FENOTIPSKA I GENETSKA POVEZANOST PRINOSA MLEKA I MLEČNE MASTI SA OSOBINAMA TELESNE RAZVJENOSTI I TIPOA U POPULACIJI CRNO - BELIH GOVEDA

D. Latinović, Ij. Lazarević, M. Katić, P. Stojić

Uvod

Novija orijentacija u proizvodnji mleka predstavlja isključivo osobine koje pridonose većoj ekonomskoj efikasnosti populacija goveda. To su prvenstveno prinos mleka i mlečne masti, na koje deluje kompleks genetskih faktora kao i faktora okoline. Prema tome, osnovni preduslov za brži genetski napredak u proizvodnji mleka je stalno utvrđivanje naslednosti i povezanosti sa drugim osobinama. U posljednjih 10 godina intenzivira se rad na ovom problemu i primena u praktičnim odgajivačkim programima. Raniji literaturni podaci pokazuju da je genetska povezanost između proizvodnje i tipa vrlo slaba ili ne postoji. Međutim, većina istraživanja pokazuje drugačije trendove. Rezultati ukazuju na postojanje negativne povezanosti sa izuzetkom mlečnih karakteristika, što ne znači da će selekcija na tip i proizvodnju biti neefikasna, već da postoji veoma malo bikova koji su pozitivni u oba pravca u poređenju sa situacijom kada su korrelacije nula ili pozitivne. Rezultati takođe pokazuju ako se tip potpuno zanemari može doći do ozbiljnih nedostataka u nekim funkcionalno bitnim osobinama. S obzirom da su korrelacije slabe do srednje, potrebno je posvetiti pažnju proizvodnji i nekim važnijim osobinama telesne razvijenosti i tipa kako bi se izbegla regresija ovih osobina.

Na primer, studije sa Cornell University - USA sadrže istraživanja na osnovu kojih je utvrđeno da su krave sa čvrsto vezanim vremenima često izlučivane zbog oštećenja i organizaciono tehničkih problema. Veoma čvrsto vezana prednja vremena mogu da budu fiziološki nekompatibilna sa visokom proizvodnjom mleka (White i Vinson, 1976).

Cilj ovog rada je da se na odbranom uzorku prikažu trendovi u fenotipskoj i genetskoj povezanosti osobina proizvodnje mleka, procjenjene telesne grade i telesnih mera crno-belih goveda.

Materijal i metod rada

Dr. Dušan Latinović, docent, dr. Ljubomir Lazarević, redovni profesor, su sa Poljoprivrednog fakulteta u Beogradu - Zemunu, a dipl. inž. Milovan Katić i dipl. inž. Petar Stojić su iz IN "Agroekonomik" - PKB.
masti su utvrđivani "A" kontrolom, a telesne dimenzije su merene litinovim štapom i pantičikom. Vizualna procena telesne razvijenosti i tipa se zasnivala na lincarnom prekidanom sistemu sa ocenama od 1 do 9. Ocena 5 predstavlja prosek izuzev za ravnotežu vimeca, veličinu sisa, položaj karlice i zadnjih nogu kada se ocenama iznad i ispod proseka ocenjuju nedostaci.

Obrada podataka je izvedena na principima matematičke statistike personalnim računarom (PC) u Institutu za naučna istraživanja PKB-a pomoću programa LSMLMW (Harvey, 1985). Primijenjen je sledeći model:

\[Y_{ij} = \mu + O_i + b_1(x - \bar{x}_i) + b_2(x - \bar{x}_2) + e_{ij}, \] u kome su:

- \(Y_{ij} \) = vrednost osobine \(j \)-te krave koja potiče od \(i \)-og oca,
- \(\mu \) = opšte prosek populacije pri jednakom broju ponavljanja po klasama,
- \(O_i \) = fiksni uticaj bika-oca krave,
- \(b_1 \) i \(b_2 \) = linearni regresijski uticaj farme i proporcije holštajn gena u genotipu krave,
- \(e_{ij} \) = ostali nedeterminisani uticaji,
- \(\bar{x}_1 \) i \(\bar{x}_2 \) = prosečne vrednosti osobina.

