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Summary

The solution of the three-dimensional seakeeping problem with forward speed in the
frequency domain still has some well-known problems. In this paper, a Rankine-Kelvin
hybrid method benefiting the merits of both the Rankine source and Kelvin source is
presented and demonstrated by studying the wave diffraction/radiation problem with zero
forward speed as an example. A meshless cylindrical surface is selected to be the control
surface dividing the fluid domain into two regions, and the velocity potential and its normal
derivative on the control surface are represented by series expansions. The present Rankine-
Kelvin hybrid method is validated by the added mass and damping associated with the linear
radiation force, and comparison is made with the documented analytical solution. All the
work in the paper sheds light on solving the forward speed hydrodynamic problems.

Key words: Rankine-Kelvin hybrid method; meshless cylindrical control surface;
series expansion method;

1. Introduction

As it is known, when solving the hydrodynamic problem with forward speed, the
implementation of the Kelvin source method using the Green function associated with a
translating and oscillating source bring along several well-known problems concerning its
wave component. In particular, it behaves with complex singularities and high oscillations
when both the field and source points approach to the free surface [1]. In the earlier work,
numerical results were in very good agreement for immersed bodies like sphere and ellipsoid,
or surface piecing body of very slender shape like Wigley hull [2]. Unfortunately, for the
realistic container ships, the results present large discrepancy from those of model tests. Ten
and Chen (2010) [3] came up with a new method to solve the forward speed problem, and
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they try to benefit the merits of the Rankine source method and the Kelvin source method by
using a hemisphere as a control surface. However, the method made the calculation of the
integration over the control surface complex and may lead to some troubles about
singularities.

In this work, we use a cylinder as a control surface instead of a semi-sphere in the same
spirit as Liang and Chen’s work[4]. The Rankine source method is used in the internal
domain, and the fundamental solution is in the form of 1/r , with r standing for the distance
between the field point and the source point. Panels are distributed over the body surface and
the free surface in the internal domain. Kelvin source method is used in the external domain
and the Green function which satisfies the free-surface boundary condition and radiation
condition is adopted. On the meshless cylindrical control surface, the velocity potential and its
normal derivative are expanded into Fourier-Laguerre series and Lv et al. [5] have proved the
effectiveness of approximation by Laguerre series for diffraction waves on the cylinder.

The objective of this work is to solve the zero speed seakeeping problem as an example
to show the effectiveness of Rankine-Kelvin hybrid method with a meshless cylindrical
control surface. In the numerical implementation, we consider a hemisphere floating at the
free surface, and the forward speed is out ruled at the moment. The added mass and damping
coefficients are calculated with the present Rankine-Kelvin hybrid method, and the
convergence test associated with the terms of Laguerre functions and Fourier series is made.
In addition, the influence of different control surface radius on the numerical results is studied
through comparing with the analytical solution, and eventually a satisfactory accuracy is
obtained. Due to the fact that there are many new defined coefficients concerning multi-fold
integrals in this method, Chebyshev expansions are utilized to approximate the resultant
integral to improve computational efficiency. The successful application of the Rankine-
Kelvin hybrid method in zero speed problem has established a foundation for solving the
forward speed problem.

2. The series expansion method of velocity potential and its normal derivative

In the Rankine-Kelvin hybrid method, as a meshless circular cylinder surface is selected
as control surface, the velocity potential and its normal derivative on the control surface need
to be expressed analytically. In this paper, they are expanded into Fourier-Laguerre series.

The velocity potential on the control surface is a function associated with the polar
angle ¢ and vertical coordinate z positively downward, which can be expressed as¢(go,z).
As the velocity potential ¢5(go, z) decreases exponentially with the increase of z, and when z

tends to infinity, the velocity potential tends to zero. The velocity potential is expanded into
series of Laguerre as follows

z

#(p.7)= z f (o)L (2)e 2 = z ()0 (2) ®

z
where L,(z) is n-th order Laguerre polynomial, and ¢,(z)=L,(z)e 2is the n-th order

Laguerre function.
The orthogonal property of Laguerre polynomials is considered in Eq. (2) and Eqg. (3).

'fom L (2) Ly (z)e%dz = 8y )
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I » 2)dz = Sy 3)

where &, is Kronecker delta function.

Thus, ¢, (z)is multiplied on the two sides of the Eqg. (1) simultaneously and we can

integrate the both sides from zero to infinity with respect to z, and the coefficient of the
series expansion can be expressed as follows

0)=[,"#(p.2)tn(2) 02 @)

As the velocity potential on the control surface is a periodic function about ¢ of which
the period is 2z, so we have ¢(¢,z)=¢(p+2x,2), f (@)= f,(¢+27)and the Dirichlet
condition is satisfied on the period (-7, ), namely

1. The function is continuous or has finite discontinuity points of the first kind.
2. The function has finite extreme points.

