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Summary 

The solution of the three-dimensional seakeeping problem with forward speed in the 

frequency domain still has some well-known problems. In this paper, a Rankine-Kelvin 

hybrid method benefiting the merits of both the Rankine source and Kelvin source is 

presented and demonstrated by studying the wave diffraction/radiation problem with zero 

forward speed as an example. A meshless cylindrical surface is selected to be the control 

surface dividing the fluid domain into two regions, and the velocity potential and its normal 

derivative on the control surface are represented by series expansions. The present Rankine-

Kelvin hybrid method is validated by the added mass and damping associated with the linear 

radiation force, and comparison is made with the documented analytical solution. All the 

work in the paper sheds light on solving the forward speed hydrodynamic problems. 

Key words: Rankine-Kelvin hybrid method; meshless cylindrical control surface; 

series expansion method; 

1. Introduction 

As it is known, when solving the hydrodynamic problem with forward speed, the 

implementation of the Kelvin source method using the Green function associated with a 

translating and oscillating source bring along several well-known problems concerning its 

wave component. In particular, it behaves with complex singularities and high oscillations 

when both the field and source points approach to the free surface [1]. In the earlier work, 

numerical results were in very good agreement for immersed bodies like sphere and ellipsoid, 

or surface piecing body of very slender shape like Wigley hull [2]. Unfortunately, for the 

realistic container ships, the results present large discrepancy from those of model tests. Ten 

and Chen (2010) [3] came up with a new method to solve the forward speed problem, and 
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they try to benefit the merits of the Rankine source method and the Kelvin source method by 

using a hemisphere as a control surface. However, the method made the calculation of the 

integration over the control surface complex and may lead to some troubles about 

singularities. 

In this work, we use a cylinder as a control surface instead of a semi-sphere in the same 

spirit as Liang and Chen’s work[4]. The Rankine source method is used in the internal 

domain, and the fundamental solution is in the form of 1 r , with r standing for the distance 

between the field point and the source point. Panels are distributed over the body surface and 

the free surface in the internal domain. Kelvin source method is used in the external domain 

and the Green function which satisfies the free-surface boundary condition and radiation 

condition is adopted. On the meshless cylindrical control surface, the velocity potential and its 

normal derivative are expanded into Fourier-Laguerre series and Lv et al. [5] have proved the 

effectiveness of approximation by Laguerre series for diffraction waves on the cylinder. 

The objective of this work is to solve the zero speed seakeeping problem as an example 

to show the effectiveness of Rankine-Kelvin hybrid method with a meshless cylindrical 

control surface. In the numerical implementation, we consider a hemisphere floating at the 

free surface, and the forward speed is out ruled at the moment. The added mass and damping 

coefficients are calculated with the present Rankine-Kelvin hybrid method, and the 

convergence test associated with the terms of Laguerre functions and Fourier series is made. 

In addition, the influence of different control surface radius on the numerical results is studied 

through comparing with the analytical solution, and eventually a satisfactory accuracy is 

obtained. Due to the fact that there are many new defined coefficients concerning multi-fold 

integrals in this method, Chebyshev expansions are utilized to approximate the resultant 

integral to improve computational efficiency. The successful application of the Rankine-

Kelvin hybrid method in zero speed problem has established a foundation for solving the 

forward speed problem. 

2. The series expansion method of velocity potential and its normal derivative  

In the Rankine-Kelvin hybrid method, as a meshless circular cylinder surface is selected 

as control surface, the velocity potential and its normal derivative on the control surface need 

to be expressed analytically. In this paper, they are expanded into Fourier-Laguerre series. 

The velocity potential on the control surface is a function associated with the polar 

angle   and vertical coordinate z positively downward, which can be expressed as  , z  . 

As the velocity potential  , z   decreases exponentially with the increase of z, and when z 

tends to infinity, the velocity potential tends to zero. The velocity potential is expanded into 

series of Laguerre as follows 

         2

0 0

,

z

n n n n

n n

z f L z e f z   
 

 

                                                    (1) 

where  nL z is n-th order Laguerre polynomial, and     2

z

n nz L z e


 is the n-th order 

Laguerre function. 

