POVEZANOST BIOKLIMATA I NAJČEŠĆIH OBLIKA GUBITAKA PRASADI U PRASILIŠTIMA

R. Kršnik, R. Yammine, I. Valpotić, I. Vrbanac

Sažetak

U upravljivanju proizvodnjom prasadi na velikim farmama i u kooperaciji, praćenje bioklimata u nastambama, dobiva svakim danom sve veći značaj. Provedena su istraživanja na jednoj velikoj svijajnoj farmi tijekom godine dana. Praćena je prasad u prasilištima i pokušalo se naći interakciju između pojedinih činjenika bioklimata i pojave gastrointestinalnog sindroma i pneumonije u odojaka. Utvrđeno je da niske temperature u studenom i prosincu (17,5°C odnosno 17,1°C), slabo strujanje zraka (0,11 m/s), visoka relativna vлага (79% odnosno 77%) uzrokuju visoku učestalost gubitaka od gastrointestinalnog sindroma (27 odnosno 38 uginulih) i pneumonije (58 odnosno 68 uginulih).

Uvod

Proizvodnja prasadi na velikim farmama i u kooperciji, te praćenje bioklimata u nastambama dobiva svakim danom sve veći značaj. Proizvođači prasadi za tov stalno nastoje povećati dnevni priраст i smanjiti utrošak hrane za kilogram prirasta, smanjiti gubitke (uginuća i priručna klanjaja), a sve zbog efikasnosti proizvodnje.

Zbog toga što je teško prepoznati prave probleme dolazi do visokog mortaliteta, morbiditeta, slabog prirosta i kao posljedica brzi rast cijena koštanja prasadi. Sigurno je da bioklimat, hranidba i etološki faktori imaju snažan utjecaj na proizvodnju prasadi. Nadalje, ima mnogo prikazanih slučajeva respiratornih bolesti na svijajnoj farmi koje većina istraživača dovodi u svezu s bioklimatskim stresom kao etološkim faktorom nastanka ovih bolesti. Ventilacija, relativna vлага te varijabilna temperatura pogoduju razmnožavanju mikroorganizma (Jones i sur. 1981.). Slaba ventilacija i varijabilna temperatura sigurno su predispozicijski činjenici za nastanak i pojavu atrofičnog rinitisa ili pak pneumonije odbijene prasadi uzrokovane bakterijom Haemophylus suis (Muirhead, 1976.). Općenito uzevši bioklimat može poslužiti za transport uzročnika uvjetnih zaraznih bolesti. Uzročnici bolesti svinja lako preživljavaju u datom bioklimatu pa se čak i razmnožavaju, te na taj način mogu dugo preživjeti izvan svog domaćina. Na punom području gastrointestinalni paraziti (Gaafar i sur. 1965.). Zrakom se prenosi u obliku kapljica i transmitivni gastroenteritis (TGV) od praseta do praseta (Reber, 1965.). Ukoliko se relativna vлага zraka kreće između 50 i 80% aerobne bakterije bolje preživljavaju nego u suhom
bioklimatu u nastambama (Jones i sur. 1981.). Jednako tome ukoliko relativna vлага naglo padne ili se povisiti, 90 % mikoplazme ugine u roku od 8 minuta.

Našim istraživanjima pokušali smo naći interakciju između pojedinih čimbenika bioklimata i pojave gastrointestinalnog sindroma i pneumonije u sisajuće prasadi.

Materijal i metode rada

Istraživanja su obavljena na jednoj velikoj svinjogoskoj farmi tijekom godine dana, a praćena je prasad u prasilištima. Prasilište imade 15 boksova u četiri reda, ukupno 60 boksova sa žičanim podom. Biozona prasadi svakog boks grije se električnom svjetiljkom, a cijeli okoliš pomoću termogena.

Krmca se hrane obročno dva puta dnevno, smjesom za krmca, a dohranjivanje prasadi počinje osmog dana starosti s predstarterom. Životinje se napajaju pomoću automatskih pojilica.