U prethodnim analizama su korišćeni i drugi modeli. Međutim, na principu "korak po korak" nisu dobijeni rezultati u okviru granica bioloških odnosa između osobina zbog ekstremno neizbalansiranih uzoraka unutar korišćenih fiksnih klasa. Značenje oznaka u tabelama rezultata je sledeće:

I. PROIZVODNE OSOBINE - Productive Traits
1. PMCL - Prinos mleka u celoj laktaciji (kg)
 MYWL - Milk Yield in the Whole Lactation (kg)
2. SMMCCL - Sadržaj mlečne masti u celoj laktaciji (%)
 CMFWCL - Content of Milk Fat in the Whole Lactation (%)
3. PMMCL - Prinos mlečne masti u celoj laktaciji (kg)
 YMFCL - Yield of Milk Fat in the Whole Lactation (kg)
4. PMSL - Prinos mleka u standardnoj laktaciji (kg)
 MYSL - Milk Yield in the Standard Lactation (kg)
5. SMMSL - Sadržaj mlečne masti u standardnoj laktaciji (%)
 CMFSL - Content of Milk Fat in the Standard Lactation (%)
6. PMMSL - Prinos mlečne masti u standardnoj laktaciji (kg)
 YMFSL - Yield of Milk Fat in the Standard Lactation (kg)
II. OSOBINE TELESNE RAZVJENOSTI I TIPI - Body Conformation and Type Traits

1. VPV - Vezanost prednjeg vimena
 FUA - Fore Udder Attachment
2. VZV - Visina zadnjeg vimena
 HRU - Height of Rear Udder
3. ŠZV - Širina zadnjeg vimena
 WRU - Width of Rear Udder
4. CL - Centralni ligament
 CS - Center Support
5. DV - Dubina vimena
 UD - Udder Depth
6. RV - Ravnoteža vimena
 UB - Udder Balance
7. PS - Položaj sisa
 TP - Teats Placement
8. VS - Veličina sisa
 TL - Teats Length
9. VG - Visina grebena
 ST - Stature
10. MK - Mlečne karakteristike
 DC - Dairy Characteristics
11. SK - Snaga i kapacitet
 SC - Strength and Capacity
12. ŠK - Širina karlice
 PV - Pelvic Width
13. PK - Položaj karlice
 PA - Pelvic Angle
14. PZN - Položaj zadnjih nogu
 RLS - Rear Legs Set

III. TELESNE MERE - Body Measurements

1. VIGR - Visina grebena
 WH - Wither Height
2. DUGR - Dubina Grudi
 GD - Girth Depth
3. ŠIKU - Širina kukova
 WH - Width of Hips
4. ŠIKA - Širina karlice
WR - Width of Rump
5. OBGR - Obim grudi
GC - Girth Circumference

Jačina povezanosti između osobina je diskutovana prema Roemer - Orphalovoj klasifikaciji koju navodi Tavčer, 1946.

Rezultati istraživanja i diskusija

Prosečno trajanje laktacije je iznosilo 323 dana sa 5479,5 kg mleka i 221 kg mlečne masti. U standardnoj laktaciji je ostvareno 5292,8 kg mleka i 212,6 kg mlečne masti. Analiza varijanse i F-test su pokazali značajan do visoko značajan uticaj bikova-očeva (P<0,05 i 0,01). Regresijski uticaj farmi je bio visoko značajan (P<0,01) izuzev za trajanje laktacije i sadržaj mlečne masti (P>0,05). Uticaj proporcije holištaj gena nije bio značajan za sve osobine proizvodnje mleka (P>0,05).

Prosečne vrednosti ocena telesne razvijenosti i tipa su bile oko 5,0 sa izuzetkom za snagu i kapacitet (X = 6,2). Uticaj bikova-očeva je bio visoko značajan (P<0,01) isključujući širinu zadnjeg vimeča visinu i položaj karlice (P>0,05). Regresijski uticaj farmi i proporcije holištaj gena nije bio značajan (P>0,05).

Prosečne vrednosti telesnih mera su iznosile 126,8 cm za visinu grebena, 43,6 cm za širinu karlice, 64,8 cm za dubinu grudi i 182,3 za obim grudi. Utvrđen je visoko značajan uticaj bikova-očeva (P<0,01), odnosno nesignifikantan regresijski uticaj farmi i proporcije holištaj gena (P>0,05).

Genetska povezanost između proizvodnje mleka i telesne razvijenosti i tipa je prikazana u tabeli 1.