So the velocity potential on the control surface can be expanded into Fourier series, and
its complex exponential form is as follows

—+00 i
§0)= Z ¢nmelm(ﬂ (%)
M=—o0
with
1 o7 i
Pom = Z x fy ((/’)e Im(pd(/’ (6)

The substitution Eq. (5) into Eq. (1) yields

+00 400

z z¢nm n |m(p (7

=—o0 N=0

The substitution Eq. (4) into Eq. (6) yields
+00
== j j #(p.2 e Mdpdz (8)

In the same way, the normal derivative of velocity potential y/((p,z)of an arbitrary
point on the control surface can be also expanded into Laguerre-Fourier series as follows

+00 400

Z Z'//nm n |m(p 9)
m=—co N=0
Vim =7, " j_” w(p,2)0,(2)e ™ dgpdz (10)

In (7) and (9), 4, and v, are coefficients of the series expansion and defined by (8)
and (10), respectively.
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3. The application of rankine-kelvin hybrid method to zero speed problem

3.1 Definition of parameters

We consider the ship floating in the sea of infinite depth with zero speed and use a
cylinder to separate the whole fluid domain into two domains. In the external domain, the
normal vectors of the boundary surfaces positively inward to the domain. In the internal
domain, the normal vectors point positively outwards of the domain. The normal vectors and
the coordinate system are shown in Figure 1.

Fig. 1 Definition of the coordinate system and normal vectors

It is convenient to use the cylindrical coordinate system as a cylindrical surface is
chosen to be the control surface. Here is the transformation between the two coordinates.

x=hcosep y=hsing Z=¢ (11)

where his the radius of the cylinder, ¢ € (-, ) varies in the plane xoy , ¢ e (0,+), and then
an arbitrary point can be expressed as P(h, ¢, z) in the cylindrical coordinate system.
The boundary conditions in the internal domain are given as followings

B_%_o the free surface z =0 >
on oz g on the free surface z = (12)
09, .

o n; (i=12,---6) on the body surface (13)

where o denotes the oscillation frequency.

3.2 External problem
In the external domain, the Green function used here is given in the form of [6]
G(P,Q)=i+i+2vop.v.j+°o !
o 'pg 0 v—-vy

ef"(”;)\lo (vR)dv+ i27zv0e_V°(Z+§)Jo (voR) (14)

In which, vq = a)z/g is the wave number, Jy() is the zeroth order Bessel function of the

first kind, PV.is principle-value integral.

For the velocity potential at an arbitrary field point P on the control surface in the
external domain, application of the Green’s second identity provides

21p(P) =, ¢(Q)%G(P,Q)—G(P,Q)%¢(Q) s, (15)
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After substituting Egs. (7) and (9) into Eq. (15), we obtain

273 Y dali(2)e" = f[ G > dali(£)e" -G Y > wuli(¢)e"1ds (16)
I=——0 k=0 g 1 eko I=—0 k=0
Application of Eq. (8), we have
1 40 +00 +00 |Igo +00 +00 lq; im(pdd b (17
2ﬂ¢nm:2ﬂjlo J L[a—Glz_ZwkZ;,)%fk Gl_z_:OOkZE)‘//kI[k Jq (z)e"dsdodz (17)
We define new coefficients
Grmid = j T [ e 7)€ e ™ dsd pdz (18)
+00 0o
—GK 2)e'% e M dsd pdz 19
Homu = I I L o k($)0n(2) @ (19)

So Eq. (17) can be rewritten as

+00 400 +00 400

27Gom = Z Z Hnm Kb — Z Z Gnm,kl 4% (20)

|=—0 k=0 |=—00 k=0

As the subscripts n and m change, we can get a system of equations which can be
expressed as follow

(H - Z”El)ﬁl =Gy (21)

HCC, G are matrices consisted of H,, qand G, . and Py W are vectors

HCC .

Here

consisted of ¢, andy, , E; is the unit matrix of which the dimension is equal to

Finally we can get the relationship between the series expansion coefficients of the
velocity potential and its normal derivative on the control surface.

Vi = (GCC) (HC’C _Z”El)éd (22)
And we define the matrix DN as

DN :(GC*C )_1(HC'C —2;:51) (23)
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3.3 Extended boundary integral equation method

| |
| I
| |
[ 1
Fig. 2 Schematic diagram of extended boundary integral equation method

As the application of the free-surface Green function in the external domain problem
will result in the occurrence of irregular frequencies, extended boundary integral equation
method presented in [7] is adopted to remove irregular frequencies, and the interior free
surface is divided into panels shown in Figure 2. The boundary integral equations are given as
follows

0 B

270 (P jG—¢ )ds+J'Fy%Gds=J'C¢(Q)%Gds PeC (24)

Azu+ | ¢(Q)ieds+j yiedszj Gi;zs(Q)ds PeF (25)
c ong F 6nQ c GI‘IQ

The dipole distribution & on each panel of the interior free surface is assumed constant.
Substituting Egs. (7) and (9) into Egs. (24) and (25) and applying Eq. (8), we can get the
following integral equations.

