UTJECAJ SELEKCIJE NA FREKVENCije GENOTIPOVA I GENA ZA HEMOGLOBIN OvACA

V. Sušić, K. Mikulec, Vlasta Šerman, S. Bencetić, D. Matićić

Sažetak
Promjene u frekvenciji hemoglobin genotipova i gena, pod uvjetima selekcije, istražene su u populaciji od 85 ovaca. Životinje su bili križanci F2 generacije između istarske pramenke i sardinijskih ovina. Tipovi hemoglobinova utvrđeni su pomoću elektroforeze na celogel trakama, a selekcija je obavljena s obzirom na višinu dužine dužine i dužine prsa i proizvodnju mlijeka. Niski i srednji kriteriji selekcije nisu prouzročili značajne promjene u frekvencijama genotipova i gena. Primjenom visokog selekcijskog kriterija utvrđeno je povećanje frekvencije Hb-gena A (kod selekcije na tjelesne mjere) odnosno Hb-gena B (kod selekcije na proizvodnju mlijeka).

Uvod
Bjelančevinski dio hemoglobina naziva se globin i građen je od četiri polipeptidna lanca. Varijacije u strukturi tih lanaca uzrokom su pojave različitih formi molekula, pa u krivi čovjeka i većine životinjskih vrsta možemo opaziti polimorfne tipove hemoglobina.
Kod odraslih zdravih ovaca najčešće se javljaju dva tipa hemoglobina: hemoglobin A i hemoglobin B. Uloga tipova nije potpuno razjašnjena ali njihovo postojanje upućuje na to da su važni za preživljavanje i biološku funkciju organizma.
Spoznaje o genetskoj određenosti tipova (E v a n s i sur. 1956.), te ulozi polimorfizma (R a u s h e n b a c h i K a m e n k 1979.), potakne su veći broj autora na istraživanje frekvencije Hb-genotipova i gena kod različitih pasmina ovaca (B u s c h m a n n i S c h m i d 1968., A g a r i sur. 1972., M a k a v e e v 1984., O r d a s i S a n P r i m i t i v o 1986., Z a n o t t i C a s a t i isur. 1990., P o g a č n i k i sur. 1990.). Rezultati su ukazali na moguću selektivnu prednost određenog tipa u specifičnim uzgojnim prilikama. Kako su te prilike rezultat djelovanja s jedne strane prirodnih čimbenika, a s druge strane uzgajivačkog rada čovjeka, neki autori istraživali su ulogu tipova hemoglobina u adaptaciji na okolišne uvjete (P o g a č n i k 1990.) i genetskoj izgradnji proizvodnih tipova ovaca (M a k a v e e v i sur. 1982., O r d a s...
i San Primitivo 1986., Zanotti Casati 1990.). Spoznaje da u slučaju premještanja ovaca u nove okolišne uvjete može doći do značajne promjene u frekven-
ciji Hb-gena, odnosno da pasmine s istim proizvodnim usmjerenjem očituju slične
frekvencije tipova, upućuju da bi učincii prirodne i umjetne selekcije mogli igrati
značajnu ulogu u zastupljenosti Hb-genotipova i gena u populaciji. Kako bi se moglo
sigurnije zaključivati o navedenoj pretpostavci nužno je dosadašnje rezultate potvrditi
istraživanjima što većeg broja različitih populacija ovaca, držanih u specifičnim
ekološkim i uzgojno seleksijskim prilikama.

U našem radu nastojali smo kod domaćih ovaca utvrditi da li selekcija, kojom se
daje prednost ovcaima s određenim obilježjima vanštine i proizvodnosti, mijenja
frekvenciju hemoglobina genotipova i gena. Pri izboru seleksijskih obilježja odlučili
smo se za određene tjelesne mjere i mišljenje, uvažavajući činjenicu o značaju tjelesne
dragojnosti za proizvodnju kao i činjenicu da je u relativno malom broju radova
istraživana povezanost tipova hemoglobina s proizvodnjom miljeka kod ovaca.

