
81“Naše more”, Special Issue, 63(3)/2016., pp. 81-85

The Use of Minimal Spanning Tree for Optimizing Ship
Transportation
Korištenje minimalnog razgranatog stabla radi
optimizacije brodskog prijevoza

KEY WORDS
ship transportation
graph theory
minimum spanning tree
Joseph Kruskal
Reverse-Delete Algorithm

DOI 10.17818/NM/2016/SI1
UDK 656.615
 656.629
Preliminary communication / Prethodno priopćenje
Paper accepted / Rukopis primljen: 21. 3. 2016.

KLJUČNE RIJEČI
prijevoz brodom
teorija grafa
minimalno razgranato stablo
Joseph Kruskal
Algoritam Reverse-Delete

Karel Antoš
Department of Informatics and Natural Sciences
Institute of Technology and Business in České
Budějovice, Czech Republic
e-mail: antos.vste@seznam.cz

Summary
This article describes a design of solving ship transport optimization using tools from
graph theory. The tool minimal spanning tree (denote MST) is suitable for searching
ideal transport routes between the ports. The principle of the MST problem is that
it describes various kinds of situations where it is necessary to use this theoretical
instrument and how to use this tool for finding a solution. Graph theory knows several
algorithms for searching the minimum spanning tree and this article compares two
of them, in terms of their different approaches, their complementarity, and their
assessment, and which of these two methods can find a feasible solution faster. To
model the situation of ship transportation we use connected weighted graph where
vertices represent sea ports and the edges represent the transport routes between
the ports. The weight of an edge represents energy consumed to drive the boat
between two ports. A theoretical discussion and a model example are carried out to
compare the two methods.

Sažetak
Ovaj članak opisuje nacrt rješenja optimizacije brodskog prijevoza koristeći alate iz
teorije grafa. Alat minimalno razgranatog stabla (MST) je prikladan za traženje idealnih
prijevoznih ruta između luka. Princip MST problema je taj da on opisuje različite vrste
situacija gdje je potrebno koristiti ovaj teoretski instrument i znati kako koristiti ovaj alat
za pronalazak rješenja. Teorija grafa poznaje različite algoritme za traženje minimalno
razgranatog stabla, a ovaj članak uspoređuje dva od njih, po pitanju različith pristupa,
njihove komplementarnosti i njihove procjene i koja od ove dvije metode može naći
održivo rješenje što brže. Da bismo oblikovali situaciju prijevoza koristimo povezane
opterećene grafove gdje vrhovi predstavljaju morske luke, a rubovi predstavljaju
prijevozne rute između luka. Opterećenje ruba predstavlja energiju koja je konzumirana
da bi vozila čamac između dvije luke. Teoretska diskusija i ogledni primjerak izvršeni su
da bi se usporedile dvije metode.

1. INTRODUCTION
Organization of ship transportation is associated with
the solution of many problems [8]. One of them might be
requirement to solve shipping transportation of goods from
the central warehouse to all ports so as to ensure connection
to all ports and the costs for transport connection to be as low
as possible.

Imagine entering when we have sea ports, which are
connected by ship transport routes so that there is sufficient
connection to each port. Transport hubs are ports and transport
routes are shipping lanes.

To solve such a problem we can use tools from the graph
theory [7]. To model this situation we create a connected
weighted graph where vertices represent sea ports and the

edges represent the transport routes between the ports through
which ships transport goods. The weight of an edge connecting
two vertices represents the energy consumed to drive the boat
between these two ports.

At the beginning there is a situation where ships transport
goods between hubs over many different routes and in different
ways but the transport links are inefficient and expensive as a
whole.

Our task now is to optimize the connections between hubs
so as to ensure connection to all transportation hubs and the
transport costs between all hubs were minimal.

