
Bo Yang Shema za obranu od krađe IP prefiksa bez repozitorija utemeljena na DSA

Tehnički vjesnik 23, 4(2016), 985-996 985

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)
DOI: 10.17559/TV-20150314133532

A DSA-BASED SCHEME FOR DEFENDING AGAINST IP PREFIX HIJACKING WITHOUT
REPOSITORIES

Bo Yang

Original scientific paper
IP prefix hijacking poses a serious threat to the security of the Internet. Cryptographic authenticating origin ASes (Autonomous Systems) of advertised
prefix, which is an effective way of preventing IP prefix hijacking, has received wide acceptance. However, these existing schemes received various critical
comments on their inefficiency when cryptographic authenticating origin ASes. For improving efficiency, we take full advantage of specific characteristics
of DSA (Digital Signature Algorithm) and thus present a scheme for preventing IP prefix hijacking. There are two characteristics, which are DSA-based
and efficient, in the proposed scheme. Firstly, because DSA is a United States Federal Government standard for digital signatures, the DSA-based can
maintain compatibility with the DSA and its analytical tools, and thus it is easier for proposed scheme to be widely accepted and applied into practice.
Secondly, public key certificates are not necessary because public keys can be computed by using a formula. Separated verifying signatures in these
certificates, which are inevitable in almost all existing cryptography-based schemes, can be replaced with computing of a multi-exponentiation formula.
Thus, the efficiency is achieved.

Keywords: certificates; DSA; IP prefix hijacking; multi-exponentiation

Shema za obranu od krađe IP prefiksa bez repozitorija utemeljena na DSA

Izvorni znanstveni članak
Krađa IP prefiksa predstavlja ozbiljnu prijetnju za sigurnost Interneta. Kriptografsko ustanovljavanje autentičnosti porijekla ASes (Autonomnih Sustava)
oglašenog prefiksa, što predstavlja učinkovit način sprećavanja krađe IP prefiksa, široko je prihvaćeno. Međutim, postojećim se shemama upućuju različiti
kritički komentari vezani za njihovu neučinkovitost kod kriptografskog ustanovljavanja autentičnosti porijekla ASes. U svrhu poboljšanja učinkovitosti,
koristimo prednosti specifičnih obilježja DSA (Digital Signature Algorithm) te predstavljamo shemu za sprećavanje krađe IP prefiksa. Postoje dva
obilježja predložene sheme, temeljena na DSA i učinkovita. Prvo, budući da je DSA standard za digitalne potpise federalne vlade SAD, DSA temeljeno
obilježje može zadržati kompatibilnost s DSA i njegovim analitičkim alatima te je na taj način olakšano široko prihvaćanje i primjena u praksi predložene
sheme. Drugo, državni ključni certifikati (key certificates) nisu potrebni jer se mogu izračunati pomoću formule. Odvojeni potpisi za verifikaciju u tim
certifikatima, koji su neizbježni u gotovo svim postojećim shemama temeljenim na kriptografiji, mogu se zamijeniti računanjem multi-eksponencijalne
formule. Na taj je način postignuta učinkovitost.

Ključne riječi: certifikati; DSA; krađa IP prefiksa; multi-eksponencijacija

1 Introduction

In the Internet, networks share information via routers.

A group of routers under the same administrative control
is considered an autonomous system [15]. There are about
46,000 Autonomous Systems (ASes) [1] in the Internet
(see Fig. 1). Border Gateway Protocol (BGP), which is
the de-facto protocol enabling interdomain routing in the
Internet, cannot authenticate origin ASes when update
messages are broadcast among ASes. An AS can advertise
a prefix from address space unassigned by or belonging to
another AS. This kind of attack, an example of which is
shown as Fig. 2, is called IP prefix hijacking [2, 3].

Figure1 A report of AS counts [1]

Left part of Fig. 2 presents how update messages and

traffic broadcast when there is no prefix hijacking. AS0 is
owner of IP prefix 129.82.0.0/16. It sends an update

message to AS4 for announcing itself is the origin AS of
this prefix. This announcing is shown as a dotted directed
line from AS0 to AS4. If this announcing is accepted, AS4
will send AS0 all of traffic whose destination is
129.82.0.0/16, which is shown as a full line from AS4 to
AS0. AS4 sends an update message to AS3 for announcing
interdomain path <129.82.0.0/16, AS0, AS4>, which is
shown as a dotted directed line from AS4 to AS3. If this
announcing is accepted, AS3 will send AS4 almost all of
traffic whose destination is 129.82.0.0/16, which is shown
as a full line from AS3 to AS4. Each of ASes in the route
will append itself the number of AS into AS-PATH it
receives from upstream neighbour AS. Left part of Fig. 2
presents how update messages and traffic broadcast when
there is no prefix hijacking. AS0 is owner of IP prefix
129.82.0.0/16. It sends an update message to AS4 for
announcing itself is the origin AS of this prefix. This
announcing is shown as a dotted directed line from AS0 to
AS4. If this announcing is accepted, AS4 will send AS0 all
of traffic whose destination is 129.82.0.0/16, which is
shown as a full line from AS4 to AS0. AS4 sends an update
message to AS3 for announcing interdomain path
<129.82.0.0/16, AS0, AS4>, which is shown as a dotted
directed line from AS4 to AS3. If this announcing is
accepted, AS3 will send AS4 almost all of traffic whose
destination is 129.82.0.0/16, which is shown as a full line
from AS3 to AS4. Each of ASes in the route will append
itself number of AS into AS-PATH it receives from
upstream neighbour AS.

A DSA-based scheme for defending against IP prefix hijacking without repositories Bo Yang

986 Technical Gazette 23, 4(2016), 985-996

Figure 2 An example of IP prefix hijacking

Right part of Fig. 2 presents how AS’, which is not

the true origin AS (or owner) of 129.82.0.0/16, launches
IP prefix hijacking for attracting traffic whose origin
destination is 129.82.0.0/16. AS’, who is malicious and
pretends to be origin AS of IP prefix 129.82.0.0/16, sends
an update message to AS2 in order to announce itself is
the origin AS of IP prefix 129.82.0.0/16. Comparing with
true path <129.82.0.0/16, AS0, AS4, AS3, AS2>, fake path
<129.82.0.0/16, AS’, AS2> is shorter and thus more
attractive, almost all traffic sent by AS2 and destinated to
129.82.0.0/16, will be redirected to AS’. This attack
launched by AS’ cannot only pollute AS2, but also can
pollute many other ASes by broadcast of update messages.
As a result, AS’ succeeds in pretending to be origin AS of
targeted prefix and hijacking some traffic. This kind of
attack is called IP prefix hijacking. If some measurements
can prevent malicious AS from succeeding in pretending
to be origin AS (or owner) of targeted prefix, then the
security of the Internet about IP prefix hijacking is
achieved.