Materijal i metode rada

U istraživanje je uključeno ukupno 85 ovaca, križanke F2 generacije između
istarske pramenke i ovine sardinskih pasmine.

Punkcjijom jugularne vene svakoj ovei izvađen je uzorak krvi koji je zajedno s
antikoagulansom obrađen i pripremljen za analizu na tipove hemoglobin. Primijen-
jenja je metoda elektroforeze na celogel tramakama. Spomenute trake veličine 5,7 x 14
cm stajale su uronjene u tris-glicin pufer (pH 9,0) oko 10 minuta. Nakon vađenja trake
su učvršćene na most (8,5 cm) i smještene u kadu s navedenim puferom. Uzorci
hemolizata naneseni su na traku pomoću semimikro aplikatora na 2 cm od katadnog
kraja. Elektroforeza je obavljena uz stalni napon od 200 volt, u trajanju od 60 minuta.

Simulirana selekcija ovaca obavili smo s obzirom na njihovu visinu do grebena,
đužinu trupa, dubinu prsa i količinu proizvedenog miljeka.

Tjelesne mjere utvrdili smo pomoću Lydtinova štapa. Mjerenje je obavljeno u
prosječnoj dobi ovaca od 1,5 godine.

Mliječnost je analizirana kao količina pomuženog miljeka (bez miljeka koje je
posisalo janje) tijekom 1. lajkacije promatranih ovaca. Razdoblje mužnje trajalo je
prosječno 120 dana i obuhvaćalo vrijeme od odbijanja do početka zasušivanja
ovaca. U tom periodu obavljeno je ukupno 5 jednodnevnih kontrola mliječnosti.
Razmak od janjanja do prve kontrole iznosio je 60 ± 5 dana, a nakon te kontrole
uslijedile su još 4 u razmacima od 26 do 33 dana. Dnevnu mliječnost činio je zbroj
rezultata dvokatne kontrole (večernje i jutarnje slijedećeg dana) koju smo obavili
izravno na liniji strojne mužnje. Mliječnost na dan kontrole izražena je u litrama
i pomožena s brojem dana protelima od posljednje kontrole čime je izračunata
mliječnost u jednomjesečnom razdoblju. Zbrajanjem mliječnosti svih 4 mjesečnih
razdoblja utvrđena je ukupna količina pomuženog miljeka za svaku pojedinacnu ovu.

Za sve tjelesne mjere i mliječnost provedena je osnovna statistička obrada te
provjera da li su raspoređeni po normalnoj raspodjeli. Zatim je obavljeno "središnjanje
niza podataka svrstavanjem varijabli od najveće do najmanje. Kod svakog obilježja
primijenjena su 3 različita kriterija selekcije:
1. Niski kriterij-za stvaranje slijedeće generacije odabrati smo ovce čija je veličina obilježja bila jednaka ili veća od prosjeka populacije umanjenog za 1 standardnu devijaciju. (Oznaka: sel. ≥X-1s).
2. Srednji kriterij-za stvaranje slijedeće generacije odabrati smo sve ovce čija je veličina obilježja bila jednaka ili veća od prosjeka populacije. (Oznaka: sel. ≥ X).
3. Visoki kriterij-za stvaranje slijedeće generacije odabrati smo sve ovce čija je veličina obilježja bila jednaka ili veća od prosjeka populacije uvećanog za 1 standardnu devijaciju. (Oznaka: sel ≥ X+1s).

Nakon selekcije, u skupini odabranih ovaca izračunata je frekvencija genotipova odnosno gena i uspoređena s frekvencijom prije selekcije. Značajnost razlika provjerena je Hi-kvadrat testom.

Rezultati i diskusija

U tablici 1 upisani su podaci o frekvenciji hemoglobin genotipova i gena kod istraženih ovaca.

<table>
<thead>
<tr>
<th>Broj istraženih ovaca</th>
<th>Hb - genotip</th>
<th>Hb - gen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA</td>
<td>AB</td>
</tr>
<tr>
<td>Number of invest. ewes</td>
<td>85</td>
<td>2</td>
</tr>
</tbody>
</table>

Iz podataka se može uočiti visoka frekvencija BB genotipa koji je utvrđen kod 75 ovaca. Zastupljenost druga dva genotipa bila je znatno niža i kretala se od 8 životinja s genotipom AB do samo 2 životinja s genotipom AA.