 The orthogonal property of Laguerre polynomials is considered in Eq. (2) and Eq. (3).  

   
0

z
k n nkL z L z e dz 

                                                                                    (2) 
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   
0 k n nkz z dz 


                                                                                       (3) 

where nk is Kronecker delta function. 

Thus,  n z is multiplied on the two sides of the Eq. (1) simultaneously and we can 

integrate the both sides from zero to infinity with respect to z , and the coefficient of the 

series expansion can be expressed as follows 

     
0

,n nf z z dz  


                                                                                  (4) 

 As the velocity potential on the control surface is a periodic function about   of which 

the period is 2 , so we have    , 2 ,z z      ,    2n nf f    and the Dirichlet 

condition is satisfied on the period  ,  , namely 

1.  The function is continuous or has finite discontinuity points of the first kind.  

2.  The function has finite extreme points.  

So the velocity potential on the control surface can be expanded into Fourier series, and 

its complex exponential form is as follows   

  im
n nm

m

f e  




                                                                                             (5) 

with 

 
1

2

im
nm nf e d

 


  






                                                                                  (6) 

The substitution Eq. (5) into Eq. (1) yields 

   
0

, im
nm n

m n

z z e   
 

 

                                                                             (7) 

The substitution Eq. (4) into Eq. (6) yields   

   
0

1
,

2

im
nm nz z e d dz

 


   



 


                                                              (8) 

In the same way, the normal derivative of velocity potential  , z  of an arbitrary 

point on the control surface can be also expanded into Laguerre-Fourier series as follows  

   
0

, im
nm n

m n

z z e   
 

 

                                                                           (9) 

   
0

1
,

2

im
nm nz z e d dz

 


   



 


                                                           (10) 

In (7) and (9), nm and nm  are coefficients of the series expansion and defined by (8) 

and (10), respectively. 
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3. The application of rankine-kelvin hybrid method to zero speed problem 

3.1 Definition of parameters 

We consider the ship floating in the sea of infinite depth with zero speed and use a 

cylinder to separate the whole fluid domain into two domains. In the external domain, the 

normal vectors of the boundary surfaces positively inward to the domain. In the internal 

domain, the normal vectors point positively outwards of the domain. The normal vectors and 

the coordinate system are shown in Figure 1. 

 

Fig. 1 Definition of the coordinate system and normal vectors 

It is convenient to use the cylindrical coordinate system as a cylindrical surface is 

chosen to be the control surface. Here is the transformation between the two coordinates. 

  cosx h     siny h     z                                                                                 (11) 

where h is the radius of the cylinder,  ,    varies in the plane xoy ,  0,   , and then 

an arbitrary point can be expressed as ( , , )P h z  in the cylindrical coordinate system. 

The boundary conditions in the internal domain are given as followings 

2

n z g

  


 
  

 
                       on the free surface 0z                                        (12) 

 1,2, ,6
j

jn j
n


  


              on the body surface                                                (13) 

where   denotes the oscillation frequency. 

3.2 External problem 

In the external domain, the Green function used here is given in the form of [6] 

     0 ( )
0 0 0 0 00

Q 0Q

1 1 1
( ,Q) 2 . . 2

z v z

P P

G P v PV e J R d i e J R
r r

     
 

    
   

    (14)  

In which, 
2

0 g  is the wave number, 0( )J  is the zeroth order Bessel function of the 

first kind, . .PV is principle-value integral. 