Prilikom izračunavanja genetskih korelacija veoma često dolazi do poteskoća koje se uglavnom odnose na kompoziciju korišćenog uzorka. Naime, za dobijanje pravilnih bioloških odnosa između osobina neophodno je da postoji dovoljan broj klasa i podklasa sa rezultatima. U slučaju neizbalansiranih uzoraka, značajan uticaj na konačan rezultat može da ostvari primenjeni metod odnosno model. U ovom radu su korišćeni svi raspolaživi modeli u cilju optimalnog izbora pristupa kako bi se dobili objektivniji rezultati. S obzirom da se većina genetskih korelacija odnosi na povezanost između merenih i subjektivno ocenjivanih svojstava, manja ili veća neslaganja treba kritički uvažavati kako po veličini koeficijenata tako i po smjeru povezanosti. Realnija sagledavanja bi omogućila postojanje standardnih grešaka.
Rezultati pokazuju da postoji saglasnost u veličini koeficijenata između cele grade i standardne laktacije. Raspon koeficijenata za svojstva grade i razvijenosti vimenja je iznosio od $r_G = -0,823$ i $r_G = -0,733$ između širine zadnjeg vimenja i sadržaja mlečne masti, do $r_G = 0,629$ i $r_G = 0,642$ između položaja sisa i prinosa mleka u celoj odnosno mlečne masti u standardnoj laktaciji. Jake i vrlo jake koleracije ($r_G = od 0,5 do 0,9$) pozitivne ili negativne mogu da posluže kao pokazatelj određene ravnoteže između ispitivanih osobina koja bi u daljim istraživanjima poslužila kao početni uporedivi pokazatelj. Konačna odluka za korišćenje genetskih korelacija u selekcijske svrhe treba da se zasniva na većem broju analiza i u dužem vremenskom periodu.

Tab. 1. — Genetske korelacije (r_G) između osobina proizvodnje mleka i ocena telesne razvijenosti i tipa

<table>
<thead>
<tr>
<th>Osobine Traits</th>
<th>PMCL MYWL</th>
<th>SMMCL CMFWL</th>
<th>PMMCL YMFWL</th>
<th>PMSL MYSL</th>
<th>SMMSL CMFSL</th>
<th>PMMSL YMFSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VPV FUA</td>
<td>-0,406</td>
<td>0,095</td>
<td>-0,517</td>
<td>-0,439</td>
<td>0,057</td>
<td>-0,558</td>
</tr>
<tr>
<td>2. VZV HRU</td>
<td>-0,447</td>
<td>0,107</td>
<td>-0,443</td>
<td>-0,400</td>
<td>0,077</td>
<td>-0,454</td>
</tr>
<tr>
<td>3. ŠZZ WRU</td>
<td>0,283</td>
<td>-0,823</td>
<td>0,001</td>
<td>0,581</td>
<td>-0,733</td>
<td>0,200</td>
</tr>
<tr>
<td>4. CL CS</td>
<td>-0,030</td>
<td>-0,417</td>
<td>-0,170</td>
<td>0,230</td>
<td>-0,494</td>
<td>-0,096</td>
</tr>
<tr>
<td>5. DV UD</td>
<td>0,478</td>
<td>-0,613</td>
<td>0,286</td>
<td>0,536</td>
<td>-0,433</td>
<td>0,484</td>
</tr>
<tr>
<td>6. RV UB</td>
<td>0,218</td>
<td>-0,402</td>
<td>0,093</td>
<td>0,229</td>
<td>-0,300</td>
<td>0,123</td>
</tr>
<tr>
<td>7. PS TP</td>
<td>0,629</td>
<td>0,130</td>
<td>0,616</td>
<td>0,637</td>
<td>0,086</td>
<td>0,642</td>
</tr>
<tr>
<td>8. VS TL</td>
<td>0,075</td>
<td>0,566</td>
<td>0,281</td>
<td>0,264</td>
<td>0,490</td>
<td>0,334</td>
</tr>
<tr>
<td>9. VG ST</td>
<td>0,234</td>
<td>-0,179</td>
<td>0,290</td>
<td>0,089</td>
<td>0,006</td>
<td>0,103</td>
</tr>
<tr>
<td>10. MK DC</td>
<td>0,371</td>
<td>-0,229</td>
<td>0,307</td>
<td>0,414</td>
<td>-0,151</td>
<td>0,353</td>
</tr>
<tr>
<td>11. SK SC</td>
<td>-0,189</td>
<td>0,254</td>
<td>-0,038</td>
<td>-0,474</td>
<td>0,415</td>
<td>-0,390</td>
</tr>
<tr>
<td>12. ŠK PW</td>
<td>-0,280</td>
<td>1,000</td>
<td>0,098</td>
<td>-0,207</td>
<td>1,000</td>
<td>0,014</td>
</tr>
<tr>
<td>13. PK PA</td>
<td>-1,000</td>
<td>0,679</td>
<td>-0,727</td>
<td>-0,793</td>
<td>0,620</td>
<td>-0,839</td>
</tr>
<tr>
<td>14. PZN RLS</td>
<td>0,798</td>
<td>-0,931</td>
<td>0,546</td>
<td>0,406</td>
<td>-0,832</td>
<td>0,131</td>
</tr>
</tbody>
</table>

