MOLEKULARE GENETIK IN DER ERHALTUNG VON HAUSTIEREN

K. Schellander, G. Brem

Rassen sind Gruppen von Tieren, die sich aufgrund züchterischer Eingriffe durch einen einheitlichen vererbaren Phänotyp von Tieren derselben Spezies unterscheiden. Dieser phänotypischen Zusammengehörigkeit liegt ein distinktiver Genotyp zugrunde, der durch ein spezifisches DNA Muster charakterisiert ist. Als Folge der Änderung des qualitativen und quantitativen Anforderungsprofils an die Leistungskapazität (vor allem bei Nutztieren) war es in der Vergangenheit ökonomisch sinnvoller, autochthon Rassen zu ersetzen oder zu verdrängen, als innerhalb der existierenden Rassen durch Zuchtmaßnahmen sich an die geänderten Anforderungen (meist höhere Leistungen) anzupassen. Neben kulturellen und sozialen Gründen sprechen rein ökonomische Aspekte für die Erhaltung der genetischen Komponenten wichtiger Merkmale (z.B. Krankheitsresistenz, Langlebigkeit, etc.).

Um dem dynamischen Entwicklungsgeschehen in der Tierzucht und Tierproduktion Rechnung zu tragen, ist aus molekulargenetischer Sicht die Aufrechterhaltung der Kontinuität der genetischen Rekombination (Fortpflanzung) die Grundlage für eine Strategie, die die besonderen genetischen Merkmale seltener Rassen für Leistungszucht auch innerhalb anderer Rassen interessant machen. Dazu ist es notwendig, zunächst das Genom in ausreichender Schärfe zu charakterisieren, dann funktionelle Genbibliotheken anzulegen und letztlich Methoden zu entwickeln, mit denen benötigte Merkmale in Leistungspopulationen eingebracht werden können.

Genomanalyse

Das Saugetiergenom ist etwa 3 x 10^9 bp groß. Die Größe eines einzelnen Gens liegt im Bereich von 10^3 - 10^6 bp; ein Genkomplex ist etwa 50 - 5000 kb groß, ein einzelnes Chromosom hat etwa 100 cM (1 cM entspricht ungefähr 1000 bp). Für die Kartierung des Genoms werden Kopplungsstudien, somatische Zellhybridisierung und die in situ Hybridisierung eingesetzt.

This article was enclosed on the 3rd International DAGENE- symposium, Zagreb-Pag, 27.-30.09.1994. (See journal "Stočarstvo", vol. 48:273-432).


Karl Schellander, Gottfried Brem, Veterinärmedizinische Universität Wien Institut für Tierzucht und Genetik, 1030 Wien, Linke Bahngasse 11, Austria

STOČARSTVO 49:1995 (3-4) 101-104
**Genkartierung mittels somatischer Zellyphridisierung**

Durch Fusion primärer Zellen mit immortalen Hamster- oder Mauszellen entstehen Hybriden, die während ihrer Teilung vorzugsweise die Nicht-Nager Chromosomen verlieren. Durch molekulare Analyse solcher Hybridzellen können Gene identifiziert werden, die Gemeinsam auf einem Chromosom sitzen (Syntenigruppen). Die Syntenigruppen (Auflösungsschärfe \(10^6 - 10^9\) bp) stellen die Grundlage für detaillierte Genomanalyse dar.

**Genkartierung mittels in situ Hybridisierung**

Markierte genetische Sonden (Flureszenzmarkierung) werden in situ an Metaphasenchromosomen hybridisiert. Damit kann die Lokalisation eines Genes am Chromosom ermittelt werden (Auflösungsschärfe \(10^6 - 10^9\) bp).

**Erstellung genetischer Mappen mittels Kopplungsanalysen**

Segregieren Allele von zwei Loci gemeinsam in der Nachkommenschaft, so sind sie wahrscheinlich gekoppelt (dh. auf einem Chromosom). Je größer die Distanz dieser beiden Loci ist, desto mehr Rekombinationsereignisse werden beobachtet. Die genetische Distanz wird in "cross over units" (oder cM) angegeben.


**Genbibliotheken und Genkartierung**


**Nutzung von Genen seltener Rassen**


**Velogenetik**


STOČARSTVO 49:1995 (3-4) 101-104
Schlussfolgerung

Aus molekulargenetischer Sicht ist die Analyse und Typisierung des Genoms der vom Aussterben bedrohten Haustiere auf DNA Ebene eine wesentliche Voraussetzung zur Erhaltung dieser Rassen. Kombinierte biotechnologische und molekularanalytische Techniken erlauben den Einsatz des Genpools für die kontemporäre Tierzucht und Tierproduktion.