When field point is on control surface

400  +00 +00 400

27 Gm = z Z Hnm kW — Z Z c':‘nm KWkl — Z Hnm F 4 (26)
I=—00 k=0 |=—00 k=0
with
1 p+ropr i
Home =7 [ ar, Cnln (2) ™ dsd oz (27)
Gymu and Hp i have been defined in Egs. (18) and (19).
When field point is on interior free surface
+00 400 o 40
Am+ Y D Heada = 2, 2 Gk, k|l//k|+ZHF Fi =0 (28)
|=—c0 k=0 |=—c0 k=0 i=1
with
Hew = [ Gty (¢)e"ds (29)
Ge g = LGfk (¢)e'ds (30)
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HF,F :IAF GndS (31)

In a similar way with Eq. (21), we can get a matrix form

HOC —27E, —H®T  [1gy| |G°C v (32)
HFC HFF +azE, || | |GFC

Among them, HSF | HFC  GFC  HFF are separately consisted of
Home+He kG k. He £, and the vector ziis consisted of 4. E,is the unit matrix of which

the dimension is equal to H™F .
From Eq. (32), we can get the new relationship between the series expansion
coefficients of the velocity potential and its normal derivative on the control surface

Wi = DNgy (33)

among them

W{GC’C +HOF (47E+H F'F)_leF’C]1
(34)
~[(HC'C ~27E)+ HOF (47E+ HFF )_1 H F'C}

3.4 The validation of the external domain

To verify the relationship between the velocity potential and its normal derivative
obtained from the external domain, we have calculated the diffraction potential of an
infinitely long vertical circular cylinder.

We consider a regular wave as the incident wave, which propagates along the positive
axis of x, and the corresponding first order incident wave potential is as follows

b = ?_Ae—vozeivox _ Q_AG—voz 3 eI (voR)cosme (35)
2 o m=0

(whenm=0,¢,=1,0r¢, =2)

Among them, A is the amplitude of the incident wave, and (R,(p,Z) is the cylindrical
coordinates of an arbitrary point. According to the body surface condition, we can get

0 0 0 gA vz . imos
—h=——dy=——=dp=——e€ " > £i" I (VoR)vo COS MY (36)
on on R iw =0

Applying Egs.(9) and (10), the series expansion coefficient of the normal derivative of
diffraction potential can be obtained
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1 +00 A I . , L
Wi =ZI—7;J.0 {—g—e ‘”Ozrnzz‘;)gmlme(voRO)vocosmgo ( (2)e"dzdg

iw
( ) (37)
gA 2V0 1 =
=22 N e 0™ (voRy Vet
o S
where
2 (m:|l|:0)
= 38
F| {@n, (others) (38)

Appendix 1 can be referred for the calculation details of Eq. (37)

Substitute Eq. (37) into Eq. (22) and (33), we can get the series expansion coefficients
of the diffraction potential, then numerical solution can be obtained based on Eq. (7).

At the same time, the diffraction force of an infinitely long vertical circular cylinder va,"
can be calculated based on the following Eq.

Foi :piWJ.J‘SO¢7njds (j=12,3) (39)

Substitute Eq. (7) into Eq. (39), then

+00 400

= piWR, Z Zqﬁnmrw j 0y (2)e™n;dzdg (40)

=—oo n=0

Substitute fi =(—cos¢,—sing,0) into Eq. (40), It is obvious that RS, =0,R% =0,

+00

Fap = —2720IWRy > (=1)" (¢1 + 4 1) (41)
n=0

Analytical solution of the diffraction potential [6] is as follow
o Vo? VoRo)
@7 =- 0 —H voR)cosm 42
Z Enl H' (VORO) m(O ) 4 ( )

Substitute Eqg. (42) into Eq. (39), analytical solution to the diffraction force can be
expressed as follow

Fd _ PIRA . i (voRo)
" Vo ' Hl'(VoRo)

Comparison of the numerical solutions for the diffraction potential and diffraction force
with the analytical ones are presented in Section 4.

Hl(VORO)ﬂ' (43)

3.5 Internal problem
In the internal domain, Rankine source is adopted which is given as follow

G =— (44)
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For the velocity potential at an arbitrary field point P on the boundary surface of internal
domain consisting of control surface S free surface S and body surface Sg, application of

the Green’s second identity yields

0¢(Q) 0
29(P) = s, {QWW(Q)@Q}% “

The free surface and body surface are divided by Ng and N panels, respectively. Thus,
expression (45) becomes

$(Q) o
27(P {ZIBG ZjFﬁ+j ]{ g —¢(Q)%G}ds (46)
Substitute the boundary conditions Eqgs. (12) and (13) into Eq. (46),

9 N
27r¢(P):J-{Gr%?—¢(Q)%Gr}ds+§ha6rnads ZjBaqﬁ —G ds

Mo (47)
w2 Ne N 5
+_ZIFﬁGrdS_ZIFﬂ¢(Q)
9 s =
where n,, is the component of the normal vector on Sg.
In Case 1, where the field point P is on the control surface
+00 400 )
27[ Z Z¢k|€k(2)e"¢
l=—0 k=0
400  +00 +00 400 il
=[G 2 Y vt () ——G > D dati(£)e" 1ds
I=—00 k=0 |=—00 k=0 (48)

NB
+Z.[BaGrnads ZIBaqﬁ —G ds
a=1

a)2 Ng Ng
+_ZJ.|:BGrdS_ZJ.|:ﬂ¢(Q)

9 50 =1

Application of Eqg. (8), one can get
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+00  +00

27Z'¢nm =5 Z Z';Vkl_roo_[ '[ G ﬁ Ilgolfn (Z)e_imq)de?dz

7 |——0 k=0
+00 400

27 & 2l [ g Cl(€)€  (2)e ™ astpc

T\ k=0 ¢ang

1 B +00 T :
*Zaz_l”afo [* JoGrtn(2)e ™ dsdpdz (49)
1 Ng I P y
‘gz%ﬂ j_”'[BaaTGrEn(z)e M dsd pdz
Z%rw_[ IF{ —G +%G } (z)e e M dsd pdz