For the velocity potential at an arbitrary field point P  on the control surface in the 

external domain, application of the Green’s second identity provides 

          Q
Q Q

2 Q ,Q ,Q Q
c

P G P G P ds
n n

  
  

  
   

                                 (15) 
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After substituting Eqs. (7) and (9) into Eq. (15), we obtain 

     
Q0 0 0

2 [ ]il il il
kl k kl k kl kc

l k l k l k

z e G e G e ds
n

       
     

 

     


 


       (16) 

Application of Eq. (8), we have 

     
0

Q 0 0

1
2 [ ]

2

il il im
nm kl k kl k nc

l k l k

G e G e z e dsd dz
n

   


     



   
   


   


 


       (17) 

We define new coefficients 

   , 0

1

2

il im
nm kl k nc

G G z e e dsd dz
  


 



  


                                           (18) 

   , 0
Q

1

2

il im
nm kl k nc

H G z e e dsd dz
n

  


 



  






                                  (19) 

So Eq. (17) can be rewritten as  

, ,

0 0

2 nm nm kl kl nm kl kl

l k l k

H G  
   

   

                                                         (20) 

As the subscripts n and m change, we can get a system of equations which can be 

expressed as follow 

 , ,
12c c c c

kl klH E G                                                                                      (21) 

Here ,C CH , ,C CG  are matrices consisted of ,nm klH and ,nm klG , and kl , kl are vectors 

consisted of kl and kl , 1E is the unit matrix of which the dimension is equal to ,C CH . 

 Finally we can get the relationship between the series expansion coefficients of the 

velocity potential and its normal derivative on the control surface. 

   
1

, ,
12C C C C

kl klG H E  


                                                                         (22) 

And we define the matrix DN as 

   
1

, ,
12C C C CDN G H E


                                                                             (23) 
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3.3 Extended boundary integral equation method 

 

Fig. 2 Schematic diagram of extended boundary integral equation method 

As the application of the free-surface Green function in the external domain problem 

will result in the occurrence of irregular frequencies, extended boundary integral equation 

method presented in [7] is adopted to remove irregular frequencies, and the interior free 

surface is divided into panels shown in Figure 2. The boundary integral equations are given as 

follows 

     
Q Q Q

2 Q Q
c F c

P G ds Gds Gds
n n n

   
  

  
        P C             (24) 

   
Q Q Q

4 Q Q
c F c

Gds Gds G ds
n n n

   
  

  
                 P F          (25) 

The dipole distribution  on each panel of the interior free surface is assumed constant. 

Substituting Eqs. (7) and (9) into Eqs. (24) and (25) and applying Eq. (8), we can get the 

following integral equations. 

When field point is on control surface 

, , ,

0 0 1

2
FN

nm nm kl kl nm kl kl nm F i

l k l k i

H G H   
   

    

                                    (26) 

with 

 , 0

1

2 i

im
nm F n nF

H G z e dsd dz
 






 

 
                                                      (27) 

,nm klG and ,nm klH  have been defined in Eqs. (18) and (19). 

When field point is on interior free surface 

, , ,

0 0 1

4 0
FN

i F kl kl F kl kl F F i

l k l k i

H G H   
   

    

                                      (28) 

with 

 ,
il

F kl n kc
H G e ds


                                                                                    (29) 

 ,
il

F kl kc
G G e ds


                                                                                      (30) 
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,
i

F F nF
H G ds


                                                                                                  (31) 

In a similar way with Eq. (21), we can get a matrix form 

, , ,
1

, , ,
2

2

4

C C C F C C
kl

klF C F F F C

H E H G

H H E G






     
    

         

                                               (32) 

Among them, ,C FH ,
,F CH ,

,F CG ,
,F FH are separately consisted of 

,nm FH , ,F klH , ,F klG , ,F FH , and the vector  is consisted of i . 2E is the unit matrix of which 

the dimension is equal to ,F FH . 

From Eq. (32), we can get the new relationship between the series expansion 

coefficients of the velocity potential and its normal derivative on the control surface  

kl klDN                                                                                                           (33) 

among them 

 

   

1
1

, , , ,

1
, , , ,

4

2 4

C C C F F F F C

C C C F F F F C

DN G H E H G

H E H E H H



 






 
   
 

 
    
 

                                   (34) 

3.4 The validation of the external domain 

To verify the relationship between the velocity potential and its normal derivative 

obtained from the external domain, we have calculated the diffraction potential of an 

infinitely long vertical circular cylinder. 