To search for optimal transport connection we can use the
tool spanning tree from the graph theory [9]. This tool ensures

82 K. Antoš: The Use of Minimal Spanning Tree...

connection between all hubs by the only way. The minimum
spanning tree then ensures that this unique connection will be
the least expensive.

2. STARTING CONDITIONS
In the beginning we set the input conditions.
-- All graphs in this article are finite, connected and simple.
-- To model this situation will create a connected graph G = (V,

E) with weighted edges.
-- V is the set of vertices of the graph G, E is the set of edges of

the graph G.
-- For each edge e ∈ E is given a number w(e) which we call the

weight of an edge e.
-- The condition to connect each shipping port with boat

transport route and together to reduce costs for transport
connection to minimum satisfies the minimum spanning
tree T = (V, E´).
The spanning tree of a connected graph G is a connected

subgraph of G which does not contain any cycles and it is the
tree [11].

Let G = (V, E) be a connected graph with n vertices. The
spanning tree of the graph G is the tree T = (V´, E´), where V´ = V
and , where E´ is the set of n − 1 edges of the spanning
tree. The weight of the spanning tree of the weighted graph G
we mean the sum of the weights of all edges of the spanning
tree .

If the weight of each edge is the same, each spanning tree
will have the same weight, because any spanning tree has n − 1
edges, and the sum of the same number of edges is therefore
always the same [10]. If, however, weights of individual edges
varies, different spanning trees may have different weights. Our
task will be to find the spanning tree whose weight w (E´) is the
smallest possible.

Minimum spanning tree (denote the abbreviation
MST) [1] we mean the spanning tree T = (V´, E´) in a graph G,
where V´= V and , and which is of the smallest value

 [6], therefore, the sum of the valuations of its
edges is minimal.

For searching the minimum spanning tree there are several
algorithms. To solve our problem, we use the Kruskal algorithm
and compare it with the Reverse-Delete Algorithm, which was
discovered by Kruskal, too. Both algorithms we use to solve the
given example and compare their effectiveness.

In the literature known and cited method of Kruskal
algorithm for looking for the minimum spanning tree [2] is
based on the principle, that we gradually assign edges into the
spanning tree, starting with the edge with the lowest weight,
and after this starting edge we gradually add other edges
in order of increasing weights so long as all the vertices are
connected.

For this algorithm, there is also the opposite method, which
is in English literature named as the “Reverse-Delete Algorithm”
[3], which creates the minimum spanning tree just from the
opposite end, namely so that we gradually remove the edges
starting with the edge of the highest weight and then you
gradually remove edges in decreasing sequence with exception
that you can not remove any edge in case that it would
disconnect the graph. In certain cases this algorithm may lead
to solving the problem more efficiently.

3. DESCRIPTION OF KRUSKAL (ASSIGNING)
ALGORITHM
-- given a connected graph G = (V, E) with n vertices and m

edges such that w(e) ≥ 0 for all
-- at first arrange them into increasing sequence

-- in the beginning put the empty set E´ = { } for the spanning
tree.

-- now for i = 1, 2, …, m take the edges ei and try to add them
to the set E´. If set does not creates a cycle, add
the edge ei to the set E´, if it creates a cycle, do not use it
and make another step and test another edge from the
sequence

-- the algorithm stops after maximum of m-th step, when the
set E´ contains n − 1 edges of the minimum spanning tree of
the weighted graph G = (V, E).

4. EXAMPLE OF USING KRUSKAL (ASSIGNING)
ALGORITHM FOR SEARCHING THE MINIMUM
SPANNING TREE
Example of a graph (Figure 1), for which we are searching the
minimum spanning tree by using Kruskal´s algorithm [5].