Denote
Gy nm = I J. I )eil(p’e_im(pdsd @dz
r nmkl — J-+Oo _[_” c Gn r g“)ﬁn (z)e"{"'e’img"dsd (PdZ

GBmm¢z:'__I+wI7 IBaGrfn(z)e”m¢d5d¢dz

(50)
+00 _
Hg nmo = I J' IBa g G, (y (2)e ™ dsd pdz
+00 _
GF nm.p :ZJ‘O Jl” I:pGrfn (z)e Im(pde¢dZ
1 (+opx 0 i
H =— —G,(,(z)e"™dsd pdz
F.nm,g 27[_[0 J._”_[Fﬂ 5I‘IQ r n( ) 4
Eq. (49) can then be rewritten as follows
+00  +00 +00  +00
27y = Z Z‘//ler nm,kl — Z Z¢kl r,nm,kl +Zn C':'B nm,a
|=—0 k=0 |=—0 k=0 (51)

_z¢aHBnma z¢ﬁ Ganﬂ"'Hanﬂ:l
In a similar way with Eq. (21), we can get a matrix form as follows
2
— . . — — [0) —
2o ~GF Sy HE S 16 % -HESF, L E HE Jf,

Here HEC ,GC HEF,GEF HE P and GFB are matrices composed of H, i .

Gromk» Heom g Gr.amg: Henme and Ggamy . and dy vy are vectors consisting of g
and Y -

The substitution Eq. (33) into Eq. (52) yields
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—_\ . 2 - -
(27zE1+HrC'C —GF'C~DN)¢H +HE-B¢Q+£—“’—GE-F +HF'F]¢ﬂ =GEBn, (53)
g

In Case 2, when the field point P is on the body surface Sg or on the free surface Sg,
the panel including the field point P is numbered by y, then Eq. (47) becomes

+00  +00 +00 400

27Z'¢7 Z Zwklj. G [k )e”(” dS Z Z(Old —G V4 ( kilwrds
|=—00 k=0 |=—0k
) (54)
0
+Zn . Grds - ZMBQ G ds - Z(pﬂjp{ — r+%6r}ds
Denote
Gc,y/,kl = J‘cGrEk (é/)e”(ﬂ,ds
o .
Hepm = J‘CIGrﬁk (¢)"ds
GB 7,0 :JBa GrdS
0 (55)
He o = o o S
GF,j/,ﬁ = FﬂGrds
0
HF J/ﬁ :-[FﬂaTGrdS
Then Eq. (54) can be rewritten as follows
+00  +00 +00  +00
274, = > D WG, — 2. D daH 7kl+zn Gg o~ z¢aHBya
|=—00 k=0 |=—00 k=0
N ) (56)
0
N7 {_EGF,N? + HF,y,ﬁ}
B=1

In a similar way with Eq. (21), we can get a matrix form as follows
2
— a) —
273 =GPy —HE C gy +GE B, —HPF B, —(—?GFF'F + HPF'F]% (57)

Here, GPTC HPP S GPPP HPT® GPPFand HP™ T are matrices consisted of G, ,

He, ki Gyw: Heya GF, zand He, 5 and ¢is vector consisted of ¢, andg,, Esis a
unit matrix with dimensions of yxy,
Substitution of Eq. (33) into Eq. (57) yields

(24

. 2 N -
(HPF’C—GPF’CDN)%|{HPF’B,—%GFF‘F+HFF’FJ¢+27ZE3¢=GPF’BF‘ (59
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Then the equations for the entire domain can be obtained by combining Eq. (53) and (58)
. 2
27E, +HEC —GEC . DN, [HE*B,—%GSHHEF]

da| |GF® | (59)
o W2 ;]3 _GBF,B a
H[‘BF‘C_G[‘BFVCDN ' HrBF‘Bv__GrBF'FJrHI’BF’F +27[E3 '
g

Once Eq. (59) is solved, one can obtain the velocity potential on the panels and the
series expansion coefficients of the velocity potential on the control surface. The method for
evaluating the coefficients we have defined for the multi-fold integrals is given in the
appendices. From the expression of the multi-fold integrals, the Chebyshev expansion is used
to approximate the integrations and improve the efficiency.

3.6 The solution of added mass and damping coefficient
The added mass and damping coefficient can be solved as follows

ib; g,
a.ij +;J = p.£j¢1 Eds (60)

where, a;;is added mass, b; is the damping coefficient, as the body surface is discretized into
panels, Eqg. (60) can be rewritten as

ib; 3 Ne W
S, a=

Then added mass and damping coefficients can be obtained by substituting the velocity
potential on the body surface into Eq. (61).

4. Results and analysis

4.1 Results for the diffraction potential

Numerical solution has been computed with the order of Laguerre function from 0 to 10
and the order of Fourier series from —10 to 10, the radius of the cylinder is 3.0 m, a fixed
point P (3.0 1.5 1.0) is selected expressed in cylindrical coordinates on the circular cylinder,
the diffraction potentials at the fixed point varying with wavenumber are shown in Figure 3,
among them, method 1 refers to the original solution method of the exterior domain in
subsection 3.2, Method 2 refers to the extended boundary integral equation method in
subsection 3.3.
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0.0 0.2 0.4 0.6 0.8

Fig. 3 The comparison results of diffraction potentials

In Figure 3, the numerical solution agrees well with analytical solution for wavenumber

varying from 0.1 to 1.6 except for v, is 0.8.