We consider a regular wave as the incident wave, which propagates along the positive 

axis of x , and the corresponding first order incident wave potential is as follows 

 0 0 0
0 0

0

cos
z i x z m

m m

m

gA gA
e e e i J R m

i i

     
 


 



                                          (35) 

(when 0, 1mm   ,or 2m  ) 

Among them, A  is the amplitude of the incident wave, and  , ,R z  is the cylindrical 

coordinates of an arbitrary point. According to the body surface condition, we can get  

 0
7 0 0 0 0

0

cos
z m

m m

m

gA
e i J R m

n n R iw

      






  
     

  
                     (36) 

Applying Eqs.(9) and (10), the series expansion coefficient of the normal derivative of 

diffraction potential can be obtained 
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   

 

 
 

0
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0

0
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1
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2

2 1

2 1

z m il
kl m m k

m

k
m

m m m lk
m

gA
e i J R m z e dzd

iw

gA
i J R

iw

  


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


   




  









 
  

  


 



 



      (37) 

where 

 

 

2 0

m l
m l

m l

others




  
 


                                                                                        (38) 

Appendix 1 can be referred for the calculation details of Eq. (37) 

Substitute Eq. (37) into Eq. (22) and (33), we can get the series expansion coefficients 

of the diffraction potential, then numerical solution can be obtained based on Eq. (7). 

At the same time, the diffraction force of an infinitely long vertical circular cylinder d
wjF  

can be calculated based on the following Eq.  

0
7 ( 1,2,3)d

wj js
F iw n ds j                                                                      (39) 

Substitute Eq. (7) into Eq. (39), then 

 0 0
0

d im
wj nm n j

m n

F iwR z e n dzd
 


  

 



 

                                                 (40) 

Substitute  cos , sin ,0n      into Eq. (40), It is obvious that 2 30, 0d d
w wF F  , 

   1 0 ,1 , 1

0

2 1
nd

w n n

n

F iwR  






                                                                    (41) 

Analytical solution of the diffraction potential [6] is as follow 

 

 
 0 0 0

7 0
0 00

cos
mz m

m m
mm

J RgA
e i H R m

iw H R

 
   









 


                                         (42) 

Substitute Eq. (42) into Eq. (39), analytical solution to the diffraction force can be 

expressed as follow 

 

 
 1 0 00

1 1 1 0 0
0 1 0 0

d
w

J RgR A
F i H R

H R


  

 





                                                              (43) 

Comparison of the numerical solutions for the diffraction potential and diffraction force 

with the analytical ones are presented in Section 4. 

3.5 Internal problem 

In the internal domain, Rankine source is adopted which is given as follow 

Q

1
r

P

G
r

                                                                                                               (44) 
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For the velocity potential at an arbitrary field point P on the boundary surface of internal 

domain consisting of control surface CS  free surface FS  and body surface BS , application of 

the Green’s second identity yields 

 
 

  Q
Q Q

Q
2 Q

C B F
r rS S S

P G G ds
n n


 

 

  
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                                            (45) 

The free surface and body surface are divided by BN and FN panels, respectively. Thus, 

expression (45) becomes  

 
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                            (46) 

Substitute the boundary conditions Eqs. (12) and (13) into Eq. (46), 
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       (47) 

where n  is the component of the normal vector on BS . 

In Case 1, where the field point P  is on the control surface 
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    Application of Eq. (8), one can get  
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 Eq. (49) can then be rewritten as follows 
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                             (51) 

In a similar way with Eq. (21), we can get a matrix form as follows 

 
2

, , , , , ,2 C C C C C B C B C F C F
kl r kl r kl r r r rG H G n H G H

g
  


    

 
        

 

    (52) 

Here ,C C
rH , ,C C

rG , , , ,, ,C F C F C B
r r rH G H and ,C B

rG are matrices composed of , ,r nm klH , 

, ,r nm klG , , ,F nmH  , , ,F nmG  , , ,B nmH   and , ,B nmG  , and kl , kl  are vectors consisting of kl  

and kl . 