Figure 1 Example of a graph for looking for the MST

The procedure of the algorithm:
We mark the edges and arrange them in increasing order

beginning with the edge with the smallest weight e1 = {B,D}, e2
= {A,B}, e3 = {A,D}, e4 = {C,E}, e5 = {B,C}, e6 = {A,E}, e7 = {C,D}, e8 =
{D,E}, e9 = {D,F}, e10 = {E,F}.

w(e1)=3, w(e2)=4, w(e3)=5, w(e4)=6, w(e5)=7, w(e6)=8, w(e7)=9,
w(e8)=10, w(e9)=11, w(e10)=12

We have the sequence of edges with w(e1) ≤ w(e2) ≤…≤ w(e10)
and we start with the empty set of edges E´ = {}. The following
are the individual steps of testing edges of our sequence. These
steps are displayed in Figure 2.
-- start with the first edge of our sequence e1 and because

E´U{e1 } does not create a cycle assign it into E´. E´= {e1}.
See Figure 2 „step 1“

-- take another edge from the sequence e2 and because E´U
{e2} does not create a cycle, assign it into E´. E´= {e1, e2}. See
Figure 2 „step 2“

-- take another edge from the sequence e3 and because E´U
{e3} } creates a cycle, do not assign it.

-- take another edge from the sequence e4 and because E´U
{e4} does not create a cycle, assign it into E´. E´= {e1, e2, e4}.
See Figure 2 „step 4“

-- take another edge from the sequence e5 and because E´U
{e5} does not create a cycle, assign it into E´. E´= {e1, e2, e4,
e5}. See Figure 2 „step 5“

83“Naše more”, Special Issue, 63(3)/2016., pp. 81-85

Figure 2 Steps of algorithm

-- take another edge from the sequence e6 and because E´U
{e6} creates a cycle, do not assign it

-- take another edge from the sequence e7 and because E´U
{e7} creates a cycle, do not assign it

-- take another edge from the sequence e8 and because E´U
{e8} creates a cycle, do not assign it

-- take another edge from the sequence e9 and because E´U
{e9} does not create a cycle, assign it into E´. E´= {e1, e2, e4,
e5, e9}. See Figure 2 „step 9“
So now, |E’| = n − 1 = 6 − 1 = 5 edges and T = (V, E’) is the

spanning tree of the graph G and process of algorithm stops.
The remaining edge e10 of the sequence does not need to be
tested. For construction of the MST we made 9 steps.

The dashed lines in Figure 2 are the edges of the graph G
that do not belong to the minimum spanning tree, the bold
solid lines are the edges of the minimum spanning tree.

5. DESCRIPTION OF THE KRUSKAL´S REVERSE –
DELETE ALGORITHM
This algorithm is in English called “Reverse - Delete Algorithm”
[3].
-- let G = (V, E) be a connected graph with weighted edges

-- the edges of this graph arrange in a decreasing sequence

-- let’s start with the set of m edges of the graph G. From this
set of edges remove the edge with the highest weight em.
If removing it causes that the graph is divided into two
components, this edge remains in the graph.

-- in the next step remove another edge from the sequence
with the second largest value, again with the condition that
after its removal the graph may not be divided into two
components.

-- so the algorithm works until we remove m − (n − 1) edges.
Then we get the minimum spanning tree. From the original
set E with m edges we get the set E´ with n − 1 edges, which
is our minimum spanning tree.

6. EXAMPLE OF USING “REVERSE - DELETE
ALGORITHM” FOR SEARCHING THE MINIMUM
SPANNING TREE
To demonstrate the use of this algorithm we use the same graph
as in the previous example (Figure 1).

Figure 3 Example of the same graph for using the „Reverse -
Delete Algorithm“

If the starting graph is the same graph as in our previous
example, we will also work with the same set of edges {e1, e2, e3,
e4, e5, e6, e7, e8, e9, e10,}.

This set of edges is turned in decreasing order from the edge
with the highest weight to the edge with the lowest weight {e10,
e9, e8, e7, e6, e5, e4, e3, e2, e1}.