In the way described above, update messages and
traffic broadcast throughout the whole Internet.

Any AS whose prefix is hijacked may experience
reachability problems and cannot easily identify the actual
cause [3]. IP prefix hijacking is essentially a special form
of denial of service attack. Hijacked prefixes can also be
used for carrying out malicious activities, raising the
challenge of identifying the actual perpetrator [2].

IP prefix hijacking poses a serious threat on the
security of the Internet such as the traffic hole on global
scale brought about by AS7007 [4], the access
interruption of Youtube caused by misoperation of
Pakistan Telecom (AS17557) [5], interception induced by
China’s misconfiguration [6], and so on.

Most existing proposals on prefix hijack fall into two
categories. The first category is based on cryptography [8]
[9÷13], and the second category is based on detection [3,
16÷19].

Cryptographic authenticating origin ASes
(Autonomous Systems) of advertised prefix, which is an
effective way of preventing IP prefix hijacking, has
received wide acceptance [15].

The reason why IP prefix hijacking is caused is that
there is no signal for verifier to judge whether an AS is
the origin AS (or owner) of targeted prefix or not.
Certainly, the signal should be unchangeable. If there is
this kind of signal, malicious AS cannot pretend to be

origin AS of targeted prefix, because this pretending can
inevitably be found and prohibited. If this signal is a
cryptographic digital signature (including asymmetric and
symmetric signature), then corresponding measurements
are called cryptographic authenticating origin ASes of
advertised prefixes.

For instance, in S-BGP, the typical method of
cryptographic authenticating origin ASes, the prefix
owner has an asymmetric private key for each prefix,
generated by a global trust entity. A digital signature
called as address attestation, is created by the owner using
its private key. This address attestation is used to signal
whether the AS is origin AS of targeted prefix or not.
Each AS along a path will verify that the prefix actually
belongs to the AS with the corresponding public key.

Cryptographic authenticating origin ASes of
advertised prefixes, as the fundamental method used by
asymmetric cryptography based solutions to prevent IP
prefix hijacking, can be divided into two parts [7]. In the
first part, owners of prefixes sign the AS numbers (AS#s)
of origin ASes using themselves private keys. In the
second part, receivers of update messages verify these
signatures using public keys corresponding to advertised
prefixes.

However, these existing cryptography-based schemes
received various critical comments on their computational
inefficiency when cryptographic authenticating origin
ASes [15]. Efficiency is important for authenticating
update messages because BGP speakers receive large
amounts of such messages, and sometimes they arrive in
bursts. These bursts always are brought about when
network topology changes. Data packets will not be
correctly routed until routing reconverges, as a result of
which efficient verification during these bursts is of
utmost importance. Moreover, efficient authentication is
more desirable since periodic update messages rather than
only event driven messages may be required [2].

There are various reasons why existing schemes are
inefficient. Separate verifications of digital signatures and
frequent communication with out-band repositories are
obviously two obstacles to efficiency of existing schemes,
which can be to a certain extent overcome by the
presented scheme.

For improving efficiency, we take full advantage of
specific characteristics of DSA (Digital Signature
Algorithm) and thus present a scheme for preventing IP
prefix hijacking, where DSA [26] is the abbreviation of

Bo Yang Shema za obranu od krađe IP prefiksa bez repozitorija utemeljena na DSA

Tehnički vjesnik 23, 4(2016), 985-996 987

Digital Signature Algorithm proposed by the U.S.
National Institute of Standards and Technology (NIST). It
obviously belongs to asymmetric cryptography based
solutions as S-BGP [8], SoBGP [9], psBGP [10], and OA
[11].

There are two characteristics, which are DSA-based
and efficient, in the proposed scheme. Firstly, because
DSA is a United States Federal Government standard for
digital signatures, the DSA-based can maintain
compatibility with the DSA and its analytical tools, and
thus it is easier for proposed scheme to be widely
accepted and applied into practice. Secondly, public key
certificates are not necessary because public keys can be
computed by using a formula. Separated verifying
signatures in these certificates, which are inevitable in
almost all existing cryptography-based schemes, can be
replaced with computing of a multi-exponentiation
formula. Moreover, there are no repositories, whose
deployment and management are removed. Therefore, the
proposed scheme is efficient.

The rest of paper is organized as follows. Section 2
presents the proposed scheme, which includes the
framework and details of each part of this framework. In
Section 3, we explain two theoretical bases including
DSA and existing authentication of origin AS, on which
proposed scheme is based. Section 4 discusses the result
of our work. Section 5 compares proposed scheme with
S-BGP according to size of related information, and
convergence time. Finally, we present the conclusion and
the future works in Section 6.

2 DSA-based method for authenticating origin

autonomous systems

In this section, we present our scheme, the

cryptographic basis of which is the DSA. We firstly
describe the framework of the proposed scheme, which is
followed by details of each part of this framework.

2.1 Framework of proposed scheme

In existing asymmetric cryptography based methods

for authenticating origin ASes, overall steps have been
formed, which can be described as follows [8÷10] (see
Fig. 3).

Firstly, public/private key pairs are issued to the
owner of advertised prefix. Secondly, an address
attestation for prefixi is created by the owner. The address
attestation is a signature signed by the owner’s private key.
Thirdly, the owner uploads this address attestation to
repositories from which all of BGP speakers can
download this address attestation. Obviously, this
distributing is out of band rather than in band (in update
messages). Therefore, in most cases, the address

attestation should be distributed to all of ASes before
corresponding update messages are sent. S-BGP [8]
suggests that repositories should be used from which
every AS can download the entire address attestations,
certificates, and CRLs (see Fig. 4). Fourthly, this address
attestation can be verified by all of ASes. Certainly, the
public key of owner of advertised prefix should also be
gotten before verifying. Public keys usually exist in
public key certificates. Before verifying, verifiers should
authenticate public keys.

We modify above framework as following in order to
improve efficiency. Creators of address attestations do not
upload address attestations to repositories any more.
These address attestations are put into update messages
after verifying them. Address attestations can be drawn
out directly from update messages, and be verified
immediately. In one word, address attestations are
regarded as components of update messages in proposed
scheme (see Fig. 5).

Next, we compare the verifying framework of RPKI
[7] (or S-BGP [8]) with that of proposed scheme in more
detail.