STOČARSTVO 44:1990 (5—6) 161—173
Raspon koeeficijenata za osobine grade i razvijenosti tela je iznosio od \(r_G = -1,000 \) i \(r_G = -0,839 \) između položaja karlice i prinosa mleka u celoj, odnosno mlečne mast i u standardnoj laktaciji, do \(r_G = 1,000 \) između širine karlice i sadržaja mlečne masti. Dobijenu vrlo jaku do potpunu zavisnost treba prihvatiti uslovno pošto razvijenost i položaj karlice nisu najbitnije osobine koje za tip goveda sa naglašenom proizvodnjom mleka predstavljaju glavni pokazatelj genetske veze sa prinom mleka i mlečne masti. Realniji odnosi su dobijeni za povezanost sa mlečnim karakteristikama (\(r_G = 0,371 \) i 0,414). Genetska povezanost između telesne razvijenosti, tipa i proizvodnje mleka je ispitivana u manjim obimu što pokazuju i dosta oskudni literaturni rezultati. Vrednosti koeeficijenata se odnose na različite rase goveda, sisteme kontrole i procjenjivanja, regione i metode izračunavanja. Međutim, uporedivost rezultata omogućava diskutovanje jačine povezanosti.

Norman i sar. (1988) su utvrdili raspon genetskih korelacija od \(r_G = -0,46 \) između prinosa mlečne masti i razvijenosti prednjeg vimenca, do \(r_G = 0,75 \) između prinosa mleka i mlečnih karakteristika. Autori zaključuju da u odsustvu proizvodnih rezultata procjena mlečna svojstva mogu biti značajna za predviđanje prinosa mleka u prvoj laktaciji.

Norman i sar. (1983) navode niske pozitivne genetske korelacije sa izuzetkom sa procjenjenim mlečnim svojstvima (\(r_G = 0,48 \) i 0,44). Povezanost sa sadržajem mlečne masti je bila jako slaba, pozitivna ili negativna, dok je u ispitivanjima Van Vleck-a i sar. (1980) korelacija između proizvodnje mleka i ocena karlice bila \(r_G = 0,29 \). White i Vinson (1976) su dobili sve negativne jako slabe i slabe korelacije osim sa mlečnim svojstvima (\(r_G = 0,41 \)). Rennie i sar. (1951) smatraju da je genetska korelacija između tipa i proizvodnje mleka od \(r_G = 0,245 \) manje praktične vrednosti i da selekcija samo na tip može ostvariti mali napredak u prinosu mlečne masti.

Meyer Karin i sar. (1987) konstatuju da su genetske korelacije prinosa mleka i mlečne masti sa tipom slabe sa najvećim vrednostima za širinu karlice (\(r_G = -0,35 \) i 0,28), dubinom vimenca (\(r_G = -0,52 \)) i položajem siva (\(r_G = 0,38 \)). Prosečan koeeficijent u radu Johnson-a i sar. (1960) je iznosio \(r_G = 0,370 \).

Fenotipska povezanost između proizvodnje mleka i telesne razvijenosti i tipa je prikazana u tabeli 2.

Rezultati pokazuju da je raspon korelacija između \(r_r = -0,122 \) (između visine grebena i sadržaja mlečne masti u celoj laktaciji) i \(r_r = 0,266 \) (između mlečnih karakteristika i prinosa mleka u standardnoj laktaciji). Posmatrano u celini,

Tab. 2. — Fenotipske korelacije (r_p) između osobina proizvodnje mleka i ocena telesne razvijenosti i tipa

