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Organophosphates are usually found in the environment with other pesticides and with pollutants of 
industrial origin can cause combined exposure involving unknown interactions between the agents. In 
this study, female Wistar rats were given 1/25 LD50 of dimethoate by gavage, combined with the same 
LD50 fractions of propoxur and cypermethrin or with arsenic (6.66 mg kg-1). The doses were given from 
day 5 to 15 of pregnancy, or that plus for the 4 weeks of lactation, or that plus 8 weeks for the male 
offspring after weaning. Control rats received distilled water. Electrophysiological recording was done 
when the male offspring reached 12 weeks of age. Spontaneous activity and evoked potentials from the 
somatosensory, visual and auditory cortex; and conduction velocity and absolute and relative refractory 
periods of the tail nerve were measured. The general trend was a shift of the spontaneous cortical activity 
to higher frequencies and increase in the evoked potential latency. The results showed that combined 
exposure to several environmental toxicants could be more harmful than the effects of each substance 
alone, indicating the importance of combination toxicology in modelling human effects. Furthermore, 
these results emphasize the importance of avoiding toxic exposures in pregnant and nursing women.
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Human production, including industrial and 
agricultural production, has led to considerable 
environmental pollution, and to human exposure to a 
number of xenobiotics. Insecticides have had a large-
scale application in agriculture and in vector control. 
The selectivity of insecticides is imperfect, so that their 
presence in the environment, and consequently in 
food and drink, can result in human toxic exposure.

Organophosphates (OPs) (1) are known to 
permanently inhibit acetylcholinesterase (2). In human 
OP poisoning, a variety of nervous system effects 
have been observed, including abnormal EEG (3) and 
peripheral neuropathy (4). The EEG effects of OPs in 
humans have been confirmed in animal experiments 

(5, 6) and effects on the evoked cortical activity have 
been also found (7, 8). Dimethoate (DIM), the OP 
used in this study, is moderately toxic for humans (9) 
and has been in use in many countries. In our earlier 
experiments, low dose DIM was applied in different 
administration modes and timing schemes, including 
three-generation model (6, 10), and was found to 
alter neurophysiological parameters in the exposed 
generation and their offspring.

Carbamates are another group of insecticide 
agents acting on the cholinesterase (11). However, 
their effect is reversible (12). In accidental poisonings, 
propoxur (PRP), the carbamate used in this study, 
elicited typical symptoms of cholinergic hyperactivity, 
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although atropine-like effects following PRP exposure 
are also known (13). Further mechanisms to be 
taken into consideration are the effect of PRP on 
ATP-dependent ionic balance (first of all, calcium) 
(14), leading to synaptic dysfunction. In animal 
experiments, a single dose of ca. 1/10 LD50 caused 
a 60 % drop in cholinesterase activity and marked 
disturbances in higher nervous functions (15). PRP 
is primarily an agent of domestic insect control and 
anti-malarial measures (12), often resulting in direct 
human contact. Pyrethroids, synthetic analogues of 
the insecticide component of Pyrethrum plant extract, 
are widely used as insecticides because of their high 
insecticidal potency, low mammalian toxicity and 
biodegradability (16). The primary target of pyrethroids 
are Na+ channels (17, 18), but Ca2+ channels are also 
affected (19). Pyrethroids also inhibit ATPases (20, 
21), and various receptors (22–25). Cypermethrin 
(CYP), the substance used in this study, belongs to 
type II pyrethroids exhibiting central neurotoxicity 

(26). Poisoning by type II pyrehtroids is manifested 
in hypersensitivity, choreoathetosis, tremors and 
paralysis (27, 28).

Anthropogenic environmental arsenic originates 
mostly from mining and smelting of certain ores and 
also from coal burning (29). The principal source of 
non-occupational arsenic intake are food, drinking 
water and air (30). Inorganic arsenic is a well-known 
human poison (31). Arsenic affects the central and 
peripheral nervous system of humans (32), producing 
neuropathy manifested in electromyographic and 
nerve conduction velocity alterations (33). Children 
living near an arsenic-emitting coal-fired power plant 
exhibited a moderate hearing loss (34). Exposure to 
elevated levels of arsenic in drinking water increases 
the risk of cerebrovascular disease and cerebral 
infarction (35). Altered transmitter levels, abnormal 
behaviour (36), and electrophysiological and motility 
changes (37) were observed in rats treated chronically 
with inorganic arsenic.

Combined exposure to the above mentioned 
xenobiotics is not unlikely. Exposure to several 
insecticides is possible in those who apply them 
professionally or at home, or through residues in food. 
For arsenic, a typical source of population exposure 
(e.g. in south-east Hungary) is the natural As in 
drinking water (38). Therefore, rats in this study were 
exposed to a combination of DIM+PRP+CYP (DPC 
combination), or DIM+arsenic (AsD combination) in 
a scheme involving the phases of ontogenesis.

