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Summary
This article describes a design of solving ship transport optimization using tools from 
graph theory. The tool minimal spanning tree (denote MST) is suitable for searching 
ideal transport routes between the ports. The principle of the MST problem is that 
it describes various kinds of situations where it is necessary to use this theoretical 
instrument and how to use this tool for finding a solution. Graph theory knows several 
algorithms for searching the minimum spanning tree and this article compares two 
of them, in terms of their different approaches, their complementarity, and their 
assessment, and which of these two methods can find a feasible solution faster. To 
model the situation of ship transportation we use connected weighted graph where 
vertices represent sea ports and the edges represent the transport routes between 
the ports. The weight of an edge represents energy consumed to drive the boat 
between two ports. A theoretical discussion and a model example are carried out to 
compare the two methods.

Sažetak
Ovaj članak opisuje nacrt  rješenja optimizacije brodskog prijevoza koristeći alate iz 
teorije grafa. Alat minimalno razgranatog stabla (MST) je prikladan za traženje idealnih 
prijevoznih ruta između luka. Princip MST problema je taj da on  opisuje različite vrste 
situacija gdje je potrebno koristiti ovaj teoretski instrument i znati kako koristiti ovaj alat 
za pronalazak rješenja. Teorija grafa poznaje različite algoritme za traženje minimalno 
razgranatog stabla, a ovaj članak uspoređuje dva od njih, po pitanju različith pristupa, 
njihove komplementarnosti i njihove procjene i koja od ove dvije metode može naći 
održivo rješenje što brže. Da bismo oblikovali situaciju prijevoza koristimo povezane 
opterećene grafove gdje vrhovi predstavljaju morske luke, a rubovi predstavljaju 
prijevozne rute između luka. Opterećenje ruba predstavlja energiju koja je konzumirana 
da bi vozila čamac između dvije luke. Teoretska diskusija i ogledni primjerak izvršeni su 
da bi se usporedile dvije metode. 

1. INTRODUCTION
Organization of ship transportation is associated with 
the solution of many problems [8]. One of them might be 
requirement to solve shipping transportation of goods from 
the central warehouse to all ports so as to ensure connection 
to all ports and the costs for transport connection to be as low 
as possible.

Imagine entering when we have sea ports, which are 
connected by ship transport routes so that there is sufficient 
connection to each port. Transport hubs are ports and transport 
routes are shipping lanes.

To solve such a problem we can use tools from the graph 
theory [7]. To model this situation we create a connected 
weighted graph where vertices represent sea ports and the 

edges represent the transport routes between the ports through 
which ships transport goods. The weight of an edge connecting 
two vertices represents the energy consumed to drive the boat 
between these two ports. 

At the beginning there is a situation where ships transport 
goods between hubs over many different routes and in different 
ways but the transport links are inefficient and expensive as a 
whole.

Our task now is to optimize the connections between hubs 
so as to ensure connection to all transportation hubs and the 
transport costs between all hubs were minimal.

To search for optimal transport connection we can use the 
tool spanning tree from the graph theory [9]. This tool ensures 
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connection between all hubs by the only way. The minimum 
spanning tree then ensures that this unique connection will be 
the least expensive.

2. STARTING CONDITIONS
In the beginning we set the input conditions.
-- All graphs in this article are finite, connected and simple.
-- To model this situation will create a connected graph G = (V, 

E) with weighted edges.
-- V is the set of vertices of the graph G, E is the set of edges of 

the graph G.
-- For each edge e ∈ E is given a number w(e) which we call the 

weight of an edge e.
-- The condition to connect each shipping port with boat 

transport route and together to reduce costs for transport 
connection to minimum satisfies the minimum spanning 
tree T = (V, E´).
The spanning tree of a connected graph G is a connected 

subgraph of G which does not contain any cycles and it is the 
tree [11].

Let G = (V, E) be a connected graph with n vertices. The 
spanning tree of the graph G is the tree T = (V´, E´), where V´ = V 
and , where E´ is the set of n − 1 edges of the spanning 
tree. The weight of the spanning tree of the weighted graph G 
we mean the sum of the weights of all edges of the spanning 
tree .