As we can see, numerical solution has a fluctuation when wavenumber is 0.8, and this
wave number is regarded as irregular frequency. Different points on the circular cylinder are
chosen with h=3.0 and z =1.0. The diffraction potentials at the irregular frequency varying
with different circumferential locations of the points are shown in Figure 4

5 4 —_—

3 —_—

— Method 2 Re{g}

— Method 2 Im{g}

Analytical Re{¢ }
Method 1 Re{g}

Analytical Im{¢ }
Method 1 Im{g}

2

Fig. 4 The comparison results of diffraction potentials at irregular frequency

From Figure 4, we can see that the numerical solution obtained from extended boundary
integral equations in method 2 is in good agreement with analytical solution, which illustrates
the relationship between the velocity potential and its normal derivative on control surface is
right and extended boundary integral equation method is capable of removing the irregular

frequency.
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0000000000000 0000000
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1

200 4 ,/

-300 4 ./

Fig. 5 The comparison results of diffraction force

Diffraction force in the direction of x axis is given in Figure 5, and the numerical
solution shows a satisfied accuracy.

4.2 The results of added mass and damping coefficients of a hemisphere

A hemisphere is chosen as the example for calculation, the numerical solutions about
the added mass and damping coefficient are compared with the analytical solutions given by
Hulme[8]. For the convenience, we have defined the following conditions shown in table 1.

Table 1 list of conditions

. . Condition
Parameter's name Notation 1 > 3 7] 5

Radius of the hemisphere r 2m | 2m | 2m 2m 2m

Radius of the control surface R 3m | 3m | 3m 4m 6m

Number of panels of hemisphere Ng 300 | 300 | 300 | 300 300

Number of panels on free surface N 1900 | 1900 | 1900 | 2500 | 3190
Order of Laguerre function N 5 10 20 20 20
Order of Fourier series M 5 10 20 20 20

The convergence test associated with the order of Fourier-Laguerre series has been
made through condition 1, 2 and 3. The results are shown in the following figures, among
them, L is the characteristic length which is equal tor the radius of hemisphere.
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Analytical Solution

® Condition 1
A Condition 2
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0.1

Fig. 6 Surge added mass coefficients

with different order of Fourier-Laguerre series

0.4 1

0.3
-
S5 0.24

0.1 1

0.0 1

Analytical Solution
® Condition 1
A Condition 2
v__Condition 3

Fig. 8 Surge damping coefficients
with different order of Fourier-Laguerre series

0.3

Fig. 7 Heave added mass coefficients

with different order of Fourier-Laguerre series

0.3

Analytical Solution
e Condition 1
A Condition 2
v Condition 3

oL

Fig. 9 Heave damping coefficients
with different order of Fourier-Laguerre series

From the results, we can see that the numerical results are in good agreement with the
analytical solutions, in Figure 6 and Figure 8. The results of surge motion seem sensitive to
the order of Fourier-Laguerre series at a high wave frequency, and the discrepancy between
analytical solutions and numerical results in condition 1 are larger than that in condition 2 and
condition 3. From Figure 7 and Figure 9, the results of heave added mass and damping
coefficients have shown a good precision in condition 1. In conclusion, the numerical results
show a good convergence with the increase of the order of Fourier-Laguerre series.

At the same time, the influence of different control surface radius to numerical results
has also been studied through condition 3, 4 and 5. The results are shown in the following

figures.
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From the results we can see, added mass and damping coefficients of surge motion are
more sensitive to control surface radius than that of heave motion. In Figure 11 and Figure 13,
the numerical results show a good agreement with the analytical solution in different
conditions. In Figure 10 and Figure 12, the influence of the control surface radius to the
numerical result is small at a low wave frequency, and with the increase of the wavenumber,
the numerical results in condition 3 are more accurate than the other conditions overall. The
main reason is more panels are needed on the free surface with the increase of the control
surface radius. Consequently, considering the chosen of control surface radius, we prefer to a
smaller one.

5. Conclusion

The Rankine-Kelvin hybrid method has been applied to solve zero speed seakeeping
problems successfully. From this paper, we can draw the following conclusions

1. The application of Kelvin source in the external domain will result in irregular
frequency, and an extended boundary integral equation method has been used to
eliminate the irregular frequencies.

2. The result is convergent with the increase of the order of Fourier-Laguerre series,
and a better accuracy can be achieved when a smaller radius of the control surface is
chosen with the same order of Fourier-Laguerre series.

3. All the work in this paper has laid the foundation for solving the forward speed
hydrodynamic problem.
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APPENDIX 1

In this part, some integrals about Laguerre function will be calculated following his
notes [9].