The substitution Eq. (33) into Eq. (52) yields 
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In Case 2, when the field point P  is on the body surface BS  or on the free surface FS , 

the panel including the field point P  is numbered by  , then Eq. (47) becomes 
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                                                                           (55) 

Then Eq. (54) can be rewritten as follows 
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In a similar way with Eq. (21), we can get a matrix form as follows 

2
, , , , , ,
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Here,
,BF C

rG ,
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rH ,
,BF B

rG ,
,BF B

rH ,
,BF F

rG and
,BF F

rH  are matrices consisted of , ,c klG  , 

, ,c klH  , , ,BG   , , ,BH   , , ,FG   and , ,FH    and  is vector consisted of  and  , 3E is a 

unit matrix with dimensions of   , 

Substitution of Eq. (33) into Eq. (57) yields 
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Then the equations for the entire domain can be obtained by combining Eq. (53) and (58) 
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  (59) 

Once Eq. (59) is solved, one can obtain the velocity potential on the panels and the 

series expansion coefficients of the velocity potential on the control surface. The method for 

evaluating the coefficients we have defined for the multi-fold integrals is given in the 

appendices. From the expression of the multi-fold integrals, the Chebyshev expansion is used 

to approximate the integrations and improve the efficiency.  

3.6 The solution of added mass and damping coefficient 

The added mass and damping coefficient can be solved as follows 

b

ij i
ij j

S

ib
a ds

n


 




 

                                                                                        (60) 

where, ija is added mass, ijb  is the damping coefficient, as the body surface is discretized into 

panels, Eq. (60) can be rewritten as 

1
b

N
ij i

ij j j i

S

ib
a ds n

n


 




   

 


  


    ( , 1,2, ,6)i j                                       (61) 

Then added mass and damping coefficients can be obtained by substituting the velocity 

potential on the body surface into Eq. (61). 

4. Results and analysis 

4.1 Results for the diffraction potential 

Numerical solution has been computed with the order of Laguerre function from 0 to 10 

and the order of Fourier series from –10 to 10, the radius of the cylinder is 3.0 m, a fixed 

point P (3.0 1.5 1.0) is selected expressed in cylindrical coordinates on the circular cylinder, 

the diffraction potentials at the fixed point varying with wavenumber are shown in Figure 3, 

among them, method 1 refers to the original solution method of the exterior domain in 

subsection 3.2, Method 2 refers to the extended boundary integral equation method in 

subsection 3.3. 
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Fig. 3 The comparison results of diffraction potentials 

In Figure 3, the numerical solution agrees well with analytical solution for wavenumber 

varying from 0.1 to 1.6 except for 0  is 0.8. 

As we can see, numerical solution has a fluctuation when wavenumber is 0.8, and this 

wave number is regarded as irregular frequency. Different points on the circular cylinder are 

chosen with h =3.0 and z =1.0. The diffraction potentials at the irregular frequency varying 

with different circumferential locations of the points are shown in Figure 4 
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                    Fig. 4 The comparison results of diffraction potentials at irregular frequency 

From Figure 4, we can see that the numerical solution obtained from extended boundary 

integral equations in method 2 is in good agreement with analytical solution, which illustrates 

the relationship between the velocity potential and its normal derivative on control surface is 

right and extended boundary integral equation method is capable of removing the irregular 

frequency. 
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       Fig. 5 The comparison results of diffraction force 

Diffraction force in the direction of x  axis is given in Figure 5, and the numerical 

solution shows a satisfied accuracy. 

4.2 The results of added mass and damping coefficients of a hemisphere 

A hemisphere is chosen as the example for calculation, the numerical solutions about 

the added mass and damping coefficient are compared with the analytical solutions given by 

Hulme[8]. For the convenience, we have defined the following conditions shown in table 1. 