In RPKI or S-BGP, for authenticating origin
autonomous systems, repositories spreading all over the
Internet are necessary. These repositories have two main
functions. One function is that address attestations, related
public key certificates, and CRLs can be uploaded to
these repositories by IANA, RIRs, key issuers, and
owners of prefixes. The other function is that every ASes
can download necessary objects from these repositories.

As shown in Fig. 4, in RPKI, relying ASes download
and verify RPKI objects out of band (rather in real time as
part of BGP), and RPKI objects are uploaded and stored
at directories that are controlled by their issuers [7, 26].
The main obstacle to put RPKI objects into update
messages is that an update message is limited in length to
4096 bytes and thus update messages are too small to
carry the necessary public key certificates for most update
messages (note that an x. 509 public key certificate would
be about 500 ÷ 1000 bytes long [8]).

In proposed scheme, it is not necessary for
authenticating origin autonomous systems to deploy
repositories because update messages can carry necessary
information related public keys. In RPKI or S-BGP,
information related public key includes public key
certificates. In proposed scheme, there are no public key
certificates in information related public keys. Therefore,
information related public key is much smaller than that
of RPKI. Public key certificates are mainly used to
authenticate public keys. In our scheme, it is not
necessary for authenticating public keys to resort to
certificates.

Figure 3 Overall steps of existing schemes for origin authentication

A DSA-based scheme for defending against IP prefix hijacking without repositories Bo Yang

988 Technical Gazette 23, 4(2016), 985-996

Figure 4 The framework of authenticating origin AS in typical existing scheme

As shown in Fig. 5, current address attestations and

information related public keys are sent to origin AS
(denoted as AS0), which are broadcast in update messages.
Relying ASes can draw them directly from update

messages. It is obviously more convenient and efficient
than RPKI or S-BGP. There are no repositories, which can
relieve burden of cost of purchasing, deploying, and
managing repositories all over the Internet.

Figure 5 The framework of authenticating origin AS in proposed scheme

2.2 Public/private key pairs issuing for prefix owners

In proposed scheme, public/private key pairs have to

be issued to prefix owners. Private keys, which are in
these key pairs, are used to create address attestations by
prefix owners. IANA (Internet Assigned Numbers
Authority) acts as trust root in our scheme. IANA is
regarded as initial owner who is owner of all possible
prefixes. The IANA issues some large prefixes to some
organizations and makes them owners of these prefixes
who in turn issue parts of these prefixes to other
organizations and make them owners of these smaller
prefixes.

Shown as Fig. 6, steps of key pairs issuing are
initiation, key pair issuing, and DSA-based validation of

key pairs, for which we will give detailed explanation.
The DSA-based algorithms for issuing keys are as

follows.
(1) Initiation: Public/private key pair itself and

parameters of the whole signature/verification system are
created by IANA. This initiation uses the key generation
for DSA [26], whose steps are as follows.

Algorithm 1: Initiation

1. Select a prime number q which is 160 bits.
2. Choose t so that 0 ≤ t ≤ 8, and select a prime
number p where 2511 + 64t < p < 2512 + 64t, with the
property that q divides (p−1).
3. Select a generator g, whose order is q, of the
unique cyclic group pZ ∗ .

Bo Yang Shema za obranu od krađe IP prefiksa bez repozitorija utemeljena na DSA

Tehnički vjesnik 23, 4(2016), 985-996 989

3.1 Select an element a in pZ ∗ and compute g =
a(p−1)/q mod p.

3.2 If g =1 then go to step 3.1.
4. Select a random integer s0 such that 1 ≤ s0 ≤ q−1.
5. Compute PK0 =gs0 mod p.
6. IANA’s public key is (p, q, g, PK0); IANA’s
private key is s0.

(2) Key pairs issuing: Shown as Fig. 6, key pairs

issuing will be elaborated in three aspects. The three
aspects include hierarchical issuing of key pairs, secure
and hierarchical issuing of key pairs, control of validity
period. Algorithm 2 is about hierarchical issuing of key
pairs, Algorithm 3 is about secure and hierarchical issuing
of key pairs, and Algorithm 4 is about control of validity
period.

We assume current prefix is prefixi, and prefixi−1 is
parent prefix of prefixi. Address block denoted by
prefixi−1 contains address block denoted by prefixi.

We assume that public/private key pair corresponding
prefixi−1 is pki−1/si−1. A DSA-based signature is signed by
the owner of prefix i. For issuing owner of prefix i
public/private key pair, which is as the following
algorithm.

Algorithm 2: Hierarchical issuing of key pairs

1. Select a random secret integer ki, 0 < ki < q
2. Compute ri = (1

ik
ir − mod p), ir

′ = rimod q

3. Compute 1
ik − mod q

4. Compute si= 1
ik − (h(prefixi#) + ir

′ ·si-1) mod q
(h() is a hash function h: {0,1}*→ Zq)

5. The signature for prefixi# signed by the owner of
prefix i−1 is the pair (ri, si)

6. The owner of prefixi−1 sends the pair (ri, si) and
r1, r2,..., ri−1 to the owner of prefixi, where si acts
as the private key of prefixi

Figure 6 Steps of key Pair Issuing

There are the following two differences between

algorithm 2 and DSA:
The first difference: The ir

′ in resultant signature is
being replaced with the ri. If the signature is a DSA
signature on prefix i# by the corresponding private key of
prefixi−1, the signature should be the pair (r′i, si), rather
than the pair (ri, si). The reason why we make this
transform will be explained in the Subsection 2.4.

The second difference: Ri and ir
′ are computed from

ri−1 i rather than g. Note that r0 is just the g. In DSA, ri
and ir

′ are computed from g, where ir
′ = (gki mod p)

mod q. The reason why we make this transform will be
explained in the Subsection 2.4.

According to ability of an authority impersonating
users, there are three levels of trust [27] as follows in Tab.
1.

Table 1 Three levels of trust

level 1
The users’ secret keys are known by the authority
who thus can impersonate any user without being
detected.

level 2

The users’ secret keys are not known by the authority
who is still capable of impersonating any user by
generating false certificates that may be used without
being detected.

level 3
The users’ secret keys are not known by the authority
who will be detected if it generates false certificates
for users.

Clearly, the level 3 is the most desirable one. Above

Algorithm 2 only reaches trust level 1 because the owner
of prefixi−1 knows the private key (which is si) of owner
of prefixi, which may be insufficient in authenticating
origin autonomous systems.

We modify Algorithm 2 to reach trust level 3 by using
a kind of weak blind signature, the detail steps of which
can be seen in Algorithm 3.