<table>
<thead>
<tr>
<th>Osoblje Traits</th>
<th>PMCL MYWL</th>
<th>SMACL SMFWL</th>
<th>PMACL YMEWL</th>
<th>PMCL MYSL</th>
<th>SMMSL CMPSL</th>
<th>PMMSL YMFSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VPV FUA</td>
<td>0,117</td>
<td>0,024</td>
<td>0,116</td>
<td>0,155</td>
<td>0,010</td>
<td>0,134</td>
</tr>
<tr>
<td>2. VZV HRU</td>
<td>0,098</td>
<td>0,067</td>
<td>0,106</td>
<td>0,106</td>
<td>0,037</td>
<td>0,101</td>
</tr>
<tr>
<td>3. ŠZV WPRU</td>
<td>0,198</td>
<td>0,012</td>
<td>0,198</td>
<td>0,213</td>
<td>0,001</td>
<td>0,171</td>
</tr>
<tr>
<td>4. CL CS</td>
<td>0,228</td>
<td>-0,068</td>
<td>0,193</td>
<td>0,248</td>
<td>-0,101</td>
<td>0,190</td>
</tr>
<tr>
<td>5. DV UD</td>
<td>0,091</td>
<td>-0,059</td>
<td>0,073</td>
<td>0,120</td>
<td>-0,059</td>
<td>0,087</td>
</tr>
<tr>
<td>6. RV UB</td>
<td>0,116</td>
<td>-0,068</td>
<td>0,104</td>
<td>0,154</td>
<td>-0,031</td>
<td>0,141</td>
</tr>
<tr>
<td>7. PS TP</td>
<td>0,139</td>
<td>0,041</td>
<td>0,142</td>
<td>0,185</td>
<td>0,036</td>
<td>0,173</td>
</tr>
<tr>
<td>8. VS TL</td>
<td>0,027</td>
<td>-0,012</td>
<td>0,018</td>
<td>0,070</td>
<td>0,006</td>
<td>0,069</td>
</tr>
<tr>
<td>9. VG ST</td>
<td>0,085</td>
<td>-0,122</td>
<td>0,050</td>
<td>0,126</td>
<td>-0,095</td>
<td>0,078</td>
</tr>
<tr>
<td>10. MK DC</td>
<td>0,175</td>
<td>-0,033</td>
<td>0,159</td>
<td>0,266</td>
<td>-0,021</td>
<td>0,233</td>
</tr>
<tr>
<td>11. SK SC</td>
<td>-0,053</td>
<td>-0,036</td>
<td>-0,060</td>
<td>-0,003</td>
<td>-0,015</td>
<td>0,021</td>
</tr>
<tr>
<td>12. ŠK PW</td>
<td>0,001</td>
<td>-0,025</td>
<td>-0,005</td>
<td>0,056</td>
<td>-0,040</td>
<td>0,026</td>
</tr>
<tr>
<td>13. PK PA</td>
<td>0,017</td>
<td>-0,013</td>
<td>-0,002</td>
<td>0,042</td>
<td>-0,042</td>
<td>0,036</td>
</tr>
<tr>
<td>14. PZN RLS</td>
<td>0,087</td>
<td>-0,026</td>
<td>0,066</td>
<td>0,051</td>
<td>-0,016</td>
<td>0,031</td>
</tr>
</tbody>
</table>

Genetska i fenotipska povezanost između proizvodnje mleka i telesnih mera je prikazana u tabeli 3.

STOČARSTVO 44:1990 (5—6) 161—173
Tab. 3. — Genetske (iznad crte) i fenotipske korlacije (ispod crte) između osobina proizvodnje mleka i telesnih mera
Genetic (above line) and phenotypic correlations (below line) between milk production traits and body measurements

<table>
<thead>
<tr>
<th>Osobine Traits</th>
<th>VIGR HW</th>
<th>DUGR GD</th>
<th>ŠIKU WH</th>
<th>ŠIKA WR</th>
<th>OBRGL GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCL</td>
<td>0,469</td>
<td>0,332</td>
<td>0,576</td>
<td>0,346</td>
<td>0,514</td>
</tr>
<tr>
<td>MYWL</td>
<td>0,685</td>
<td>-0,001</td>
<td>0,016</td>
<td>0,046</td>
<td>-0,022</td>
</tr>
<tr>
<td>SMMCL</td>
<td>-0,202</td>
<td>-0,271</td>
<td>0,417</td>
<td>-0,501</td>
<td>-0,095</td>
</tr>
<tr>
<td>CMFWL</td>
<td>-0,128</td>
<td>-0,047</td>
<td>0,013</td>
<td>-0,026</td>
<td>-0,006</td>
</tr>
<tr>
<td>PMMCL</td>
<td>0,444</td>
<td>0,214</td>
<td>0,577</td>
<td>0,183</td>
<td>0,491</td>
</tr>
<tr>
<td>YMPWL</td>
<td>0,048</td>
<td>-0,015</td>
<td>0,014</td>
<td>0,040</td>
<td>-0,024</td>
</tr>
<tr>
<td>PMSL</td>
<td>0,276</td>
<td>0,343</td>
<td>0,371</td>
<td>0,296</td>
<td>0,376</td>
</tr>
<tr>
<td>MYSL</td>
<td>0,136</td>
<td>0,042</td>
<td>0,031</td>
<td>0,052</td>
<td>0,022</td>
</tr>
<tr>
<td>SMMMSL</td>
<td>0,001</td>
<td>-0,221</td>
<td>0,326</td>
<td>-0,486</td>
<td>-0,075</td>
</tr>
<tr>
<td>CMFSSL</td>
<td>-0,086</td>
<td>-0,057</td>
<td>0,041</td>
<td>-0,033</td>
<td>0,009</td>
</tr>
<tr>
<td>PPMSSL</td>
<td>0,334</td>
<td>0,385</td>
<td>0,619</td>
<td>0,188</td>
<td>0,415</td>
</tr>
<tr>
<td>YMPSSL</td>
<td>0,097</td>
<td>0,035</td>
<td>0,017</td>
<td>0,019</td>
<td>-0,002</td>
</tr>
</tbody>
</table>