Table 1 list of conditions  

Parameter's name Notation 
Condition 

1 2 3 4 5 

Radius of the hemisphere r 2m 2m 2m 2m 2m 

Radius of the control surface R 3m 3m 3m 4m 6m 

Number of panels of hemisphere BN  300 300 300 300 300 

Number of panels on free surface FN  1900 1900 1900 2500 3190 

Order of Laguerre function N 5 10 20 20 20 

Order of Fourier series M 5 10 20 20 20 

The convergence test associated with the order of Fourier-Laguerre series has been 

made through condition 1, 2 and 3. The results are shown in the following figures, among 

them, L is the characteristic length which is equal to r  the radius of hemisphere. 
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Fig. 6 Surge added mass coefficients                             Fig. 7 Heave added mass coefficients 
with different order of Fourier-Laguerre series                  with different order of Fourier-Laguerre series 
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Fig. 8 Surge damping coefficients                               Fig. 9 Heave damping coefficients 
with different order of Fourier-Laguerre series                  with different order of Fourier-Laguerre series 

From the results, we can see that the numerical results are in good agreement with the 

analytical solutions, in Figure 6 and Figure 8. The results of surge motion seem sensitive to 

the order of Fourier-Laguerre series at a high wave frequency, and the discrepancy between 

analytical solutions and numerical results in condition 1 are larger than that in condition 2 and 

condition 3. From Figure 7 and Figure 9, the results of heave added mass and damping 

coefficients have shown a good precision in condition 1. In conclusion, the numerical results 

show a good convergence with the increase of the order of Fourier-Laguerre series. 

At the same time, the influence of different control surface radius to numerical results 

has also been studied through condition 3, 4 and 5. The results are shown in the following 

figures. 
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Fig. 10 Surge added mass coefficients                               Fig. 11 Heave added mass coefficients 

  for different control surface radius                                                  for different control surface radius 
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                 Fig. 12 Surge damping coefficients                                Fig. 13 Heave damping coefficients 
for different control surface radius                                       for different control surface radius 

From the results we can see, added mass and damping coefficients of surge motion are 

more sensitive to control surface radius than that of heave motion. In Figure 11 and Figure 13, 

the numerical results show a good agreement with the analytical solution in different 

conditions. In Figure 10 and Figure 12, the influence of the control surface radius to the 

numerical result is small at a low wave frequency, and with the increase of the wavenumber, 

the numerical results in condition 3 are more accurate than the other conditions overall. The 

main reason is more panels are needed on the free surface with the increase of the control 

surface radius. Consequently, considering the chosen of control surface radius, we prefer to a 

smaller one. 

5. Conclusion 

The Rankine-Kelvin hybrid method has been applied to solve zero speed seakeeping 

problems successfully. From this paper, we can draw the following conclusions 

1. The application of Kelvin source in the external domain will result in irregular 

frequency, and an extended boundary integral equation method has been used to 

eliminate the irregular frequencies. 

2. The result is convergent with the increase of the order of Fourier-Laguerre series, 

and a better accuracy can be achieved when a smaller radius of the control surface is 

chosen with the same order of Fourier-Laguerre series.  

3. All the work in this paper has laid the foundation for solving the forward speed 

hydrodynamic problem. 
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APPENDIX 1  

In this part, some integrals about Laguerre function will be calculated following his 

notes [9]. 

1 The calculation about the integration of Laguerre function  

1.1 

 
     

       
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     (1.1) 

Eq. (1.1) can be transformed into recursion Eq. (1.2) 
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                                                                                                                             (1.2) 

Change the order of Laguerre polynomial from 1k  into k and reuse Eq. (1.2), we can 

get the following result 
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Finally, the integration about Laguerre function can be solved referring to Eq. (1.3) 
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1.2  
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Eq. (1.5) can be transformed into recursion Eq. (1.6) 
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Finally, the integration about Laguerre function can be solved referring to Eq. (1.6) 
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When the integration is computed near
1

2
  , we have done the following 

approximation 
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Then we have 
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We use the result of Eq. (1.4), then 
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Referring to Eq. (2), the analytical solution of Eq. (1.11) can be obtained as follow 
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Similar to Eq. (1.11), we can get the following result 
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APPENDIX 2 

This part introduces the expression of Green function in the cylindrical coordinate 

system. 