The Reverse - Delete Algorithm works with edges in chosen
order and gradually removes m − (n − 1) edges of the graph G
(see in Figure 4). For each edge, check if deleting the edge will
further disconnect the graph. Then this edge remains in the
graph. Work with one edge is one step of the algorithm.
-- Step 1: remove edge e10

-- Step 2: edge e9 remains in the graph because deleting this
will disconnect the graph

-- Step 3: remove edge e8
-- Step 4: remove edge e7

-- Step 5: remove edge e6

-- Step 6: edge e5 remains in the graph because deleting this
will disconnect the graph

84 K. Antoš: The Use of Minimal Spanning Tree...

Figure 4 Steps of „Reverse-Delete Algorithm“

-- Step 7: edge e4 remains in the graph because deleting this
will disconnect the graph

-- Step 8: remove edge e3

The algorithm stops, because we have removed m − (n − 1) =
10 – (6 – 1) = 5 edges and the minimum spanning tree with n − 1
= 6 edges left; i.e. E´= {e1, e2, e4, e5, e9 }.

When the process of algorithm stops we get the same
minimum spanning tree as using the previous algorithm (Figure
4, step 8) but the solution is found from the opposite way.

7. DISCUSSION OF RESULTS
7.1. Comparison of „Reverse - Delete Algorithm“ with
Kruskal´s (assigning) algorithm
-- if we have a connected graph G = (V, E), for which we are

looking for the minimum spanning tree, there is the set
of vertices V with n vertices and the set of edges E with m
edges.

-- Kruskal´s algorithm creates the minimum spanning tree
after adding n − 1 edges, because any spanning tree
includes just this number of edges.

-- „Reverse - Delete Algorithm“ creates the minimum spanning
tree after removing edges.

-- the number of steps that Kruskal’s algorithm must make
until it finds the minimum spanning tree depends on
the construction of the graph G; if the edge with the
greatest weight can not be removed because of loss of the
connectivity of the graph, the algorithm must go through
all the edges until the last one is added into the spanning
tree and therefore the algorithm makes m steps.

-- the number of steps that „Reverse - Delete Algorithm“
must make until it finds the minimum spanning tree again
depends on the structure of the graph G, maximum number
of edges that this algorithm must test is m − 2, because
from the decreasing sequence {em, em-1, … e2, e1} the edges
e1 and e2 can not be removed because the last two edges
from the given nonincreasing sequence belong to the MST
because they do not make a cycle and their value is the
smallest.

-- the speed of searching the minimum spanning tree depends

on the structure of the graph G for which we search the MST.
The speed means the number of steps which the algorithm
must make.

8. COMPARISON OF KRUSKAL´S (ASSIGNING)
ALGORITHM WITH KRUSKAL´S „REVERSE - DELETE
ALGORITHM“ WHEN WE USE OUR EXAMPLE
GRAPH
We marked the edges of our graph G = (V, E) and arranged them
in an increasing sequence according their weights w(e1) ≤ w(e2)
≤ … ≤ w(e10).

{e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
By using Kruskal (assigning) algorithm we gradually added

edges into the spanning tree T of the graph G which we labeled
by bold solid lines; edges which we did not use because making
cycles we labeled by dashed lines.

In the „Reverse - Delete Algorithm“ we arranged the same
edges just in opposite order in a decreasing sequence

{e10, e9, e8, e7, e6, e5, e4, e3, e2, e1}
and gradually removed edges from the original set of

edges E; removed edges we labeled by dashed lines, edges
which could not be removed because of loss of connectivity
we labeled by bold solid lines; these edges belong to seeking
minimum spanning tree T of the graph G.

The final set of edges E´ obtained from the both algorithms
is always the same

E´ = {e1, e2, e4, e5, e9}
Kruskal´(assigning) algorithm made 9 steps until the

minimum spanning tree was found. „Reverse - Delete Algorithm“
made 8 steps until the minimum spanning tree was found.
Processing one edge is considered to be one step.