Because the weak blind signature is introduced, the
secret key si can be hidden to the owner of prefix i who is
even if the issuer of this private key, which causes that
Algorithm 3 reaches trust level 3.

The weak blind signature introduced by Algorithm 3
is elaborated as follows.

The owner of prefixi−1, whereas it creates the is~

does not know the random secret integer ik~ . Thus, it

cannot compute iii s~k~s γ1)(−= .
The owner of prefixi−1 cannot create is~ which can

go through verification of the owner of prefix I if it does
not execute step 3 of Algorithm 3, which is because the
owner of prefixi multiples is~ by 1)(−

ik~ to compute si in
step 11 of Algorithm 3, and verifies si by using ri sent
from the owner of prefixi−1.

Fig. 7 shows the deliveries of information between
the key issuer and key receipter for creating a weak blind
signature. Key receipter delivers ir~ to key issuer. The

ir~ computedly links to secret random integer ik~ which
is hidden to key issuer. According to intractability of
discrete logarithm problem, key issuer cannot compute

ik~ from ir~ because ik~

ii rr~ 1−= mod p.

Algorithm 3: Secure and hierarchical issuing of key pairs
1. The owner of prefixi−1 send r1, r2,..., ri−1 to the

owner of prefix
2. The owner of prefixi select a random secret

integer ik~ , 0 < ik~ < q.

3. Compute ir~ = (ik~

ir 1− mod p)

A DSA-based scheme for defending against IP prefix hijacking without repositories Bo Yang

990 Technical Gazette 23, 4(2016), 985-996

4. The owner of prefixi send ir~ to the owner of
prefixi−1

5. The owner of prefixi−1 select a random secret
integer ki, 0 < ki < q

6. Compute ri = (ir ⋅ 1
ik

ir − mod p), r′ = ri mod q

7. Compute 1
ik − mod q

8. Compute])([1
1

−
− ⋅+= iiii s'r#prefixhks~ mod q

(h() is a hash function h: {0,1}*→ Zq)
9. The signature for prefixi # signed by the owner of

prefixi−1 is the pair (ri, is~)
10. The owner of prefixi−1 send the pair (ri, is~) and r1,

r2, ..., ri−1 to the owner of prefixi
11. The owner of prefixi compute iii s~k~s ⋅= −1)(

mod q
12. is acts as the private key of prefixi

On the other hand, key issuer has to multiply 1

ik
ir − by

ir~ to get a suitable ri. Otherwise, the ri cannot be

corresponding to si because si is the result of multiplying

is~ by 1)(−
ik~ .

Therefore, the pair (ri, si) is a weak blind signature of
key issuer for message prefixi #. The si, which is part of
the signature and only known by key receipter, is hidden
to key issuer and thus secure when treated as private key.

Comparing with Algorithm 2, Algorithm 3 can hide si
from the owner of prefixi−1. However, there is no control
of validity period of public keys in Algorithm 3, which is
used to reduce the impact of replay attacks in proposed
scheme.

If there is no replay protection, replay attacks, where
a legitimate prefix advertisement which has been
previously heard (even if this advertisement has been
drawn), can be launched by malicious attackers.

In proposed scheme, we prevent replays through the
use of validity period: Each route is read advertised in the
validity period. A validity period is an implicit timeout:
the advertised route times out after the validity period
ends.

Figure 7 The process of creating of weak blind signature

We can choose the length of a validity period in a

way that provides higher security or lower overhead. Yet,
a minimum period should be set such as one day at least.
Some attackers may launch DoS (Denial-of-Service)
attacks by excessive validity period changing. This kind
of DoS attacks can be prevented by reducing the priority
of verifying new validity periods in excess of five or six
per day.

A side effect caused by validity period, which can
bring about a flood of advertisements of different
autonomous systems because of synchronized period,
should be considered carefully. This flood of
advertisements is not launched by attackers. It emerges
owing to similar periods and similar start time. For
example, if most of validity periods are 2 days and most
of start time is UTC (Universal Time Coordinated) 00:00,
then in most of UTC 00:00 a flood of advertisements of
different ASes probably emerges.

To overcome this side effect, random and uniform
boundaries between validity period are chosen by
proposed scheme. These boundaries are one-way hash
values of different prefix number. These hash values are
regarded as offset from some well-known time such as
UTC 00:00. For instance, the start time of first validity
period of prefix "128.25.128.128/16", whose hash value is

"e6f9d..." and is regarded as 7 hours 36 minutes 52
seconds, is UTC 07:36:52.

The hierarchical issuing of key pairs including weak
blind signature and validity period is as Algorithm 4.

In the step 8 of Algorithm 4, signing message
includes validity period which is denoted as VPi. Validity
periods are treated as parts of signing messages, so as to
prevent attackers from replay attackers or tampering
validity periods.

Once the validity period expires, all of verifiers will
check it out and thus reject this update message, which
can be seen in step 3 and step 4 of Algorithm 5.

Public/private key pair is issued to the owner of
prefixi, where public key is value of a function of pki−1
and ri, and private key is the signature si. This function,
which is used to compute public key, will be derived and
explained in Subsection 2.4.

(3) DSA-based validation of key pairs: Public/private
key pair, which is issued to the owner of prefix i by
Algorithm 2, should be validated by the owner of prefix i.
The algorithm to validate public/private key pairs is as
Algorithm 5.

The step 3 of Algorithm 5 is used to check whether
validity period expires or not. This validity period cannot
be tampered because tampered validity period cannot pass

Bo Yang Shema za obranu od krađe IP prefiksa bez repozitorija utemeljena na DSA

Tehnički vjesnik 23, 4(2016), 985-996 991

through the verification of step 4 7 of Algorithm 5.
In step 5 of Algorithm 5, the " iu

i
iu

ii pkrv 2
1

1)1(−−= γ

mod p" substitutes for " iu
i

iu
i pkgv 2

1
1)(−= γ mod p" in DSA.

The reason why the base g is replaced with the ri−1 will be
explained in Subsection 2.4.

Algorithm 4: Secure and hierarchical issuing of key pairs which can
prevent replay attacks

1. The owner of prefixi send r1, r2,..., ri−1, VP1,
VP2,..., VPi−1 to the owner of prefix i

2. The owner of prefix i select a random secret
integer ik~ , 0 < ik~ < q

3. Compute ik~

ii rr~ 1(−= mod p)
4. The owner of prefixi send ir~ to the owner of

prefixi−1
5. The owner of prefixi−1 select a random secret

integer ki, 0 < ki < q
6. Compute ri = (ik

ii rr~ 1−γ mod p), ri′ = ri mod q
7. Compute 1

ik − mod q

8. Compute is~ = 1
ik − (h(prefixi #∥VPi) + ri

 ′·si-1)
mod q
(h() is a hash function h: {0,1}*→ Zq, VP denotes
validity period in current signature, whose form is
as "TB～TE" where TB denotes start day and TE
denotes end day.)