If the weight of each edge is the same, each spanning tree 
will have the same weight, because any spanning tree has n − 1  
edges, and the sum of the same number of edges is therefore 
always the same [10]. If, however, weights of individual edges 
varies, different spanning trees may have different weights. Our 
task will be to find the spanning tree whose weight w (E´) is the 
smallest possible. 

Minimum spanning tree (denote the abbreviation 
MST) [1] we mean the spanning tree T = (V´, E´) in a graph G, 
where V´= V  and , and which is of the smallest value 

 [6], therefore, the sum of the valuations of its 
edges is minimal.

For searching the minimum spanning tree there are several 
algorithms. To solve our problem, we use the Kruskal algorithm 
and compare it with the Reverse-Delete Algorithm, which was 
discovered by Kruskal, too. Both algorithms we use to solve the 
given example and compare their effectiveness. 

In the literature known and cited method of Kruskal 
algorithm for looking for the minimum spanning tree [2] is 
based on the principle, that we gradually assign edges into the 
spanning tree, starting with the edge with the lowest weight, 
and after this starting edge we gradually add other edges 
in order of increasing weights so long as all the vertices are 
connected.

For this algorithm, there is also the opposite method, which 
is in English literature named as the “Reverse-Delete Algorithm” 
[3], which creates the minimum spanning tree just from the 
opposite end, namely so that we gradually remove the edges 
starting with the edge of the highest weight  and then you 
gradually remove edges in decreasing sequence with exception 
that you can not remove any edge in case that it would 
disconnect the graph. In certain cases this algorithm may lead 
to solving the problem more efficiently.

3. DESCRIPTION OF KRUSKAL (ASSIGNING) 
ALGORITHM 
-- given a connected graph G = (V, E) with n vertices and m 

edges such that w(e) ≥ 0 for all 
-- at first arrange them into increasing sequence

-- in the beginning put the empty set E´ = { } for the spanning 
tree. 

-- now for i = 1, 2, …, m take the edges ei and try to add them 
to the set E´. If set  does not creates a cycle, add 
the edge ei to the set E´, if it creates a cycle, do not use it 
and make another step and test another edge from the 
sequence

-- the algorithm stops after maximum of m-th step, when the 
set E´ contains n − 1 edges of the minimum spanning tree of 
the weighted graph G = (V, E).

4. EXAMPLE OF USING KRUSKAL (ASSIGNING) 
ALGORITHM FOR SEARCHING THE MINIMUM 
SPANNING TREE
Example of a graph (Figure 1), for which we are searching the 
minimum spanning tree by using Kruskal´s algorithm [5].

Figure 1 Example of a graph for looking for the MST

The procedure of the algorithm:
We mark the edges and arrange them in increasing order 

beginning with the edge with the smallest weight e1 = {B,D}, e2 
= {A,B}, e3 = {A,D}, e4 = {C,E}, e5 = {B,C}, e6 = {A,E}, e7 = {C,D}, e8 = 
{D,E}, e9 = {D,F}, e10 = {E,F}. 

w(e1)=3, w(e2)=4, w(e3)=5, w(e4)=6, w(e5)=7, w(e6)=8, w(e7)=9, 
w(e8)=10, w(e9)=11, w(e10)=12

We have the sequence of edges with w(e1) ≤  w(e2) ≤…≤ w(e10) 
and we start with the empty set of edges E´ = {}. The following 
are the individual steps of testing edges of our sequence. These 
steps are displayed in Figure 2.
-- start with the first edge of our sequence e1 and because  

E´U{e1 } does not create a cycle assign it into E´. E´= {e1}. 
See Figure 2 „step 1“

-- take another edge from the sequence e2 and because E´U 
{e2} does not create a cycle, assign it into  E´. E´= {e1, e2}. See 
Figure 2 „step 2“

-- take another edge from the sequence e3 and because  E´U 
{e3} } creates a cycle, do not assign it. 