Genetska povezanost između telesnih mera i telesne razvijenosti i tipa prikazana je u tabeli 4.

Rezultati pokazuju da su korelacije većinom pozitivne jako slabe do potpune. Određen broj negativnih korelacija utvrđen je sa vezom prednjeg vimenja, veličinom sisa, širinom i položajem karlice i položajem zadnjih nogu. Raspon koeficijenata sa osobinama vimenja je iznosio od $r_G = -0,951$ između obima grudi i vezanosti prednjeg vimenja, do $r_G = 1,000$ između visine grebena, dubine grudi, širine karlice i širine zadnjeg vimenja. Za osobine tela raspon je iznosio od $r_G = -0,707$ između visine grebena i širine karlice, do $r_G = 1,000$ između obima grudi, mlečnih karakteristika, snage i kapaciteta.
Tab. 4. — Genetske korelacije (rG) između telesnih mera i ocena telesne razvijenosti i tipa
Genetic correlations (rG) between body measurements and body conformation and type scores

<table>
<thead>
<tr>
<th>Osobine Traits</th>
<th>VIGR</th>
<th>DUGR</th>
<th>ŠIKU</th>
<th>ŠIKA</th>
<th>OBRGR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HW</td>
<td>GD</td>
<td>WH</td>
<td>WR</td>
<td>GC</td>
</tr>
<tr>
<td>1. VPV</td>
<td>-0.260</td>
<td>-0.518</td>
<td>-0.228</td>
<td>-0.556</td>
<td>-0.951</td>
</tr>
<tr>
<td>FUA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. VZV</td>
<td>0.317</td>
<td>0.119</td>
<td>0.672</td>
<td>0.129</td>
<td>-0.117</td>
</tr>
<tr>
<td>HRU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ŠZV</td>
<td>1.000</td>
<td>1.000</td>
<td>0.549</td>
<td>1.000</td>
<td>0.736</td>
</tr>
<tr>
<td>WRU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. CL</td>
<td>0.267</td>
<td>0.553</td>
<td>0.135</td>
<td>0.859</td>
<td>0.490</td>
</tr>
<tr>
<td>CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. DV</td>
<td>0.647</td>
<td>0.640</td>
<td>0.409</td>
<td>0.423</td>
<td>0.753</td>
</tr>
<tr>
<td>UD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. RV</td>
<td>0.198</td>
<td>0.440</td>
<td>0.229</td>
<td>0.474</td>
<td>0.799</td>
</tr>
<tr>
<td>LB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. PS</td>
<td>0.048</td>
<td>0.341</td>
<td>0.064</td>
<td>0.417</td>
<td>0.715</td>
</tr>
<tr>
<td>TP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. VS</td>
<td>-0.578</td>
<td>-0.324</td>
<td>-0.550</td>
<td>-0.176</td>
<td>0.270</td>
</tr>
<tr>
<td>TL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. VG</td>
<td>0.986</td>
<td>0.838</td>
<td>0.795</td>
<td>0.670</td>
<td>0.736</td>
</tr>
<tr>
<td>ST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. MK</td>
<td>0.654</td>
<td>0.968</td>
<td>0.597</td>
<td>0.993</td>
<td>1.000</td>
</tr>
<tr>
<td>DC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. ŠK</td>
<td>0.588</td>
<td>0.580</td>
<td>0.423</td>
<td>0.833</td>
<td>1.000</td>
</tr>
<tr>
<td>SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. ŠK</td>
<td>-0.707</td>
<td>-0.686</td>
<td>-0.420</td>
<td>-0.524</td>
<td>-0.224</td>
</tr>
<tr>
<td>PW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. PK</td>
<td>-0.396</td>
<td>-0.216</td>
<td>-0.262</td>
<td>0.315</td>
<td>0.333</td>
</tr>
<tr>
<td>PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. FZN</td>
<td>0.170</td>
<td>0.039</td>
<td>-0.418</td>
<td>0.522</td>
<td>0.365</td>
</tr>
<tr>
<td>RLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prilikom interpretacije povezanosti ove vrste potrebno je imati u vidu srednje vrednosti i definiciju svake ocene od 1 do 9. Na primer, povezanost između merene i ocjenjene visine grebena je potpuno pozitivna (rG = 0,986) dok je za širinu karlice srednja negativna (rG = -0,524). Veće ocene znače veću širinu karlice što je prema dobijenom koeficijentu korelacije u suprotnosti sa merama karlice. Pored grešaka zbog subjektivnosti vizuelnog procenjivanja, moguća je i nepodudarnost u značenju prosečne ispoljenosti odnosno ekstrema ove osobine. Pošto u dostupnoj literaturi nisu pronađene slične analize, dobijeni rezultati prvenstveno treba da poslužu kao pokazatelj potrebe stalne kontrole i unapređenja tačnosti merenja i ocenjivanja telesne grade.