Ovakva distribucija genotipova imala je odraz i na učestalost pojedinih hemoglobin gena. Brojnost BB homozigota utjecala je na izrazito visoku frekvenciju gena B čiji je relativni udio u ukupnom broju gena za hemoglobin iznosio oko 93% prema približno 7% gena A.

Podatke o promjenama u frekvenciji Hb-genotipova i gena prilikom selekcije na tjelesne mjere upisali smo u tablicu 2. Radi lakše usporedbu u tablicu su upisani i podaci o frekvenciji prije selekcije.

STOČARSTVO 47:1993 (9-10) 347-352
Tab. 2. - PROMJENE U FREKVENCJI HB-GENOTIPOVA I GENA POD UVJETIMA SELEKCIJE NA TJELESNE MJERE

CHANGE IN HB-GENOTYPES AND GENES FREQUENCIES IN THE CONDITIONS OF SELECTION FOR BODY MEASUREMENTS

<table>
<thead>
<tr>
<th>VISINA DO GREBENA</th>
<th>Withers height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELEKCIJSKI KRIJER</td>
<td>Selection criterion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Prije selekcije - Before sel.</td>
<td>85</td>
</tr>
<tr>
<td>Sel. ≥ X -1s</td>
<td>73</td>
</tr>
<tr>
<td>Sel. ≥ X</td>
<td>48</td>
</tr>
<tr>
<td>Sel. ≥ X +1s</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUŽINA TRUPO</th>
<th>Body length</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELEKCIJSKI KRIJER</td>
<td>Selection criterion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Prije selekcije - Before sel.</td>
<td>85</td>
</tr>
<tr>
<td>Sel. ≥ X -1s</td>
<td>78</td>
</tr>
<tr>
<td>Sel. ≥ X</td>
<td>57</td>
</tr>
<tr>
<td>Sel. ≥ X +1s</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUBINA PRSA</th>
<th>Chest depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELEKCIJSKI KRIJER</td>
<td>Selection criterion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Prije selekcije - Before sel.</td>
<td>85</td>
</tr>
<tr>
<td>Sel. ≥ X -1s</td>
<td>76</td>
</tr>
<tr>
<td>Sel. ≥ X</td>
<td>46</td>
</tr>
<tr>
<td>Sel. ≥ X +1s</td>
<td>20</td>
</tr>
</tbody>
</table>

Rezultati pokazuju da primjenom niskog ili srednjeg selecijskog kriterija nije značajnije narušena frekvencija koju smo za Hb genotipove i gene opazili prije selekcije. U prilog tome govori poglavito frekvencija Hb-genica koja se zadržala na približno istoj razini usprkos značajnijem izlučivanju ovaca s genotipom BB.

Primjenom visokog selecijskog kriterija došlo je do većeg odstupanja u frekvencijama Hb-genotipova i gena. Naročito je to izraženo u slučaju selekcije na dužinu trupa koja je dovela do povećanja frekvencije gena A od početnih 7% na približno 23%. Navedeno ukazuje na selektivnu prednost AA homozigota i AB heterozigota u odnosu na BB homozigote. Slično je utvrđeno i kod selekcije na visinu do grebeni i dubinu prsa, međutim u slučaju ovih mjera povišenje učestalosti gena A nije bilo tako izraženo (frekvencija je porasla od početnih 7% na 15-16%).