1 The calculation about the integration of Laguerre function

1.1
f:w e L (C)C = L+oo e [Li(¢&)-Lia () de W
=—e Ly (2)+e e (2) =[] ve L (§)dg+ [Tve L (§)dg

Eqg. (1.1) can be transformed into recursion Eq. (1.2)
0y, 1 —y 1- 0y
J.; e ng+1(§)d§=;e Z[Lk+l(z)_|-k(z)]_7v ; e Ly ($)S (v#0)
(1.2)

Change the order of Laguerre polynomial from k+1lintok and reuse Eg. (1.2), we can
get the following result

[e L (¢)de =%e—vz [L(2)- Lk_l(z)]_l_TV e (0N
- I.H%e_vz (_ﬂji [Lk—i (2)~ Lisia (Z)] +[—1_—VJk (1 e“’ZJ

14 |4

(1.3)

Finally, the integration about Laguerre function can be solved referring to Eq. (1.3)

o~

[T n)as=[e L (0)dg
- i 2V2+1 e*(wa]z (_12; ivl j [Lei (2) - Leia(2)] +(_12; ivl j {Zile[wz)z}

1.2
[oe L (e =[ e [L(¢)-Lin(¢) ¢ w5
="y (2)-1-€" Ly (2) +1- [T ve™ Ly (¢)d¢ + [ ve Ly (¢)dg
Eg. (1.5) can be transformed into recursion Eq. (1.6)
Jp e L€)d2 = e (2)- e L () + 2 e L ()¢
(v=0) (1.6)

= k_llevz (1+V)i [Lei(2)- '—kil(z)}f[“_vjk 1(evz ‘1)

Vv 1% 1% 1%

Finally, the integration about Laguerre function can be solved referring to Eg. (1.6)
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1

Pesycpc=[d Jﬂkmdg
k1o v—% Z(2v+1 2v+1)| 2 V‘% :
=] 2V_le( j (2‘/—1) [Lei(2)-Leial(z )]JF(ZV_J 2V_1[e( j 1}

i=0

When v = 1
2
[06" 0 (€)dS = [ L (€)d¢ = L (2) - Ly (2) (18)

When the integration is computed near v:%, we have done the following

approximation

e(v—1/2)§ _ i i(v_lJm ézm (1.9)

_ 7 0 1 1 m
[ e v2)e, (g)dg=j0 ZW(V_EJ g’m}Ln(g)dg
" (1.10)
& (-)n! 1 Ak
m=0k=0 m!(k!) (n—k)!m+k+1 2
+00 z _ é’
1.3j0 "0, ( dzj e 0 (
We use the result of Eq. (1.4), then
to V2 e
J ! dzj ) ) (1.12)
5 1=2v e 1-2v\ 2 o,
§2V+1[ 2V+1J J.O # (Db ()b e )}dZJ{_mJ 2v+1.[0 e "Ly (2)dz
Referring to Eq. (2), the analytical solution of Eq. (1.11) can be obtained as follow
J~+ vzg dZJ. _ng
k—n-1
S e (0=n<k-1)
(2v+1) (1.12)
2
= =k
2v+1 (n )
=0 (n>k)
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L4 [Te e, (2)dz €0 (¢)dg

Similar to Eq. (1.11), we can get the following result

[Ty (2)dzf e b (§)dg

=0 (0<n<k-1)
=3 2 . (n=k) (1.13)
v+
—4(2v +1)"
- (2V_l)k—n+l (n>k)
APPENDIX 2

This part introduces the expression of Green function in the cylindrical coordinate
system.

Kelvin source can be written as Eq. (2.1)
G(P,Q)=G, +G, +G,, + G,

- e Py [ e g (R dv +iavge 03y (vR) Y
o  Thg 0 v—v,
among them,
I P o 1 —v(z0) _i2pye- Y (z+)
Gr=——,Gy=——,G, =2v,PV [ ~——e Jo(VR)dv, G, =i27vpe () 30 (VgR) .

G, is the Rankine source which is associated with the distance between the field point
P(x, Y, z) and the source point Q(&,7,4):

Gr=é:]/\/(x—§)2+(y—77)2+(z—§)2:]/\/R2+Zz (22)

Among them R :\/(x—f)2 +(y—77)2,Z =|z-¢|
Eg. (2.2) can be rewritten as

1/\JR? + 22 :.[;Oe_"ZJO(vR)dv (2.3)
In the cylindrical coordinate system, the field point P and the source point Q can be

written as P(h, ¢, 2), Q(h',¢",¢)
Using the identity

Jo(vR)= f eP0=0)3 (vh) 3, (Vi) (2.4)
p=—o

We can get
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G, = Z eP(7- (pI e 1245 ( h)J o (vh')dv (2.5)

In a similar way

o= Z eP(?- (DJ. e "(7+)] o (vh)J, (vh')dv (2.6)
p=—o0
1 —v(z+4 '
Gy _2vopzwe py [ me (93 (vh) 3, (vh')dv 2.7)
+00 R ,
G, =i2mvge 0@ 3 &P g (v5h) 3, (h) (2.8)

p=—0

APPENDIX 3

The computational methods of the integrals defined in the external domain.
Gymi can be divided into the following four parts

Grmit = I - J‘_;J 2 (2)e"?e ™ dsd pdz (3.1)
Gomki2 = %E@J‘;LGW@ (&) 0y (2)e" e ™ dsd pdz (3.2)
Gomkiz = %JJOOJ‘;J‘CGWKK (&) 0y (2)e"'e" ™ dsdpdz (3.3)

Gomkis = rw L[ J. 2 (2)e"”e"™ dsd dz (3.4)

Then we can calculate the four parts separately with the formulas mentioned in

appendixes 1 and 2. Substitute Eq. (2.5) into Eqg. (3.1), use the orthogonally of Fourier series,
we can get Eq. (3.5)