In our graph example, the „Reverse - Delete Algorithm“ was
faster for finding the minimum spanning tree because it made
only 8 steps until the MST was found.

9. CONCLUSION
In the article we showed that organization of ship transportation
can be modeled and solved using tools from the graph theory.
System of ship transport routes we converted to the graph

85“Naše more”, Special Issue, 63(3)/2016., pp. 81-85

where routes are the edges and ports are vertices. The weight
of an edge connecting two vertices represents the energy
consumed to drive the boat between two ports.

For given task to find the only ideal and cheapest connection
between ale ports we used the tool minimum spanning tree.
We explained that the minimum spanning tree finds the only
ideal connection to each port and that this connection is the
cheapest.

We displayed two algorithms of searching minimum
spanning tree, Kruskal´s assigning algorithm and Kruskal´s
Reverse - Delete Algorithm.

We showed how these two algorithms work both in
theoretical level and on the given example.

We made comparison of the choice of one or the other
algorithm and explained that there is no definite conclusion
which algorithm finds the MST faster since the structure of the
graph may vary from case to case. This means that the decision,
which algorithm will be optimal for given graph cannot be done
depending on knowledge of parameters n or m of the graph G.

The reason is that we can imagine a graph in which the
edges of the MST will be included in the spanning tree in the
first steps but when any edge with the highest weight is placed
in such a position where it could not be removed then the
algorithm will have to go through all the edges until this edge
will come to process. In this case the algorithm will make the
same number of steps as the number of edges.

Reverse is also true, when the „Reverse-Delete Algorithm“
gradually removes edges and because of the structure of the

graph the last two edges from the non-increasing sequence will
not be removed then this removing algorithm makes maximum
steps.

In conclusion, it is necessary to say that the speed of
searching the MST depends on the structure of the graph and
not on the choice of any type of algorithm.

REFERENCES
[1]	 Harris J. M., Hirst J. L., Hossinghofer M. J., Combinatorics and Graph Theory,

Springer, New York, (2000). http://dx.doi.org/10.1007/978-1-4757-4803-1
[2]	 J. Matoušek , J. Nešetřil, Kapitoly z diskrétní matematiky, vydání čtvrté (4th

edition), Prague, Charles University in Prague, (2009).
[3]	 J. Kleinberg, E. Tardos, Algorithm Design, New York: Pearson Education, Inc.

(2006).
[4]	 J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling

salesman problem, P Am Math Soc 7 (1956), 48–50., http://dx.doi.org/10.1090/
S0002-9939-1956-0078686-7

[5]	 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, (2001).

[6]	 T. S. Jackson, and N. Read, Theory of minimum spanning trees, Phys Rev E 81
(2010) 021130.

[7]	 Brázdová M., Využití některých metod teorie grafů při řešení dopravních
problémů, Univerzita Pardubice

[8]	 Tuzar, A.; Maxa, P., Svoboda, V. Teorie dopravy. Praha: ČVUT, 1997. ISBN 80-
01-01637-4

[9]	 Kolář, J.; Štěpánková, O.; Chytil, M. Logika, algebry a grafy. Praha: SNTL, 1989.
[10]	 Peterková A., Využití metod teorie grafů pro hledání nejspolehlivější cesty

vdopravní síti, LOGVD 2012-Žilina 20.-21.9.2012
[11]	 K. H. Rosen, Discrete Mathematics and Its Applications – 6th ed., McGraw-Hill,

New York NY, (2007), ISBN-10 0-07-288008-2.
[12]	 Krile, S., Krile, M., Prusa, P., Non-Linear Mimimax Problem For Multi-Stop Flight

Routes, Transport, Vilnius, Litvania, 2015, Vol. 30., No3., pp. 361-371
[13]	 Krile, S., Efficient Heuristic for Non-linear Transportation Problem on the

Route with Multiple Ports, Polish Maritime Research, Gdansk, Poland, 2013,
Vol. 20, No 4, pp. 80-86