9. The signature for prefixi # signed by the owner of
prefixi−1 is the pair (ri, is~)

10. The owner of prefix i-1 send the pair (ri, is~) and
r1, r2, ..., , ri−1, VP1, VP2,..., VPi−1, VPi to the
owner of prefixi

11. The owner of prefixi−1 compute iii s~k~s ⋅= −1)(
mod q

12. si acts as the private key of prefixi

Algorithm 5: Validation of key pairs
1. Obtain authentic public key corresponding

prefixi−1, which is pki−1
2. Check that 0 < ri < p and 0 < si < q; if not, then

reject the issued key pair.
3. Check that current time is in VPi; if not, then

reject the issued key pair.
4. Compute wi =

1
is− mod q, h(prefixi #∥VPi) and

r'i = ri mod q
5. Compute uli = wi· h(prefixi #∥VPi) mod q and

 u2i = r'i · wi mod q
6. Compute vi = iu

i
iu

i pkr 2
1

1
1)(−− ⋅ mod p

7. Accept the key pair (ri, si) if and only if vi = ri

2.3 Address attestations creating and distributing

The private key, which is denoted by si, is issued by

the owner of prefixi−1 according to Algorithm 2. An
address attestation of prefixi is created by the owner of
prefixi by using private key si, the algorithm to do which
is as follow.

Algorithm 6: Creating an address attestation of prefixi
1. Select a random secret integer k, 0 < k < q
2. Select an origin autonomous system of prefixi,

whose number is denoted by AS0#
3. Compute r = (gk mod p) mod q
4. Compute k−1 mod q
5. Compute s = k−1· (h(AS0#) + r·si) mod q
6. The signature for AS0 signed by the owner of

prefixi is the pair (r, s)
7. The owner of prefixi sends the pair (r, s) and r1,
r2,..., ri−1 to the origin autonomous system of prefixi

Figure 8 Steps of verification of address attestations

Address attestation will be sent to the origin AS of

prefixi after creating by Algorithm 6. This address
attestation can be used to authenticate the origin AS of
advertised prefix by any other ASes in the AS PATH of
update messages for advertised prefix (note that origin AS
can be denoted by AS0). The authentication of origin AS
is actually the verification of an address attestation which
is a DSA signature.

Address attestations should be distributed to all of the
ASes in the AS_PATH attributes of update messages for
prefixi before verifying. As to what is described in
subsection 2.1, in our scheme, creators of address
attestations do not upload address attestations to
repositories anymore. These address attestations are put
into update messages after verifying them. Address
attestations can be drawn out directly from update
messages, and be verified immediately. Address
attestations are regarded as components of update
messages in proposed scheme.

2.4 Verification of address attestations

Because address attestations are components of

update messages in proposed scheme, they can be taken
by receivers directly from update messages. After being
taken from update messages, address attestations, which
are DSA-based signatures, can be verified by veri.ers.

In RPKI or S-BGP, for verification of an address
attestation, two steps have to been executed by a verifier.
One is to verify address attestation using public key
corresponding to advertised prefixes, where a signature is
verified. The other is to authenticate public key
corresponding to advertised prefixes, where several
signatures exist in the chain from IANA to the owner of
advertised prefix have to be verified separately.

In our scheme, there are also two steps to be executed
for verifying an address attestation by a veri.er (see Fig.
8). The first step is to compute public key, which
corresponds to advertised prefix, by using a formula and
information drawn directly from current update message.
The second step is to verify current address attestation,
which is a DSA-based signature, by using this public key

A DSA-based scheme for defending against IP prefix hijacking without repositories Bo Yang

992 Technical Gazette 23, 4(2016), 985-996

computed in the first step.
We firstly describe how to verify an address

attestation using a public key gotten by computing, and
then explain how to compute a public key according to
information within an update message.

(1) Verifying an address attestation using an existing
public key: The Algorithm 7 describes how to verify an
address attestation using a public key gotten by
computing.

Algorithm 7: Validation of address attestations

1. Computing authentic public key corresponding
prefixi, which is pki

2. Verify that 0 < r < p and 0 < s < q; if not, then
reject the issued key pair.

3. Compute w = s−1 mod q, h(AS0#)
4. Compute u1 = w·h(AS0#) mod q

and u2 = r·w mod q.
5. Compute v = 21)()(u

i
u

i pkr ⋅ mod p.
6. Accept the key pair (r, s) if and only if v = r

In DSA, for an entity, the function mapping a private

key to corresponding public key is that pk = gs mod p,
where pk denotes public key, s denotes private key, g and
p are parameters of the current DSA system in the
initiation phase.

In Algorithm 7, the step 1 is to compute current
public key. Next, we will elaborate how to compute a
public key according to information drawn from an
update message.

(2) Computing a public key according to information
within an update message: For reducing the burden of
computing, we transform pk = gs mod p (which is
function mapping a private key to corresponding public
key) into () is

i ipk r= mod p, where ri has been
described in Algorithm 2, pki/si is public/private key pair
corresponding to prefixi. As function pk = gs mod p, the
function () is

i ipk r= mod p is also a one way function
whose security is based on the intractability of the
discrete logarithm problem, and the private key cannot be
extracted from the corresponding public key. In a similar
way, for the owner of prefixi-1, whose function should be

1
1 1() is

i ipk r −
− −= mod p. The algorithm for signing a

message is the same as the DSA except that the ri = (ikg

mod p) mod q is replaced with the ri = (1() ik
ir − mod p)

mod q which has been described in the Step 2 of
Algorithm 2. For verifiers of the signatures signed by the
owner of prefixi, the verifying algorithm is almost the
same as that of DSA except that the base g is replaced by
the base ri−1, which has been described in the Step 5 of
Algorithm 5.

By analyzing the Algorithm 5, we find that this
DSA-based verifying algorithm for validation of key pairs
is actually to check the equation

) mod (

1
)#(prefix

1)()()(qir
i

ih
i

is
i pkrr −− ⋅= mod p (1)

If this equation holds, then signature (ri, si) is

validated. Otherwise, signature (ri, si) is false. Because pki

= is
ir)(, we can replace is

ir)(with pki, and thus
) mod (

1
)#(prefix

1)()(qir
i

ih
ii pkrpk −− ⋅= mod p (2)

The formula (2) can be applied recursively as the

following.