Gom,1 = I+wj_”J )e'''e" ™ dsd pdz
—2zh' to ' T vz "% (35)
=27 Z jo Jp(vh)Jp(vh)oh/f0 ey (2)dz[) €0 ()G Spmpy
+27h’ ZJ o (Vh)V] e (2)d2[ 67 04 (£)dS - Spmpy

Substitute Eq. (1.12) and (1.13) into Eq. (3.5), we can obtain the following results
When n=k

+00 ©
Goms = 470" Y j; 3,(vh)3, (vh) dv-Spm S, (3.6)
p=—o0

2v+1
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Otherwise
4 2y —1 K
=2zh’' (vh’ dv-6,, -0
Gom.kia =27 Z J 3 (v )(2v—1)(2v+1)(2v+1j v Cpm
(3.7)
In a similar way
& e - (2v-1)™K
Gz =87h" D’ Io Jp(vh)J, (vh )(—2+k+2d‘/'5pm5pl (3.8)
p=—o© (2V+1)
G s =167 Z SpiSom PV[ L 32(un) (2v-1™ d (3.9)
=loxzn', E— vn)————=av .
nm ki3 Op__oo pl¥pm 0 y_ Vo ® (2v+l)n+k+2

To make the calculation of numerical method accurate and efficient, we can deal with
Eqg. (3.9) as follows

n+k

, > +00 1 2V—1
Gnm,kl3:16”h VO z 5p|5pm‘ p.V.J‘O V—Jz(Vh) ( )

P _ VO p (ZV +1)n+k+2
L 2 1, (-1
+167h'y, 8O- PV —— 3% (voh) ———~L—dv
Op_Z:oo I~ pm '[0 V_VO p( 0 )<2V0 +1)n+k+2
2 v-1)™ g 2v, -1
=167h'vy Z 9p1%pm pvJ. ¢ —Jf("h) ( r)1+k+2_ _ Jf(voh)(o—r)wkﬂ dv
p=—o Yo (2v+1) V=V (2vy +1)
, 10 l 5 (zv_l)n+k
+167h'v 5 |0 —J(vh)———
Op_zoo o Jui il )(2v+1)”+k+2
(3.10)

Substitute Eq. (2.8) into (3.4), we can get

1 e+0px . _ oo
Gnmk|4 :Z.[O J._;[J.c{IZﬂ-VOe VO(Z+§)\]O(VOR)}K|( (é’)()n(z)ell¢7e Imq)de({)dZ

. Nk (3.11)
2 N (2v-1)
=167 Voh | Z 5pm5p| -J p (Voh)J p (Voh )W
p=—o0 (2V0 +1)

The normal derivative of Kelvin source on the control surface can be written as
iGziG 0 (G +G, +G,, +G ) (3.12)
anQ oh’ oh’'

Then

—K|{ -2 ' '
anQ _ Y ey N[ ve e, (vh) 3, (vhr)dy (3.13)
p=—o0
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0 & ip(y—y) [P (4 —
%G o= pzz_ooe ( )Io e ™! )Jp(vh)Jp(vh Mv (3.14)

0 Gy =2vpr. Y Jo v L e #)e®ee)y (vh) 3y (vhydy  (3.15)

on Q p=— ()
%G —|27zv g"0(2+¢) Z eP(?=¢) o (1oh) 3 (oh') (3.16)
Q

Similar to the calculation of G, iy, Hpm g can also be divided into the following four
parts

H o1 = j+°° [ CaTc;r () (2)e" e ™ dsd pdz (3.17)
Homiz =5 j+°° [ CaTGr () (2)e" e ™ dsd pdz (3.18)
Homkia = rw [ jC—G 0 (&) L (2)€" e ™ dsd iz (3.19)
Homa = j - caTGC ()0 (2)€" e ™ dsd pdz (3.20)

The result can be written as

oo
Homuz =420 3 [ “va, (vh)3 (vh) S dv-Gypndy  for n=k (3.21)
p=—00

H =2zh SN h)J’ (vh —4 2v-1 ‘k_n‘d for n=k
mKlL = 27 pzw_"o v, (vh)Jg (v )(2v—1)(2v+1) i1 V-8pmdp)

(3.22)
(2V-1)n+k
Hpmii2 =87h Z é‘pmé‘plj Vh) (Vh)w 14 (3.23)
p=— (2v+1)
0 oo v (2V—l)n+k
Himki =1670wo5p1 S p:Z_:w p.v.jo ‘]p("h)%("h)v_vo (20 1) dv (3.24)
20 2. R , , (21/0 —1)n+k
Homis =167°hv7i 2. Somdpi - 3p (Vo) Ip (voh) 7 (3.25)
p=—o (2V0 +1)
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In the extended boundary integral equation method, when the field point is on the
control surface and the source point on the interior free surface, the normal derivative of
Kelvin source on the free surface can be written as

0 0 0

%G:—iGz—z(Gr+Gr'+GW+GC) (3.26)
—%(G +Gy)=0 (3.27)
o 2op 3 [)T e ey ()3, (o) 329
%G =i27v2e ™ p;iiweip(‘”“/"h 5 (voh) 3, (voh') (3.29)

Hpom g defined in Eq. (27) can be divided into four parts

Hnm,F = Hnm,Fl"’Hnm,F2+Hnm,F3+Hnm,F4 (3-30)
where
Hnm,F1+Hnm,F2 =0 (3.31)
+00 —|m(0
Homes =2, j j_ﬁ jAF o 0 (2)e7™ dsd pdz (3.32)
o —img
Ham 4 =, j j_ﬁ jAF o 00 (2)e7™ dsd pdz (3.33)