METHODS

One group of pregnant female Wistar rats 
of ca. 250 g body weight was orally receiving a 
combination of 1/25 LD50 doses of dimethoate (28.2 
mg kg-1 b.w.) plus propoxur (3.4 mg kg-1 b.w.) and 
cypermethrin (22.2 mg kg-1 b. w.) in sunflower oil (DPC 
combination), and another group a combination of 
1/25 LD50 doses of dimethoate (28.2 mg kg-1 b. w.) 
and arsenic (NaAsO2, 6.66 mg kg-1 b. w.) in distilled 
water (AsD combination). Control groups (CON) 
received the vehicle, oil or water alone. The substances 
were applied daily by gavage, from the 5th to 15th day 
of pregnancy (P protocol), or from the 5th to 15th day of 
pregnancy + for 4 weeks of lactation (P+L protocol), 
or from the 5th to 15th day of pregnancy + for 4 
weeks of lactation + male offspring (F1 generation) 
treated for another 8 weeks after weaning (P+L+PLP 
protocol). This treatment scheme, based on the 
OEDC Guideline No. 414, includes the period of 
organogenesis (P protocol), and simulates milk-borne 
exposure of babies from exposed mothers during 
rapid postnatal development (P+L protocol) and later 
exposure experienced after weaning. It proved to be 
usable in detecting the developmental effects on the 
nervous system by several environmental chemicals 
including dichlorvos (8), the combination of DIM and 
lead (39), and mercury (40).

The neurophysiological parameters were 
investigated in F1 male offspring (10 animals per 
group, see Table 1 for all groups) at 12 weeks of age. 
Their body weight was recorded weekly and used as 
indicator of development.

In urethane anaesthesia (1000 mg kg-1), the animal’s 
head was fixed in a stereotaxic frame, the skull was 
opened and the left hemisphere exposed. Following 
ca. 30 min recovery, a silver recording electrode was 
placed on the primary somatosensory (SS), visual 
(VIS) and auditory (AUD) areas and electrocorticogram 
(ECoG) was recorded simultaneously from these sites 
for 6 minutes. Sensory stimuli (in a series of 50 with 
1 Hz repetition frequency) were then applied and the 
cortical evoked potentials (EPs) recorded from the 
same sites. For somatosensory stimulation, a pair 
of needles were inserted between the contralateral 
whiskers and fine electric shocks were delivered. 
For visual stimulation, flashbulb flashes (1 Hz, 60 lx) 
were directed to the contralateral eye via an optical 
conductor. Acoustic stimulation was performed by 
clicks (1 Hz, 40 dB), led through the hollow ear bar 
into the contralateral ear of the rat.
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The ECoG analysis provided the frequency 
power spectrum by bands (delta to gamma). On the 
cortical EPs, latency and duration of the main waves 
were measured manually after averaging. Following 
electrophysiology, the animals were sacrificed by an 
overdose of urethane, dissected, and organ weights 
measured. Relative organ weights were calculated on 
the basis of brain weight.

From the primary data, group averages were 
obtained and compared by one-way ANOVA with 
LSD post hoc test, after the Kolmogorov-Smirnov 
normality check.

This study has been carried out under GLP 
conditions (certificate No. 3011/48/2003). The 
principles of the Ethical Committee for the Protection 
of Animals in Research of the University were strictly 
followed.

RESULTS

General effect on the development

The development of the F1 generation male rats, 
monitored by the body weight gain, is shown in Figure 
1. In the DPC treated groups, a slight, apparently 
treatment-protocol-dependent weight loss developed 

when compared to the controls, but the weight 
differences were significant only in the last two weeks. 
In the AsD treated groups, the treatment had no 
noteworthy effect on the body weight gain.
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Table 1  Relative organ weights of animals in different combinations and treatment protocols. DPC, dimethoate-propoxur-cypermethrin combination; 
AsD, dimethoate-arsenic combination. CON, untreated; P, treated during pregnancy; PL, treated during pregnancy and lactation; PLP, 
treated during pregnancy, lactation and in the post-weaning period (see Methods for details of treatment).