) mod (
1

)#(prefix
1)()(qir

i
ih

ii pkrpk −− ⋅= mod p
) mod 1(

2
)#1(prefix

21)()(qir
i

ih
ii pkrpk −

−
−

−− ⋅= mod p
) mod 2(

3
)#2(prefix

32)()(qir
i

ih
ii pkrpk −

−
−

−− ⋅= mod p
......

) mod 1(
0

)#1(prefix
1)()(qrh pkgpk ⋅= mod p

Thus,

) mod (
1

)#(prefix
1)()(qir

i
ih

ii pkrpk −− ⋅= mod p =

ppppk
rrr

pp
pkrr

qirqirqir
i

ih
i

ih
i

ih
i

qir

qir
i

ih
i

ih
i

 mod) mod) mod)(
)(()(()(

 mod) mod
)()(()(

) mod () mod 1() mod 2(
3

)#2(prefix
3

)#1(prefix
2

)#(prefix
1

) mod (

) mod 1(
2

)#1(prefix
2

)#(prefix
1

−−
−

−
−

−
−−

−
−

−
−−

⋅

⋅⋅⋅=
=

⋅⋅=

......

Therefore, we can achieve the following equation

(note that r0 is just the g).

((#))mod

11

i
j kk j

h prefix r qi
i jj

pk r =
⋅

−=

∏=∏
1

()mod

0 mod
i

jj
r q

pk p=∏

Above formula has not thought of the factor of

validity period. If we consider the factor of validity period
according to Algorithm 4, then the following equation can
be achieved.

((#||))mod

11

i
j j kk j

h prefix VP r qi
i jj

pk r =
⋅

−=

∏=∏
1

()mod

0 mod
i

jj
r q

pk p=∏ (3)

From the derivation process of formula (3), we can

see that the private key of current prefix is just the second
half of DSA signature of current prefix# signed by the
private key of upstream prefix. Every substitution of
iteration is just the right part of formula (1), and thus can
be regarded as a validation of corresponding DSA
signature under the definition that () js

j jpk r= , where j =
0, 1,..., i.

Any AS in AS PATH of update messages can use
public key of advertised prefix to verify corresponding
address attestations, the algorithm to do which is
Algorithm 7. By using formula (3), any AS can compute
the public key of advertised prefix. If verification of an
address attestation succeeds by using computed public
key, then we can draw a conclusion that the origin AS is
authenticated and corresponding public key is issued

Bo Yang Shema za obranu od krađe IP prefiksa bez repozitorija utemeljena na DSA

Tehnički vjesnik 23, 4(2016), 985-996 993

correctly, which denotes that we can rule out the
possibility that IP prefix hijacking exists in process of
broadcast of current update message.

3 Theoretical basis

There are two theoretical bases which include DSA

and existing authentication of origin AS, on which the
proposed scheme is based.

3.1 DSA

DSA lays cryptographic foundation of the proposed

scheme, which is a United States Federal Government
standard for digital signatures. The standard was
expanded in 2009 as FIPS 186-3 [26].

The DSA consists of three algorithms including key
generation, DSA signature generation, and DSA signature
verification. Details of these three algorithms can be seen
as following [26].

Key generation for DSA

1. Select a prime number q which is 160 bits.
2. Choose t so that 0 ≤ t ≤ 8, and select a prime

number p where 2511 + 64t < p < 2512 + 64t, with
the property that q divides (p−1).

3. Select a generator g, whose order is q, of the
unique cyclic group Zp

*
3.1 Select an element a in Zp and compute

g = a(p−1)/q mod p.
3.2 If g =1 then go to step 3.1.

4. Select a random integer s0 such that 1 ≤ s0 ≤
(q−1).
5. Compute PK0 = 0sg mod p.
6. IANA’s public key is (p, q, g, PK0); IANA’s

private key is s0.

DSA signature generation
1. Select a random secret integer k, 0 < k < q
2. Compute r = (ikg mod p) mod q
3. Compute k−1 mod q
4. Compute sig = k−1(h(m) + r·s) mod q, where s is

the private key of signer.
(the signed message is m, h() is a hash function h:
{0,1}* . .→ Zq)

5. The signature for m is the pair (r, sig)

DSA signature verification
1. Obtain authentic public key, which is pk
2. Verify that 0 < r < p and 0 < sig < q; if not, then

reject the signature.
3. Compute w = sig−1 mod q, h(m)
4. Compute u1 = w·h(m) mod q and u2 = r·w mod q
5. Compute v = 21 uu pkg ⋅ mod p
6. Accept the key pair (r, sig) if and only if v = r

3.2 Existing authentication of origin AS

Certificates are necessary for authenticating public

keys and binding IP prefixes to these public keys
belonging to the organization to which the IP prefixes are

assigned [7], in existing cryptography-based schemes for
preventing IP prefix hijacking such as some typical
schemes of which are S-BGP [8], SoBGP [9], psBGP [10],
OA [11], SPV [13], HCBGP [12], and so on. Each
certificate contains a private extension that specifies the
set of address blocks that have been allocated to the
organization. The initial deployment of the Resource
Public Key Infrastructure (RPKI) [7] taken up by the
IETF SIDR working group [15] shows this kind of
methods is to some extent accepted. For authenticating
origin ASes, this kind of methods mainly uses X.509
digital certificates and RSA [7].

An X.509 certificate is used to bind a public key to an
organization and to a set of prefixes. There are two binds
in a certificate. One is to bind the DNS name of an
organization and a list of prefix(es) owned by this
organization, the other is to bind this DNS name and its
public key. This shows the DNS name is the bridge
between public key and the list of prefix(es). If there is no
certificate in this architecture, the bind of public key and
the list of prefix(es) will be lost because the DNS name
no longer exists [14].

However, in proposed scheme, it is not necessary to
carry certificates in update messages when address
attestations are distributed in update messages. An earlier
variant of our work, previously published in [14],
provided similar guarantees but cannot maintain
compatibility with the DSA and its analytical tools.
Maintaining compatibility with the DSA and its analytical
tools, which is sophisticated, is not only the key point of
this paper but also very important to our method because
DSA is a United States Federal Government standard for
digital signatures and thus this method becomes easier to
practical application.

IANA assigns IP address blocks (or prefixes) to
organizations, which in turn assign smaller prefixes to
service organizations. These service organizations often
assign these blocks to their customers. At each step in the
delegation, the recipient organization of the prefix
generates an asymmetric private key to represent the
organization [8]. The prefix issuer uses its private key to
sign the public key of the recipient organization, together
with a list of prefixes which are delegated to the
organization, forming the public key certificate of the
recipient organization, or simply certificate. The
organization that owns one or more prefix(es) thus has a
certificate signed by the issuer of the prefix(es).