Odbijanje prasadi obavlja se dvadeset i prvog dana starosti. Ventilacija u objektu je postrana. Bioklima (temperatura zraka, relativna vлага zraka i strujanje zraka) mjerena je u biozoni prasadi u dva navrata mjesečnica, tijekom jedne godine.

Mjerenja su obavljena pomoću SOLOMATA-a 2000 i standardnom aparaturom za ta mjerenja. Ukupno su obavljena 24 mjerenja.

Rezultati i diskusija

Dobiveni rezultati istraživanja prikazani su na tablici 1.

<table>
<thead>
<tr>
<th>Mjeseci</th>
<th>Temperatura zraka Tz °C</th>
<th>Brzina strujanja zraka wms⁻¹</th>
<th>Relativna vлага zraka RV %</th>
<th>Broj prasadi</th>
<th>Gastrointestinalni sindrom</th>
<th>Pneumonija</th>
</tr>
</thead>
<tbody>
<tr>
<td>siječanj</td>
<td>21,2</td>
<td>0,27</td>
<td>74</td>
<td>2940</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>veljača</td>
<td>21,2</td>
<td>0,17</td>
<td>77</td>
<td>3333</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>ožujak</td>
<td>23,6</td>
<td>0,23</td>
<td>71</td>
<td>3955</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>travanj</td>
<td>22,7</td>
<td>0,20</td>
<td>65</td>
<td>3583</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>svibanj</td>
<td>23,5</td>
<td>0,18</td>
<td>62</td>
<td>3374</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>lipanj</td>
<td>28,3</td>
<td>0,13</td>
<td>65</td>
<td>3447</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>srpanj</td>
<td>25,2</td>
<td>0,16</td>
<td>67</td>
<td>3635</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>kolovoz</td>
<td>27,8</td>
<td>0,28</td>
<td>55</td>
<td>3021</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>rujan</td>
<td>22,7</td>
<td>0,24</td>
<td>83</td>
<td>3093</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>listopad</td>
<td>20,3</td>
<td>0,35</td>
<td>79</td>
<td>3176</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>studeni</td>
<td>17,5</td>
<td>0,11</td>
<td>79</td>
<td>3067</td>
<td>27</td>
<td>58</td>
</tr>
<tr>
<td>prosinac</td>
<td>17,1</td>
<td>0,16</td>
<td>77</td>
<td>3425</td>
<td>38</td>
<td>65</td>
</tr>
</tbody>
</table>
Na tablici se vidi da se na istraživanoj farmi javila karakteristična patologija u slijaće prasadi. To je sindrom multikauzaalne patologije, gdje se javljaju patomorfološke promjene na plućima (pneumonija) u slijaće prasadi. Broj prasadi uginule od pneumonije pokazao je rast od travnja (12 komada) pri temperaturi od 22,7 °C, pa sve do prosinca (68 komada) pri temperaturi zraka od 17,1 °C. Jedino odstupanje dogodilo se u srpnju kada je od pneumonije uginulo 9 komada pri temperaturi zraka od 25,2 °C. Ako to uspoređimo s istraživanjima Kalich-a (1970.) u SPF prasadi gubici su bili toliko veći koliko je bio lošiji bioklimat u objektima (temperatura zraka, relativna vlaga zraka i brzina strujanja zraka) kao i broj promatrane prasadi. Iz naših rezultata dobiveno je da na broj izgubljenje prasadi direktno utječe temperatura zraka što je suglasno s istraživanjima Kalicha (1970.). Naime, prema Kalichu (1970.) pneumonija se javlja najviše kod temperature zraka od 12 - 14 °C ispod svjetljikje (u leglu) i relativne vlage 70 %, te strujanja zraka 0,1 ms⁻¹. U našim istraživanjima to su bili jesenski i zimski mjeseci kada se temperatura zraka u biozoni spustila na 17,5°C u prosincu, prosječna relativna vlaga zraka bila je 79 %, odnosno 77 % i strujanje zraka 0,11 odnosno 0,16 ms⁻¹. Broj prasadi izgubljene od pneumonije bio je tijekom ožujka i prosinca te studenog i srpnja 58:9 (Tablica 1.). Dode II neonatalna prasadi u hladan bioklimat, dolazi do pojave proleva u roku od 48 sati. Gastrointestinalni sustav reagira brže na hladniji prostor za razliku od drugih organskih sustava. Takozvani alimentarni proljevi prvih dana poslije preradi najvećim su dijelom uzrokovan niskim temperaturama zraka. To potkrepljuju i istraživanja Kelley i sur. (1982.) koji su dokazali bolje preživljavanje grupe prasadi držane poslije preradi pri temperaturi zraka u biozoni od 35°C (62 % preživjelih) za razliku od onih držanih pri temperaturi zraka u biozoni od 21°C, gdje je preživljavanje bilo znatno slabije (36 % preživjelih) tijekom 48 sati.