Fenotipska povezanost između telesnih mera i telesne razvijenosti i tipa prikazana je u tabeli 5.
Tab. 5. — Fenotipske korelacije (rp) između telesnih mera i ocena telesne razvijenosti i tipa
Phenotypic correlations (rp) between body measurements and body conformation and
type scores

<table>
<thead>
<tr>
<th>Osobine Traits</th>
<th>VIGR HN</th>
<th>DUIGR GD</th>
<th>ŠIKU WH</th>
<th>ŠIKA WR</th>
<th>OBOGR GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VPV FUA</td>
<td>-0.135</td>
<td>-0.120</td>
<td>-0.039</td>
<td>-0.060</td>
<td>-0.183</td>
</tr>
<tr>
<td>2. VZV HRU</td>
<td>-0.104</td>
<td>-0.042</td>
<td>0.060</td>
<td>0.037</td>
<td>0.094</td>
</tr>
<tr>
<td>3. ŠZV WRU</td>
<td>-0.043</td>
<td>0.069</td>
<td>0.058</td>
<td>0.116</td>
<td>0.093</td>
</tr>
<tr>
<td>4. CL CS</td>
<td>-0.026</td>
<td>0.129</td>
<td>-0.096</td>
<td>0.168</td>
<td>-0.019</td>
</tr>
<tr>
<td>5. DV UD</td>
<td>0.171</td>
<td>0.103</td>
<td>0.162</td>
<td>0.224</td>
<td>0.215</td>
</tr>
<tr>
<td>6. RV UB</td>
<td>0.048</td>
<td>0.041</td>
<td>0.027</td>
<td>0.115</td>
<td>0.194</td>
</tr>
<tr>
<td>7. PS TP</td>
<td>-0.061</td>
<td>0.010</td>
<td>0.050</td>
<td>0.088</td>
<td>0.146</td>
</tr>
<tr>
<td>8. VS TL</td>
<td>-0.035</td>
<td>0.081</td>
<td>0.003</td>
<td>0.053</td>
<td>0.147</td>
</tr>
<tr>
<td>9. VG ST</td>
<td>0.012</td>
<td>0.480</td>
<td>0.259</td>
<td>0.242</td>
<td>0.406</td>
</tr>
<tr>
<td>10. MK DC</td>
<td>0.302</td>
<td>0.257</td>
<td>0.146</td>
<td>0.275</td>
<td>0.265</td>
</tr>
<tr>
<td>11. SK SC</td>
<td>0.505</td>
<td>0.439</td>
<td>0.381</td>
<td>0.255</td>
<td>0.616</td>
</tr>
<tr>
<td>12. ŠK PW</td>
<td>0.026</td>
<td>0.134</td>
<td>0.141</td>
<td>0.191</td>
<td>0.210</td>
</tr>
<tr>
<td>13. PK PA</td>
<td>0.021</td>
<td>-0.012</td>
<td>-0.127</td>
<td>-0.082</td>
<td>0.048</td>
</tr>
<tr>
<td>14. PZN RLS</td>
<td>-0.048</td>
<td>-0.071</td>
<td>-0.128</td>
<td>0.023</td>
<td>-0.049</td>
</tr>
</tbody>
</table>