-- take another edge from the sequence e4 and because  E´U 
{e4} does not create a cycle, assign it into  E´. E´= {e1, e2, e4}. 
See Figure 2 „step 4“

-- take another edge from the sequence e5 and because  E´U 
{e5} does not create a cycle, assign it into  E´. E´= {e1, e2, e4, 
e5}. See Figure 2 „step 5“
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Figure 2 Steps of algorithm

-- take another edge from the sequence e6 and because  E´U 
{e6} creates a cycle, do not assign it 

-- take another edge from the sequence e7 and because  E´U 
{e7} creates a cycle, do not assign it 

-- take another edge from the sequence e8 and because  E´U 
{e8} creates a cycle, do not assign it 

-- take another edge from the sequence e9 and because  E´U 
{e9} does not create a cycle, assign it into E´. E´= {e1, e2, e4, 
e5, e9}. See Figure 2 „step 9“
So now, |E’| = n − 1 = 6 − 1 = 5 edges and T = (V, E’) is the 

spanning tree of the graph G and process of algorithm stops. 
The remaining edge e10 of the sequence does not need to be 
tested. For construction of the MST we made 9 steps.

The dashed lines in Figure 2 are the edges of the graph G 
that do not belong to the minimum spanning tree, the bold 
solid lines are the edges of the minimum spanning tree.

5. DESCRIPTION OF THE KRUSKAL´S REVERSE – 
DELETE ALGORITHM
This algorithm is in English called “Reverse - Delete Algorithm” 
[3]. 
-- let G = (V, E) be a connected graph with weighted edges 

-- the edges of this graph arrange in a decreasing sequence 

-- let’s start with the set of m edges of the graph G. From this 
set of edges remove the edge with the highest weight em. 
If removing it causes that the graph is divided into two 
components, this edge remains in the graph.  

-- in the next step remove another edge from the sequence 
with the second largest value, again with the condition that 
after its removal the graph may not be divided into two 
components.

-- so the algorithm works  until we remove m − (n − 1) edges. 
Then we get the minimum spanning tree. From the original 
set E with m edges we get the set E´ with n − 1 edges, which 
is our minimum spanning tree.

6. EXAMPLE OF USING “REVERSE - DELETE 
ALGORITHM” FOR SEARCHING THE MINIMUM 
SPANNING TREE
To demonstrate the use of this algorithm we use the same graph 
as in the previous example (Figure 1). 

Figure 3 Example of the same graph for using the „Reverse - 
Delete Algorithm“

If the starting graph is the same graph as in our previous 
example, we will also work with the same set of edges {e1, e2, e3, 
e4, e5, e6, e7, e8, e9, e10,}.

This set of edges is turned in decreasing order from the edge 
with the highest weight to the edge with the lowest weight {e10, 
e9, e8, e7, e6, e5, e4, e3, e2, e1}.

The Reverse - Delete Algorithm works with edges in chosen 
order and gradually removes m − (n − 1) edges of the graph G 
(see in Figure 4). For each edge, check if deleting the edge will 
further disconnect the graph. Then this edge remains in the 
graph. Work with one edge is one step of the algorithm.
-- Step 1:   remove edge e10 

-- Step 2:   edge e9 remains in the graph because deleting this 
will disconnect the graph 

-- Step 3:   remove edge e8 
-- Step 4:   remove edge e7

-- Step 5:   remove edge e6

-- Step 6:   edge e5 remains in the graph because deleting this 
will disconnect the graph
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Figure 4 Steps of „Reverse-Delete Algorithm“

-- Step 7:   edge e4 remains in the graph because deleting this 
will disconnect the graph 

-- Step 8:   remove edge e3

The algorithm stops, because we have removed m − (n − 1) = 
10 – (6 – 1) = 5 edges and the minimum spanning tree with n − 1 
= 6 edges left; i.e. E´= {e1, e2, e4, e5, e9 }. 

When the process of algorithm stops we get the same 
minimum spanning tree as using the previous algorithm (Figure 
4, step 8) but the solution is found from the opposite way.

7. DISCUSSION OF RESULTS
7.1. Comparison of „Reverse - Delete Algorithm“ with 
Kruskal´s (assigning) algorithm
-- if we have a connected graph G = (V, E), for which we are 

looking for the minimum spanning tree, there is the set 
of vertices V with n vertices and the set of edges E with m 
edges. 

-- Kruskal´s algorithm creates the minimum spanning tree 
after adding n − 1 edges, because any spanning tree 
includes just this number of edges.

-- „Reverse - Delete Algorithm“ creates the minimum spanning 
tree after removing  edges.