Prema našim rezultatima najveći gubici od gastrointestinogelnog sindroma zabilježeni su u prosincu (38 uginulih) pri temperaturi zraka od 17,1°C i 77 % relativne vlage, a najmanji u lipnju i kolovozu (16, odnosno 15 uginulih) pri temperaturama od 28,3°C, odnosno 27,8°C i relativnim vlaga od 65 %, odnosno 55 %, pa su time suglasni s rezultatima Kelley i sur. (1982.).

Pokazalo se da temperatura zraka u biozoni prasadi od samo 10 °C reducira absorpciju kolostralnih imunoglobulina (Blecha i sur., 1981.), što značajno umanjuje laktealni imunitet prasadi u leglu i time ih čini manje otpornim na crijevne patogene kao što je E. coli. jedan od glavnih etioloških čimbenika pojave gastrointestinogelnog sindroma.

Od svih faktora bioklimat i upravljanje procesima proizvodnje mogu najčešće utjecati proizvodnja prasadi za tov bude uspješna. Međutim slabo pak upravljanje proizvodnjom prasadi i još k tome loš bioklimat, smanjuje vrijednost dobrog programa hranidbe i genetskog potencijala prasadi.

Dobar program koji može brzo ispraviti loš utjecaj bioklimata u kojem životine žive, vrijedi isto toliko koliko i dobar program hranidbe, ali je isto tako dobar bioklimat jednako važan kao i dobro upravljanje procesima proizvodnje.
Zaključak

Neuvedenačen bioklimat, posebice niska temperatura zraka (17.1 °C) kao i brzina strujanja zraka (iznad 0,2 ms⁻¹) indirektno utjeljuju na smanjenje otpornosti prasadi i prema tome omogućuju svečešću pojavu gastrointestinalnog sindroma i pneumonia. U sisajuće prasadi. Prema tome, poboljšanje ovih čimbenika u skladu sa znanstveno utemeljenim pokazateljima bioklimata temeljna je postavka biološki i gospodarski opravdane proizvodnje velikog broja svinja.

LITERATURA

THE INTERACTION BETWEEN BIOCLIMATE AND THE MOST FREQUENT TYPES OF PIGLET LOSSES IN FARROWING FACILITIES

SUMMARY

In the pig production management, microclimate monitoring of large or cooperative production facilities is gaining every day farms in its importance. During the period of one year research has been accomplished on a large pig breeding farm. By monitoring piglets in the farrowing units, an attempt was made to establish the interaction between some particular bioclimate factors and the prevalence of gastrointestinal syndrome and pneumonia. We have established that low temperatures in November and December (17.5 °C and 17.1 °C), low air speed (0.11 ms⁻¹, and high relative humidity (79 % and 77 %) resulted in high incidence of losses due to the gastrointestinal syndrome (27 and 38 dead pigs) or pneumonia (58 and 68 dead pigs).

24