Ovakvi rezultati upućuju na moguću povezanost Hb-genica A i gena koji utječu na tjelesnu razvijenost. Potreban oprez u tumačenju opaženih rezultata nužan je poglavito
radi činjenice da smo genotipove AA i AB utvrdili kod relativno malog broja životinja. To nam koje potrebu većeg zahtjeva u pogledu statističke vjerojatnosti. Naše analize pokazale su da kod većine promatranih obilježja razlike u frekvencijama Hb-genotipova i gena između skupina selekcioniranih ovaca nisu statistički značajne (P > 0,05). Izuzetak je činilo obilježje dužine trupa kod kojeg je za skupinu visoko selekcioniranih ovaca ustanovljena statistički značajno (P < 0,05) viša frekvencija gena A (i proporcionalno niža frekvencija gena B) u odnosu na skupine neselekcioniranih i nisko odnosno srednje selekcioniranih ovaca.

Što se tiče promjena u frekvenciji Hb-genotipova i gena pod uvjetima selekcije na količinu pomuženog mlijeka (tablica 3), uočljivo je da s povišenjem selekcijskog kritereja dolazi do snižavanja frekvencije gena A. Stoviše, primjenom visokog kriterijma došlo je do njegovog potpunog isčezavanja iz populacije što znači da su skupinu odabranih ovaca činile isključivo ovce s genotipom BB. Iako razlike između skupina odabranih ovaca nisu bile statistički značajne (P > 0,05) ovakav rezultat ukazuje na moguću povezanost gena B s proizvodnjom mlijeka kod ovaca. Spomenuto predpostavku potvrduju i rezultati istraživanja frekvencije Hb-genotipova i gena kod specijaliziranih visokomliječnih pasmina ovaca. Tako je M e v e r 1963. utvrdio višu učestalost gena B u odnosu na gen A kod ovaca istočnofrižijske pasmine, a isto su stanovali i D a s s a t i S a r t o r e 1962. za sardinijsku, te E v a n s i sur. 1958. za avasi pasminu.

Tab. 3. - PROMJENE U FREKVENCJI Hb-GENOTIPOVA I GENA POD UVJETIMA SELEKCIJE NA PROIZVODNJU MLJEKA

<table>
<thead>
<tr>
<th>SELEKCIJSKI KRITERIJ</th>
<th>N</th>
<th>Hb-genotip</th>
<th>Hb-gen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>AB</td>
</tr>
<tr>
<td>Prije selekcije - Before sel.</td>
<td>85</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Sel. ≥ X -1s</td>
<td>76</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Sel. ≥ X</td>
<td>39</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Sel. ≥ X +1s</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Zaključak

Na osnovi rezultata do kojih smo došli istraživanjem promjena u frekvenciji hemoglobin genotipova i gena pod uvjetima na tjelesne mjere i mliječnost ovaca zaključujemo slijedeće:

- niski i srednji kriteriji selekcije na visinu do grebenu, dužinu trupa, dubinu prsa i količinu pomuženog mlijeka nisu proizvršili značajnije promjene u frekvenciji hemoglobin genotipova i gena,
- primjenom visokog selekcijskog kritereja na tjelesne mjere došlo je do povećanja učestalosti hemoglobin gena A. U slučaju dužine trupa, skupina visoko selekcioniranih
ovaca imala je za oko 16% višu učestalost Hb-gena A u odnosu na ostale skupine ovaca (neselekcioniranih te selekcioniranih prema niskom i srednjem kriteriju). Razlike su bile statistički značajne (P < 0,05).

-povišenjem selekcijskog kriterija na miljenoć nostr je frekventacija Hb-gena B, a primjena visokog kriterija dovela je do potpunog izlučenja hemoglobin gena A.

LITERATURA

INFLUENCE OF SELECTION ON HAEMOGLOBIN GENOTYPE AND GENE FREQUENCIES IN SHEEP

Summary

Changes in haemoglobin genotype and gene frequencies in the conditions of selection were investigated in the population of 85 crossbred ewes (F2 Istrian pramenka x Sardin rams). Hemoglobin types were identified by the aid of cologel electrophoresis. Selection was done for three body measurements (with height, body length and chest depth) and milk production. Selection with low and medium criteria did not cause significant changes in genotype and gene frequencies. Applying high selection criteria, higher Hb-gene A frequency was observed in the case of selection for body measurements. The same was observed for Hb-gene B when high criteria were used for milk production.