There is one signature in each certificate. Signatures
which are in certificates have to be verified separately,
which causes heavy overhead of public-key-related
information and on-line computation.

4 Results

In our DSA-based scheme described in Section II, a

verifier can compute public key corresponding advertised
prefix only according to information contained in update
messages. The information includes the address
attestation and all of rj(j = 1, 2, ..., i) relaid by all issuers
in hierarchical issuing of key pairs. Using the formula (3),
the public key of advertised prefix can be achieved and
used to verify the address attestations. If this verification
fails, update messages will be rejected. Otherwise, the

A DSA-based scheme for defending against IP prefix hijacking without repositories Bo Yang

994 Technical Gazette 23, 4(2016), 985-996

success of this verification shows that an address
attestation is signed by the private key which is issued to
the owner of advertised prefix by the hierarchical issuing
process described as Algorithm2 and thus the
corresponding public key is authenticated. Therefore, for
authenticating the public key, it is not necessary for a
verifier to check a series of certificates existing in
certification path from the owner of advertised prefix to
the IANA. Thus the authentication of origin ASes is
efficient.

Moreover, in our scheme, for defending against IP
prefix hijacking, computing public key of owner of prefix
using formula (3) is main burden as well as using this
public key to verify the address attestation which is a
DSA signature. Formula (3) is a multi-exponentiation.
Using some trick algorithms [28], separated verifying
signatures in public key certificates, which is inevitable in
almost all existing cryptography-based schemes (such as
S-BGP), can be replaced with computing of this
multi-exponentiation formula. Thus, the efficiency is
achieved.

5 Comparison

In this section, we compare proposed scheme with

S-BGP according to size of related information, and
convergence time.

5.1 Size of related information

According to size of related information for origin

authentication, we compare the proposed scheme with the
S-BGP [8].

In S-BGP, related information includes 5 public key
certificates in a single issuing chain on average. Related
information also includes an address attestation which is
about 128+20 bytes. In proposed scheme, related
information includes rj (j=1,..., 5) where each rj is about
128 bytes long, as well as an address attestation.

Figure 9 A comparison between sizes of public-key-related of

S-BGP and proposed scheme

Size of related information in S-BGP:
Size1≈ (500 ~ 1000)×5+128+20 = 2648 ~ 5148 bytes
Size of related information in proposed scheme:
Size2≈128×5+128+20 = 788 bytes

By comparing Size1 with Size2 (see Fig. 9) we can

see that in S-BGP, because update messages are limited in

length to 4096 bytes and thus are too small to carry the
necessary related information; however, in the proposed
method, the limitation of 4096 bytes cannot prevent the
related information from being part of update messages,
and thus a verifier can authenticate address attestations
and public keys only according to the information within
update messages.

5.2 Convergence time

The SSF Net (Scalable Simulation Framework

Network models) simulator is used by us to compare the
impact that update processing under S-BGP and proposed
method might have on convergence time. The most of
default values of options for SSFNet configuring are used
by us, such as MRAI (Minimum Route Advertisement
Interval) = 30 s. The key options for SSFNet configuring
in our experiments are the proc-delay model and
proc-time (includes min-proc-time and max-proc-time,
and we set them equal).

Figure 10 A comparison between convergence times of S-BGP and

proposed scheme

Fig. 10 is about the convergence time comparing
S-BGP with proposed method.

6 Conclusions and future work

In this paper, for improving efficiency of

authentication of origin AS, we present a DSA-based
scheme for preventing IP prefix hijacking. By taking full
advantage of specific characteristics of DSA, proposed
scheme can at least enjoy the two following advantages:
(1) Owing to extensive body of experience and literature
associated with the DSA which is a United States Federal
Government standard for digital signatures, proposed
scheme is easier to be widely accepted and put into
practice. (2) Public key certificates, which are used to
authenticate public keys, are not necessary. In most
existing cryptography-based schemes, for authenticating
public keys, public key certificates are necessary where
signatures have to be verified separately, which causes
heavy overhead of public-key-related information and
on-line computation. In proposed scheme, public keys
used to verifying origin attestations can be directly
computed by using a multi-exponentiation formula, where
correctness of public keys is up to corresponding
verifying of origin attestations. Therefore, the proposed

Bo Yang Shema za obranu od krađe IP prefiksa bez repozitorija utemeljena na DSA

Tehnički vjesnik 23, 4(2016), 985-996 995

scheme is efficient because separated verifying of
signatures of certificates can be replaced with computing
of a formula.

Future work will cover the extension of the proposed
scheme from defending against IP prefix hijacking, to the
defence for AS PATH tampering which is also DSA-based
and efficient. For further improving the efficiency of
authentication of origin AS, based on methods presented
in this paper, some other tricks can be integrated in our
scheme. For example, signature amortization (where one
message can be sent to all the peers, and only one new
signature is involved [2]) can be used to relieve the
burden of computation of creating signatures and thus
improve efficiency.

Acknowledgment

Authors are grateful to the anonymous referees for

their valuable comments and suggestions to improve the
presentation of this paper. This work was supported in
part by the National Nature Science Foundation of China
(No. 61562036, 61462033, 61262010), Natural Science
Foundation of Jiangxi (No. 20142BAB207017,
20142BAB207015, 20132BAB201036), Foundation of
Jiangxi Advanced Research Center of Ecommerce
Engineering (No. 201312), China Postdoctoral Science
Foundation (No. 2014M551855).

7 References

[1] Bates, T.; Smith, P.; Huston, G. The cidr report. URL:

http://www.cidr-report.org/as2.0 (Accessed on May, 2014).
[2] Butler, K.; Farley, T. R.; McDaniel, P.; Rexford, J. A survey

of BGP security issues and solutions. // Proceedings of the
IEEE. 98, 1(2010), pp. 100-122. DOI:
10.1109/JPROC.2009.2034031

[3] Zhang, Z.; Zhang, Y.; Hu, Y. C.; Mao, Z. M.; Bush, R. ISPY:
detecting IP prefix hijacking on my own. // IEEE/ACM
Transactions on Networking. 18, 6(2010), pp. 1815-1828.
DOI: 10.1109/TNET.2010.2066284

[4] Bono, V. J. 7007 explanation and apology. URL:
http://www.merit.edu/mail.archives/nanog/1997-04/msg004
44.html (Accessed on May, 2014).