Groups Braina Liverb Lungsb Heartb Kidneyb Spleenb Thymusb Adrenal
glandsb

DPC
subgroups

CON 0.453
±0.029

6.711
±0.604

0.997
±0.067

0.657
±0.0499

1.4613
±0.133

0.375
±0.033

0.260
±0.047

0.036
±0.005

P 0.509*
±0.031

6.396
±0.623

1.201
±0.422

0.666
±0.099

1.399
±0.099

0.242
±0.055

0.221
±0.054

0.039
±0.006

PL 0.491*
±0.036

6.050*
±0.815

1.066
±0.129

0.595*
±0.072

1.327*
±0.145

0.320
±0.046

0.263
±0.036

0.036
±0.004

PLP 0.563*
±0.045

5.159*
±0.547

0.961
±0.146

0.572*
±0.063

1.224*
±0.094

0.256*
±0.032

0.214*
±0.032

0.034
±0.005

AsD
subgroups

CON 0.498
±0.040

7.170
±0.642

0.993
±0.113

0.708
±0.066

1.271
±0.085

0.307
±0.036

0.260
±0.050

0.031
±0.005

P 0.495
±0.019

6.729
±0.668

1.007
±0.059

0.592*
±0.039

1.289
±0.105

0.255*
±0.048

0.202*
±0.041

0.028
±0.005

PL 0.455
±0.034

7.122
±0.425

1.0676
±0.130

0.67407
±0.048

1.357*
±0.118

0.308
±0.048

0.260
±0.060

0.035
±0.006

PLP 0.468*
±0.034

8.384*
±1.212

0.951
±0.099

0.721*
±0.077

1.345*
±0.114

0.318
±0.064

0.277
±0.061

0.029
±0.004

Mean±SD, n=10. *p<0.05 treated vs. control.
a brain weight related to 100 grams of body weight.
b organ weight related to brain weight.

Figure 1 Body weight gain of the control and treated F1 male rats (A: 
dimethoate+propoxur+cypermethrin [DPC] combination; 
B: dimethoate+arsenic [AsD] combination). Abscissa: 
postnatal weeks. Ordinate: body weight gain in grams 
(group mean+SD, n=10). Insert: bar pattern for the treatment 
groups (CON, control; P, treated during pregnancy; PL, 
treated during pregnancy and lactation; PLP, treated during 
pregnancy, lactation, and in the post-weaning period for the 
male offspring; see Methods for further explanation). *p<0.05 
treated vs. control.
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The organs measured, most notably the liver, 
the kidneys and the heart, showed significant weight 
alterations in both combinations (Table 1). However, 
DPC-treated rats seem to have suffered greater organ 
damage because the trend of alterations showed 
clearer dependence on the treatment protocol. The 
changes in brain weight (shown as relative brain weight 
in Table 1) were significant in the PLP protocol with 
AsD treatment and in all DPC-treated groups.

Effects on the ECoG

The insecticide combination (DPC) caused a 
moderate increase in the activity of the fast (beta 2 
and gamma) bands (Figure 2, left bars), which was 

significant only in the auditory cortex. A corresponding 
decrease in slow activity was the most marked in the 
visual area, where the treatment protocol-dependent 
trend was also the clearest. The effect of the AsD 
combination (Figure 2, right bars) was an increase in 
delta and decrease in alpha and beta 1 bands, with no 
change in the fastest two bands. The changes were 
significant mostly in the somatosensory and visual 
areas where the proportionality of the changes and the 
treatment protocol, which determined the summed 
dose, was also the clearest.

Effect on the cortical EPs

DPC treatment changed the parameters of the 
EPs in all three cortical areas (Figure 3). The latency 
of the somatosensory EP decreased and its duration 
increased. The latency of the visual EP increased, 
showing clear treatment protocol dependence, and 
significance in case of PLP treatment. Here, the 
change of the duration was less characteristic. In case 
of the auditory EP, the latency increase was significant 
without any treatment protocol-dependence, and 
the duration increase was significant only in the 
P+L+P treatment group. In the groups receiving AsD 
combination treatment, the changes in the parameters 
of the cortical evoked potentials were equivocal (not 
shown).

DISCUSSION

The effects of the applied combinations on the 
body weight gain and on the organ weights were 
generally mild, indicating low general toxicity of 
the doses applied. Arsenic in the same dose, given 
to young adult rats for up to 12 weeks, failed to 
cause significant organ weight alterations (39). In an 
experiment involving 6-week exposure, PRP and the 
OP methyl parathion had no effect on weight gain and 
a moderate effect on liver and kidney weight (42).