Kelvin source can be written as Eq. (2.1) 
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among them, 
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rG  is the Rankine source which is associated with the distance between the field point 

( , , )P x y z and the source point Q( , , )   : 
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Among them    
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Eq. (2.2) can be rewritten as  
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In the cylindrical coordinate system, the field point P and the source point Q  can be 

written as ( , , )P h z , Q( ', ', )h    

Using the identity  
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We can get  
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In a similar way 

       
0

ip z
r p p

p

G e e J h J h d
   

  


  




                                                (2.6) 

       0 0
0

1
2 . .

ip z
w p p

p

G v e PV e J h J h d
v

   
  




  






                       (2.7) 

     0 ( )
0 0 02

ipz
c p p

p

G i e e J h J h
    


 



                                            (2.8) 

APPENDIX 3  

The computational methods of the integrals defined in the external domain. 

,nm klG  can be divided into the following four parts 
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Then we can calculate the four parts separately with the formulas mentioned in 

appendixes 1 and 2. Substitute Eq. (2.5) into Eq. (3.1), use the orthogonally of Fourier series, 

we can get Eq. (3.5) 
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Substitute Eq. (1.12) and (1.13) into Eq. (3.5), we can obtain the following results 
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In a similar way  
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To make the calculation of numerical method accurate and efficient, we can deal with 

Eq. (3.9) as follows 
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(3.10) 

Substitute Eq. (2.8) into (3.4), we can get  
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  (3.11) 

The normal derivative of Kelvin source on the control surface can be written as 

 
Q

r r w cG G G G G G
n h h


  

    
   

                                                        (3.12) 

Then  
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Similar to the calculation of ,nm klG , ,nm klH  can also be divided into the following four 

parts 
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The result can be written as 
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In the extended boundary integral equation method, when the field point is on the 

control surface and the source point on the interior free surface, the normal derivative of 

Kelvin source on the free surface can be written as 
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                                                   (3.26) 
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                                                                                           (3.27) 
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,nm FH  defined in Eq. (27) can be divided into four parts 

, , 1 , 2 , 3 , 4nm F nm F nm F nm F nm FH H H H H                                                     (3.30) 

where 

, 1 , 2 0nm F nm FH H                                                                                           (3.31) 
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Substitute Eq. (3.28) into Eq. (3.32) 
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Substitute Eq. (3.29) into Eq. (3.33) 
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When the field point is on the free surface and the source point on the control surface, 

,F klG defined in Eq. (30) is divided into four parts 

, , 1 , 2 , 3 , 4F kl F kl F kl F kl F klG G G G G                                                               (3.36) 
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Among them, , 1 , 2F kl F klG G , and the derivation of , 1F klG  is given in Eq. (4.4) in 

Appendix 4, 
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In a similar way, ,F klH  defined in Eq. (29) can also be divided into four parts, 

and , 1 , 2F kl F klH H , and the result of , 1F klH will be given in Eq. (4.5) of Appendix 4, 

referring to Eq. (3.15) and Eq. (3.16), then one can obtain the following results 
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When both the field point and source point are on the interior free surface, similar to the 

way of dealing with ,nm klH , ,F FH  defined in Eq. (31) can be divided into four parts, and it is 

obviously that , 1 , 20, 0F F F FH H  , 
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APPENDIX 4  

The calculation of the integrals defined in Eqs. (50) and (55). 

, , , ,,r nm kl r nm klG H  are the first parts of , ,,nm kl nm klG H  respectively, which have been 

solved in Appendix 3, when the source point Q  is on the body surface or on the free surface, 

the source on each panel is constant. 
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where S  represents the area of panel on the body surface. Substitute the result of 1.1 and 

1.2 in Appendix 1 into Eq. (4.1), then , ,B nmG   can be solved for. 

The normal derivative of Kelvin source on the body surface can be written as 
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                                                                                                                             (4.3) 

When the source point Q  is on the free surface, 0   
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When the field point is on the body surface and the source point on the control surface 
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When the field point is on the free surface and the source point is the control surface 
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