Substitute Eq. (3.28) into Eg. (3.32)

v 2(2v-1)

Hnm F3—2VOASFe_Im¢ 0 — VO (2V+1)n+1 m(Vh)J (Vh )dV (334)
Substitute Eq. (3.29) into Eq. (3.33)
4z (2vy-1)" o imea)
nm,F4 = Omlgmo m Y0 AFiIm .
H (2( 1))vJ (voh) I (voh')aSe™ )i (3.35)
o+

When the field point is on the free surface and the source point on the control surface,
G i defined in Eqg. (30) is divided into four parts

Gr i =Cf i1+ Gk k2 + Gk i3 + Gk kia (3.36)

Gr w1 = _[CGrfk (¢)e'ds (3.37)
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G 2 = jCGr.fk (£)e'ds (3.38)
Ge i3 = ICGWEk (¢)e"ds (3.39)
Ge 4 = LGCEk (£)e"ds (3.40)

Among them, Gg ; =Gg 4, and the derivation of Gg ; is given in Eqg. (4.4) in
Appendix 4,

w1 2(2v=1)f

G — Axh'v,e''?
F kI3 0 0 Vv, (Zv+1)k+1

Jy (vh)J; (vh')dv (3.41)

(2v-1)"

GF,k|4 :872'2V0h'e”(/’ o1
(2vy +1)

J| (Voh)J| (Voh’) (342)
In a similar way, Hg ,, defined in Eqg. (29) can also be divided into four parts,

and Hg g3 =Hg 4o, and the result of Hg ., will be given in Eq. (4.5) of Appendix 4,
referring to Eqg. (3.15) and Eq. (3.16), then one can obtain the following results

. - 2v-1)¢
He o = et [V 3, (vh) 37 (vh')d 3.43
F ki3 =87vph'e pVIO Vv, (2v+1)k+1 1 (vh) Jj (vh")dv (3.43)
2020 (2Vo—1)k
HF,k|4 =8r Voh'e p(p\]| (Voh)\]{(V()h’)—k_ﬂ (344)
(2vy +1)

When both the field point and source point are on the interior free surface, similar to the
way of dealing with H . Hg ¢ defined in Eq. (31) can be divided into four parts, and it is

0 1

+00 _
Heps = J.AFi %G\Nds = 2Vp IO-V-J.O =" e™"vJo (VR)dv-ASE (3.45)
0
He ra =.[AFi%GCds =LE [27zv§J0(voR)] ds = 27v8 35 (R)- AS (3.46)

APPENDIX 4

The calculation of the integrals defined in Egs. (50) and (55).
Grmkt» Hrnmi are the first parts of G, Hym i respectively, which have been

solved in Appendix 3, when the source point Q is on the body surface or on the free surface,
the source on each panel is constant.
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1 e ~
G nm,« ZEJ.J J._”” BaGrfn(z)e Mo dsd pdz

(4.1)
= 08, ) a () I ()] [ e iz [T e e (e |

where AS, represents the area of panel on the body surface. Substitute the result of 1.1 and

1.2 in Appendix 1 into Eq. (4.1), then Gg ,, , can be solved for.
The normal derivative of Kelvin source on the body surface can be written as
0

— G= 8’
anQ ch

. 1 0 . 0
G(cos¢@'n +sin@'n ——G(cos@'n, —=sinp'n ) +—G-ny, (4.2
( ¢1+|(p2)+h'8¢’( @y '¢1)+a§ 3 (4.2)
then
_ +00 —im
HB'“"W_ .[ .[_;;.[B“ ong Gl ( ¥dsdpdz
— AS e ™ (cos¢n1+sin¢'n2)jo°° I (v0) 35y (vh')dic [ €7 e, (2)

+ASBae‘im‘/"(_r|]—r,n)(c05go'n2—sin(p'nl)rooJm(vh) (vh)dvI _V‘g_z‘fn(z)dz

+AS 5. € 'm‘/’J. m(vh’ )va. _V‘g_z‘fn(z)dz

(4.3)
When the source point Q is on the free surface, £ =0
_ 2v-1)" 2
img
G g =© Asﬂj m(Vh) 3 (v h)(ZHJ 70 (4.4)
img 0 2 -1)"

e =e ™08, [T 2 B ) a, (i 4

0 2v+l(2v+1)

When the field point is on the body surface and the source point on the control surface

Gc,;/,kl = J-CGrEk (él)e”{o’ds
- z PO [ ey (vh) 3 (vh)dv} ((£)eds (4.6)
p=—
= 27N [ 3, (vh) 3y (vh)dv [ e g

Pl .
Hepl = J.cﬁn G, (¢)e"ds “n

= 27he [ 03, (vh) 3 (vh )k [ e g

When the field point is on the free surface and the source point is the control surface
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Ge, i =270'e™ [ 3 (vh) 3 (viv) 2 (zv_ljkdv (4.8)
erkl o v+1l2v +1 '
k
1 (40 2 (2v-1
H. . =2zhe' [y, (vh) 3! (vh' d 4.9
ekt =27l [ vy (vh) 3 (v )2v+1(2v+1j Y “9
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