The effect of the DPC combination on the ECoG, 
decrease of the slow and increase of the fast waves, 
was in accordance with previous observations. With 
DIM alone, used in the same dose as in this work, 
increasing ECoG mean frequency was seen in 
dependence of treatment protocol, that is, summed 
treatment time (6). Dési and Nagymajtényi (8) 
described the same effect with another OP, dichlorvos. 
The known common target of OPs and carbamates, 
acetylcholinesterase, would suggest a common 

Figure 2 Frequency distribution of the spontaneous cortical 
activity (ECoG) in the three cortical areas recorded (SS, 
somatosensory; VIS, visual; AUD, auditory cortex). Abscissa: 
control and treated groups, marked as in Figure 1. Left bars, 
DPC (dimethoate+propoxur+cypermethrin); right bars, 
AsD (dimethoate+arsenic). Ordinate: relative power of the 
frequency bands (insert: bar pattern for the bands). *p<0.05 
vs. the same band in the control group.
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mechanism on cortical functions (1, 12). Regarding 
the cholinergic mechanism of the ascending cortical 
activation system (43), cholinesterase inhibitors 
increased cortical activity, which was observed in the 
form of a shift to higher frequencies in ECoG waves. 
The effect of CYP, a pyrethroid, cannot be linked with 
one transmitter system (22-25) so it can only be said 
that the ECoG frequency shift in the DPC-treated 
rats probably reflected the effect of DIM and PRP. 
Moreover, CYP and OP have been reported not to 
interact (44).

Arsenic has an additional effect on the cholinergic 
system. The inhibition of muscarinic receptors 
(45) and the interference of As with dopaminergic 
neurotransmission (45) may have contributed to the 
slowing of ECoG seen in our study, and these effects 
were apparently not counteracted by DIM.

The increase in the EP latency upon OP 
administration was described in several of our 
laboratory studies (8, 10). This time, the effect in the 
DPC-treated rats was absent in the somatosensory 
EP, possibly due to the presence of CYP.

Given alone during ontogenesis, the effect of 
As on the EPs was slight (37). This time, the AsD 
combination had no noteworthy effect on the evoked 
activity. This may partly be due to the opposite effect 
of OPs and As on cholinergic modulation of cortical 
activity.

Combined experimental exposure of rats to 
the mentioned environmental pollutants during 
ontogenesis affected several endpoints. Body weight 
and organ toxic effects were minor, indicating that the 

observed actions on the nervous system were target-
specific and not secondary to a general toxic effect. 
Within them, spontaneous cortical activity seemed 
to be a better indicator of the neurotoxic effect of 
these substances than the forms of evoked activity 
studied. Indicators of this kind can be developed into 
biomarkers, applied in the assessment and follow-up 
of human risk from environmental xenobiotics, above 
all in more vulnerable groups within the population 
such as pregnant women, babies or small children.
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Sažetak

PROMJENE U AKTIVNOSTI SREDIŠNJEGA ŽIVÈANOG SUSTAVA ŠTAKORA TRETIRANIH 
TIJEKOM FAZA ONTOGENEZE DIMETOATOM, ORGANOFOSFORNIM INSEKTICIDOM U 
KOMBINACIJI S DRUGIM TOKSIKANTIMA

Organofosfati su u okolišu obièno prisutni zajedno s drugim pesticidima i mogu uzrokovati uz oneèišæivaèe 
industrijskog podrijetla, kombiniranu izloženost koja uzrokuje interakcije meðu spojevima. U radu su 
ženke štakora soja Wistar tretirane oralnom intubacijom s 1/25 LD50 dimetoata kombiniranog s 1/25 LD50 
propoksura i cipermetrina ili s arsenom (6,66 mg kg-1). Tretmani su bili: od 5. do 15. dana trudnoæe; 
ili  od 5. do 15. dana trudnoæe i 4 tjedna za vrijeme laktacije; ili od 5. do 15. dana trudnoæe, 4 tjedna za 
vrijeme laktacije i 8 tjedana potomcima mužjacima nakon polijeganja. Kontrolna skupina štakora tretirana 
je samo destiliranom vodom. Na potomcima mužjacima je nakon 12 tjedana provedeno elektrofiziološko 
snimanje. Mjerena su spontana i podražajno izazvana aktivnost iz somatosenzorskih, vizualnih i auditivnih 
kortikalnih podruèja, brzina provoðenja i apsolutni i relativni periodi otpora repnog živca. Opæe promjene 
bile su pomak u spontanoj kortikalnoj aktivnosti na više frekvencije te poveæanje latentnog perioda kod 
podražajno izazvanog potencijala. Rezultati su pokazali da izlaganje kombinacijama toksikanata iz okoliša 
može biti štetnije od uèinaka svakog od toksikanata zasebno, upuæujuæi na važnost ispitivanja uèinaka 
kombinacija razlièitih toksikanata na ljudsko zdravlje. Rezultati osobito upuæuju na važnost izbjegavanja 
izlaganja trudnica i dojilja toksikantima. 

KLJUÈNE RIJEÈI: insekticidi, neurotoksiènost, razvoj, štakor, teški metali
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