize the shoe pair to be retrieved,
plus other minor contributions for reading the picking list
and memorizing box codes. As concerns the handling
process, it comprises removing a shoe box from its stack,
placing it on the cart and re-stacking boxes dropped on
the floor, if necessary. Based on the position of the
shoebox to be retrieved within a column, we can
differentiate between a slow pick and a fast pick. If the
shoebox is on the top, it can be fast removed by the
picker, but whenever it occupies middle or bottom
locations, extraction time increases, depending on the
stack height loading the served location.

Figure 3. Picking times for First Fit-, FFmtcs- and CLP-based
allocations for a whole female collection

The walking speed was set to 110 feet/minute lowering
common values for manual picking (see [11, 12, 29]) to
adhere to the particular configuration of a floor storage
system. Identification and handling times were
determined by both time study and predetermined time
standards [30].

Results for the analysed women’s collection are shown in
Figure 3. Picking time is recorded from the moment a
picker enters the floor storage system to the moment all
free pairs in the picking list have been retrieved and can
be moved to the sorting station, where they will be
coupled with boxes from the main shelves-based
warehouse in order to meet demand. The picking list is
completely known when a pick wave starts and no idle
times are considered.

Adopting the proposed CLP methodology, 51% total time
savings in comparison with FF and 48% in comparison with
FFmtcs were achieved across the whole seasonal collection.

As expected, reduction in identification time is the most
important contribution: CLP leads to a 75% decrease in
comparison with FF and a 73% reduction compared to
FFmtcs. This is directly linked to the number of boxes to
be scanned. If the CLP storage policy is adopted, a
picker can estimate the range of models that are stacked
within a pallet by simply reading the code of a single
box, due to the constraint in Eq. 2. If none of the boxes
to be retrieved can be allocated in the current pallet, he
or she can move immediately to the next pallet. With FF
and FFmtcs policies, all boxes should be scanned pallet
after pallet. Furthermore, with CLP storage a picker can
read the code of only the top box in each column to
recognize whether it contains the desired model, thanks
to the constraint in Eq. 1.

Handling time is also reduced by 21% in comparison with
FF and 17% compared to FFmtcs by adopting the CLP
policy, since similarity of shoeboxes within a column
improves the probability of fast removals.

0

1000

2000

3000

4000

5000

FF FFmtcs CLP

Picking time [s]

Handling

Identification

Travel

Int. j. eng. bus. manag., 2013, Vol. 5,
Special Issue Innovations in Fashion Industry, 24:2013

10 www.intechopen.com

Travel time, on the other hand, increases by 65%
compared with FF and by 61% in comparison with
FFmtcs by adopting the CLP policy, because a greater
number of pallets is employed to store shoeboxes based
on their characteristics, while the First Fit heuristics
occupy as few pallets as possible. As can be seen in
Figure 3, however, travel time accounts for a minor part
of total picking time and therefore it is counterbalanced
by improvements gained in the other two time
components.

FFmtcs is not able to fully capitalize on MTCS
characteristics of shoeboxes to the same extent as the CLP
assignment model. Sorting the storage list by MTCS code
leads to weak improvements in picking time, but even
this highlights how involving MTCS characteristics in
assignment models positively affects picking
performance.

7. Conclusions

Floor storage systems represent a highly flexible low-cost
solution for a temporary inventory or a seasonal business.
When a great variety of products in very small quantities
should be managed in the short term, the effort of
combining space savings and fast picking operations
leads to the need for rational allocation of items along
aisles and within pallets.

In the shoe industry, where different fashion products are
proposed collection after collection, a picker should rely
on a logical stacking of shoeboxes, based on their
characteristics in terms of model, material, colour and
size. In this way, similar products are likely to be stored
in positions close to each other and their identification
can be faster, even in the absence of sophisticated
recognition systems. Simulation experiments show how
storing shoeboxes by adopting the proposed shoe
features-based allocation model halves total picking time
in comparison with common closest-open-location
techniques.

Mixing Constraint Programming and Large
Neighbourhood Search (thus generalizing either CP or
LS) was revealed as a powerful methodology for solving
such allocation problems in floor storage systems.
Computation times for very good solutions are low
enough to allow the proposed methodology to be applied
in real warehousing of seasonal low-quantity high-variety
products. A case study of a well-known Italian shoe
company highlighted how allocations of fashion
shoeboxes in the floor storage system are generally
performed once or twice per day. Runtimes provided by
the CP+LNS solving methodology appear adequate for
such a planning period, even when a high number of
product classes and aisles should be considered to

efficiently manage order picking. Given the complexity of
the problem, even with a small number of entering
shoeboxes, such timely results could hardly be reached
by traditional optimizing approaches.

Furthermore, the declarative nature of CLP allows the
programmer to easily describe what properties are
required for the desired solution. Requirements can be
modified, added or deleted to adapt to a dynamic
industrial environment without changing the basic
model, only declaring new constraints, which are not
limited to being linear. This enables adaptation to and
transfer into different industrial realities. Furthermore,
search heuristics exploiting the features of the particular
problem are easily embedded in the CLP method.

In the analysed decision-making scenario, the flexibility
of CLP is invaluable for developing a warehousing tool
that can be used collection after collection. Shoe
collections differ from one another in seasonal and
fashion characteristics, thus affecting stacking
requirements. Moreover, different clients’ behaviours can
impact on picking strategy; storage solutions should
therefore be able to speed up operations and offer a quick
response to clients, according to the demands of the
fashion market. The proposed CLP-based methodology
provides the required ability to customize solution
properties while still maintaining the basic conceptual
model.