[5] Huston, G. Youtube IP hijacking. URL: http://www.ripe.net/
internet-coordination/news/industry-developments/youtube-
hijacking-a-ripe-ncc-ris-case-study (Accessed on Sept.,
2012).

[6] Cowie, J. Rensys blog: China's 18-minute mystery.URL:
http://www.renesys.com/blog/2010/11/chinas-18-minute-m
ystery.shtml (Accessed on September, 2012)

[7] Austein, R.; Huston, G.; Kent, S.; Lepinski, M. Manifests
for the resource public key infrastructure. URL:
http://datatracker.ietf.org/wg/sidr/documents/ (Accessed on
May, 2014).

[8] Kent, S.; Lynn, C.; Seo, K. Secure border gateway protocol
(S-BGP). // IEEE Journal on Selected Areas in
Communications. 18, 4(2000), pp. 582-592. DOI:
10.1109/49.839934

[9] White, R. Securing BGP through secure origin BGP
(soBGP). // The Internet Protocol Journal. 6, 3(2003), pp.
161-172.

[10] Van Oorschot, C. P.; Wan, T.; Kranakis, E. On interdomain
routing security and pretty secure BGP (psBGP). // ACM
Transactions on Information and System Security (TISSEC).
10, 3(2007), pp. 1-41. DOI: 10.1145/1266977.1266980

[11] McDaniel, P.; Aiello, W.; Butler, K.; Ioannidis, J. Origin
authentication in interdomain routing. // Computer

Networks. 50, 16(2006), pp. 2953-2980. DOI:
10.1016/j.comnet.2005.11.007

[12] Zhang, Y.; Zhang, Z.; Mao, Z. M.; Hu, Y. C. HC-BGP:
Alight-weight and flexible scheme for securing prefix
ownership. // Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks / Lisbon,
2009, pp. 23-32.

[13] Hu, Y.-C.; Perrig, A.; Sirbu, M. SPV: Secure path vector
routing for securing BGP. // Proceedings of the
ACMSIGCOMM conference on Data communication /
Oregon, 2004, pp. 179-192. DOI: 10.1145/1015467.1015488

[14] Le, Z.; Xiong, N.; Yang, B.; Zhou, Y. SC-OA: A Secure and
Efficient Scheme for Origin Authentication of Interdomain
Routing in Cloud Computing Networks. // Proceedings of
the 25th IEEE International Parallel and Distributed
Processing Symposium / Anchorage, 2011, pp. 243-254.
DOI: 10.1109/ipdps.2011.32

[15] Huston, G.; Rossi, M.; Armitage, G. Securing BGP- A
Literature Survey. // IEEE Communications Surveys
Tutorials. 13, 2(2011), pp. 199-222. DOI:
10.1109/SURV.2011.041010.00041

[16] Karlin, J.; Forrest, S.; Rexford, J. Autonomous security or
autonomous systems. // Computer Networks. 52, 15(2008),
pp. 2908-2923. DOI: 10.1016/j.comnet.2008.06.012

[17] Rexford, J.; Feigenbaum, J. Incrementally-Deployable
Security for Interdomain Routing. // Proceedings of
Cybersecurity Applications and Technology Conference for
Homeland Security / Anchorage, 2009, pp. 130-134. DOI:
10.1109/catch.2009.35

[18] Lad, M.; Massey, D.; Pei, D.; Wu, Y.; Zhang, B.; Zhang, L.
PHAS: A prefix hijacks alert system. // Proceedings of
USENIX Security Symposium, Boston, 2006, pp. 176-187.

[19] Zheng, C.; Ji, L.; Pei, D.; Wang, J.; Francis, P. A
light-weight distributed scheme for detecting IP prefix
hijacks in real-time. // Proceedings of the ACM SIGCOMM
Computer Communication Review. 37, 4(2007), pp.
277-288. DOI: 10.1145/1282380.1282412

[20] Qiu, T.; Ji, L.; Pei, D.; Wang, J.; Xu, J. Tower Defense:
Deployment strategies for battling against IP prefix
hijacking. // Proceedings of International Conference on
Network Protocols, Kyoto, 2010, pp. 134-143. DOI:
10.1109/ICNP.2010.5762762

[21] Patelan, H. B.; Patel, D. R. Performance analysis of BGP
security proposals. // International Journal of Recent Trends
in Engineering. 2, 2(2009), pp. 187-189.

[22] Qiu, T.; Ji, L.; Pei, D.; Wang, J.; Xu, J.; Ballani, H.
Locating prefix hijackers using lock. // Proceedings of
USENIX Security Symposium / San Diego, 2009, pp.
135-150.

[23] Qiu, J.; Gao, L.; Ranjan, S.; Nucci, A. Detecting Bogus
BGP Route Information: Going Beyond Prefix Hijacking. //
Proceedings of Security and Privacy in Communication
Networks / Nice, 2007, pp. 381-390.

[24] Goldberg, S.; Schapira, M.; Hummon, P.; Rexford, J. How
Secure are Secure Interdomain Routing Protocols? //
Proceedings of the ACM SIGCOMM Conference on Data
Communication / New Delhi, 2010, pp. 87-98. DOI:
10.1145/1851182.1851195

[25] Miller, B.; Rupp, A. Faster Multi-exponentiation through
Caching: Accelerating (EC) DSA Signature Verification. //
Proceedings of International Conference of Security and
Cryptography for Networks / Amalfi, 2008, pp. 39-56. DOI:
10.1007/978-3-540-85855-3_4

[26] Furlani, C. FIPS-186-3, the third and current revision to the
official DSA specification. URL: http://csrc.nist.gov/
publications/fips/fips186-3/fips_186-3.pdf (Accessed on
May, 2014).

[27] Cooper, D.; Heilman, E.; Brogle, K.; Reyzin, L.; Goldberg,
S. On the Risk of Misbehaving RPKI Authorities. //
Proceedings of HotNets-XII / CollegePark, MD, 2013, pp.

A DSA-based scheme for defending against IP prefix hijacking without repositories Bo Yang

996 Technical Gazette 23, 4(2016), 985-996

36-41.
[28] Girault, M. Self-certified public keys. // Proceedings of

International Conference on the Theory and Application of
Cryptographic Techniques / Berlin, 1991, pp. 490-497. DOI:
10.1007/3-540-46416-6_42

Author’s address

Bo Yang, Associate Professor
School of Information Technology, Jiangxi University of Finance
and Economics,
High Level Engineering Research Center of Electronic-Commerce,
Jiangxi Provincial Colleges and Universities,
330013 Nanchang, China,
E-mail: jxncyangbo2002@163.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