-- the number of steps that Kruskal’s algorithm must make 
until it finds the minimum spanning tree depends on 
the construction of the graph G; if the edge with the 
greatest weight can not be removed because of loss of the 
connectivity of the graph, the algorithm must go through 
all the edges until the last one is added into the spanning 
tree and therefore the algorithm makes m steps.

-- the number of steps that „Reverse - Delete Algorithm“ 
must make until it finds the minimum spanning tree again 
depends on the structure of the graph G, maximum number 
of edges that this algorithm must test is m − 2, because 
from the decreasing sequence {em, em-1, … e2, e1}  the edges  
e1 and e2 can not be removed because the last two edges 
from the given nonincreasing sequence belong to the MST 
because they do not make a cycle and their value is the 
smallest.

-- the speed of searching the minimum spanning tree depends 

on the structure of the graph G for which we search the MST. 
The speed means the number of steps which the algorithm 
must make.

8. COMPARISON OF KRUSKAL´S (ASSIGNING) 
ALGORITHM WITH KRUSKAL´S „REVERSE - DELETE 
ALGORITHM“ WHEN WE USE OUR EXAMPLE 
GRAPH
We marked the edges of our graph G = (V, E) and arranged them 
in an increasing sequence according their weights  w(e1) ≤  w(e2) 
≤ …  ≤ w(e10). 

{e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
By using Kruskal (assigning) algorithm we gradually added 

edges into the spanning tree T of the graph G which we labeled 
by bold solid lines; edges which we did not use because making 
cycles we labeled by dashed lines.

In the „Reverse - Delete Algorithm“ we arranged the same 
edges just in opposite order in a decreasing sequence

{e10, e9, e8, e7, e6, e5, e4, e3, e2, e1}
and gradually removed edges from the original set of 

edges E; removed edges we labeled by dashed lines, edges 
which could not be removed because of loss of connectivity 
we labeled by bold solid lines; these edges belong to seeking  
minimum spanning tree T of the graph G.

The final set of edges E´ obtained from the both algorithms 
is always the same

E´ = {e1, e2, e4, e5, e9}
Kruskal´(assigning) algorithm made 9 steps until the 

minimum spanning tree was found. „Reverse - Delete Algorithm“ 
made 8 steps until the minimum spanning tree was found. 
Processing one edge is considered to be one step.

In our graph example, the „Reverse - Delete Algorithm“ was 
faster for finding the minimum spanning tree because it made 
only 8 steps until the MST was found.

9. CONCLUSION
In the article we showed that organization of ship transportation 
can be modeled and solved using tools from the graph theory. 
System of ship transport routes we converted to the graph 
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where routes are the edges and ports are vertices. The weight 
of an edge connecting two vertices represents the energy 
consumed to drive the boat between two ports.

For given task to find the only ideal and cheapest connection 
between ale ports we used the tool minimum spanning tree. 
We explained that the minimum spanning tree finds the only 
ideal connection to each port and that this connection is the 
cheapest.

We displayed two algorithms of searching minimum 
spanning tree, Kruskal´s assigning algorithm and Kruskal´s 
Reverse - Delete Algorithm. 

We showed how these two algorithms work both in 
theoretical level and on the given example. 

We made comparison of the choice of one or the other 
algorithm and explained that there is no definite conclusion 
which algorithm finds the MST faster since the structure of the 
graph may vary from case to case. This means that the decision, 
which algorithm will be optimal for given graph cannot be done 
depending on knowledge of parameters n or m of the  graph G.

The reason is that we can imagine a graph in which the 
edges of the MST will be included in the spanning tree in the 
first steps but when any edge with the highest weight is placed 
in such a position where it could not be removed then the 
algorithm will have to go through all the edges until this edge 
will come to process. In this case the algorithm will make the 
same number of steps as the number of edges.

Reverse is also true, when the „Reverse-Delete Algorithm“ 
gradually removes edges and because of the structure of the 

graph the last two edges from the non-increasing sequence will 
not be removed then this removing algorithm makes maximum  
steps.

In conclusion, it is necessary to say that the speed of 
searching the MST depends on the structure of the graph and 
not on the choice of any type of algorithm.
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