Koeficijenti fenotipskih korelacije sa osobinama vime su bile niske pozitivne
i negativne bez većeg značaja. Sa osobinama tela je utvrđena veća povezanost.
Očigledna je i saglasnost između osobina merena jačinom povezanosti. Najveće
vrednosti su dobijene između merene i procenjene visine grebena (rp = 0,812)
odnosno dubine grudi, snage i kapaciteta (rp = 0,616).

Zaključak

Na osnovu ispitivanja fenotipske i genetske povezanosti između osobina proiz-
vodnje mleka, procenjene i merene telesne grade mogu se doneti sledeći zaključci:
1. Pored objektivnih poteškoća oko utvrđivanja genetskih korelacija, dobijeni koeficijenti odražavaju određenu jačinu i trend povezanosti između osobina proizvodnje mleka i procenjene telesne razvijenosti i tipa. Dobijene vrednosti su bile u rasponu od $r_G = 0,001$ do $r_G = 1,000$ odnosno od nepostojanja do potpune povezanosti.

2. Fenotipske korelacije su bile doista niže sa rasponom od $r_P = 0,001$ do $r_P = 0,266$ odnosno od nepostojanja do slabe povezanosti. Većina korelacija su pozitivne što se posebno ističe za osobine prinosa mleka i mješanu masti u standardnoj laktaciji.

4. Utvrđena fenotipska i genetska povezanost između telesnih mera i procenjene telesne grade mogu uslovno da posluže kao pokazatelj odnosa koje treba dugoročnije provezivati uporedo sa usavršavanjem sistema ocjenjivanja i postupaka prilikom merenja osobina.

LITERATURA

FENOTIPSKA I GENETSKA POVEZANOST PRINOSA MLEKA I MLEČNE MASTI SA OSOBINAMA TELESNE RAZVJENOSTI I TIPA U POPULACIJI CRNO - BELIH GOVEDA

Sažetak
Analiza fenotipske i genetske povezanosti izvršena je na odabranom uzorku populacije prvotelki crno-belih goveda na PK "Beograd". Obuhvaćene su grupe osobina proizvodnje mleka, procenjene telesne razvijenosti i tipa (ocene od 1 do 9), i osnovnih telesnih mera. Za izračunavanje koeficijenta korelacije je fiksni model metoda najmanjih kvadrata LSMLMW (Harvey, 1985).
Genetske korelacije između grupe ispitivanih osobina su bile dosta visoke sa rasponom jačine od nepostojanja do potpune povezanosti (rG = od 0,001 do 1,000) sa pozitivnim i negativnim vrednostima koeficijenta. Fenotipske korelacije između grupe osobina su bile većinom niske sa rasponom jačine od nepostojanja do jake povezanosti (rp = od 0,001 do 0,616) s pozitivnim i negativnim vrednostima koeficijenta. Detaljna analiza je prikazana u tabelama rezultata ispitivanja.

Sigurnije pokazatelje genetske i fenotipske povezanosti potrebno je zasnovati na većim uzorcima, u dužem vremenskom periodu i većem izboru modela programske analize, kako bi se efikasnije koristili u postojećim odgajivačko selecioničkim programima.

PHENOTYPIC AND GENETIC CORRELATIONS OF MILK AND BUTTERFAT YIELD WITH TRAITS OF BODY CONFORMATION AND TYPE IN THE BLACK AND WHITE CATTLE POPULATION

Summary

On the basis of a selected sample of first calving cows at the Agricultural farm "Belgrade", phenotypic and genetic correlations were obtained. Groups of milk production traits, visually assessed body conformation and type (scores from 1 to 9) and body measurements were included. All calculations were based on the fixed model of Least Squares Analysis (Harvey, 1985).

Genetic correlations between groups of investigated traits were fairly high, positive or negative with an interval from rG = 0,001 to rG = 1,000.

Phenotypic correlations were mostly low, positive or negative with an interval from rp = 0,001 to rp = 0,616. A detailed analysis is shown in the tables of results.

More precise conclusions should be based on much larger number of samples using a longer period of time and a wider choice of models. Thus obtained coefficients could be more efficiently applied in the already existing breeding programs.