8. References

[1] Tompkins JA, White JA, Bozer YA, Frazelle E,

Tanchoco JMA (2003) Facilities Planning, John Wiley
& Sons, New Jersey.

[2] Gu J, Goetschalckx M, McGinnis LF (2007) Research
on warehouse operation: A comprehensive review.
European Journal of Operational Research 177: 1-21.

[3] de Koster R, Le-Duc T, Roodbergen KJ (2007) Design
and control of warehouse order picking: A literature
review. European Journal of Operational Research
182: 481-501.

[4] Sharp GP (2001) Warehouse Management. In:
Salvendy G, editor. Handbook of Industrial
Engineering, John Wiley & Sons, New York 2083-2109.

[5] Bartholdi JJ III, Hackman ST (2011) Warehouse &
Distribution Science. Release 0.95, Supply Chain &
Logistics Institute, Georgia Inst. Tech. Available:
http://www2.isye.gatech.edu/~jjb/wh/book/editions/
history.html. Accessed 14 May 2013.

[6] Gu J, Goetschalckx M, McGinnis LF (2010) Research
on warehouse design and performance evaluation: A
comprehensive review. European Journal of
Operational Research 203: 539-549.

[7] Ackerman KB (1990) Practical Handbook of
Warehousing. Van Nostrand Reinhold, New York.

Antonella Meneghetti: Exploiting Fashion Features for Floor Storage Systems in the Shoe Industry 11www.intechopen.com

[8] Choe K, Sharp GP (1991) Small parts order picking:
design and operation. Georgia Tech Research Corp.
Available:
http://www.isye.gatech.edu/logisticstutorial/order/
article.htm. Accessed November 2010.

[9] Frazelle EH, Apple JM (1994) Warehouse Operations.
In: Tompkins JA, Harmelink DA, editors. The
Distribution Management Handbook, McGraw-Hill,
New York 221-236.

[10] Yu M, de Koster RBM (2009) The impact of order
batching and picking area zoning on order picking
system performance. European Journal of
Operational Research 198: 480-490.

[11] Ruben RA, Jacobs FR (1999) Batch Construction
Heuristics and Storage Assignment Strategies for
Walk/Ride and Pick Systems. Management Science
45(4): 575-596.

[12] Petersen CG, Aase G (2004) A comparison of picking,
storage, and routing policies in manual order
picking. International Journal of Production
Economics 92: 11-19.

[13] Hall RW (1993) Distance approximations for routing
manual pickers in a warehouse. IIE Transactions
25(4): 76-87.

[14] Ratliff HD, Rosenthal AS (1983) Order-Picking in a
Rectangular Warehouse: A Solvable Case of the
Traveling Salesman Problem. Operations Research
31(3): 507-521.

[15] Rossi F, van Beek P, Walsh T (2006) Handbook of
Constraint Programming, Elsevier Science Inc., New
York, USA.

[16] Banaszak ZA, Zaremba MB, Muszynski W (2009)
Constraint programming for project-driven
manufacturing. International Journal of Production
Economics 120: 463-475.

[17] Jaffar J, Lassez JL (1987) Constraint Logic
Programming. Proceedings of POPL 1987: 111-119.

[18] Jaffar J, Maher MJ (1994) Constraint Logic
Programming: A Survey. Journal of Logic
Programming 19/20: 503-581.

[19] Avanzini F, Rocchesso D, Belussi A, Dal Palù A,
Dovier A (2004) Designing an Urban-Scale Auditory
Alert System. IEEE Computer 37(9): 55-61.

[20] Dal Palù A, Dovier A, Fogolari F, Pontelli E (2010)
CLP-based protein fragment assembly. Theory and
Practice of Logic Programming 10: 709-724.

[21] Dovier A, Pontelli E (2010) A 25 year perspective on
Logic Programming. LNCS 6125, Springer Verlag,
Berlin.

[22] Shaw P (1998) Using constraint programming and
local search methods to solve vehicle routing
problems. Proceedings of CP ’98, Springer Verlag,
London UK, 417–431.

[23] Johnson DS (1974) Fast Algorithms for Bin-Packing.
Journal of Computer and System Sciences 8: 272-314.

[24] Fleszar K, Charalambous C (2011) Average-weight-
controlled bin-oriented heuristics for the one-
dimensional bin-packing problem. European Journal
of Operational Research 210: 176-184.

[25] Murgolo FD (1987) An efficient approximation
scheme for variable-sized bin packing. SIAM Journal
on Computing 16(1): 149-161.

[26] Coffman EG, Lueker GS (2006) Approximation
Algorithms for Extensible Bin Packing, Journal of
Scheduling 9: 63-69.

[27] Carlsson M, Ottosson G, Carlson B (1997) An Open-
Ended Finite Domain Constraint Solver. Proc.
Programming Languages: Implementations, Logics,
and Programs, LNCS 1292, Springer Verlag, 191-206.

[28] Hausman WH, Schwarz LB, Graves SC (1976)
Optimal Storage Assignment in Automatic
Warehousing Systems. Management Science 22(6):
629-638.

[29] Chan FTS, Chan HK (2011) Improving the
productivity of order picking of a manual-pick and
multi-level rack distribution warehouse through the
implementation of class-based storage. Expert
Systems with Applications 38: 2686-2700.

[30] Matias AC (2001) Work measurement: principles and
techniques. In: Salvendy G, editor. Handbook of
Industrial Engineering: Technology and Operations
Managements, John Wiley & Sons, New York 1410-
1462.

Int. j. eng. bus. manag., 2013, Vol. 5,
Special Issue Innovations in Fashion Industry, 24:2013

12 www.intechopen.com

