UTJECAJ MOLIBDENA I KALCIFIKACIJE NA PRINOS LUCERNE

UVOD

Molibden je jedan od mikroelemenata koji je od velikog interesa za poljoprivredu, posebno sa stajališta uzgoja leguminoza na kiselim tlima. Njegova dvostruka uloga u ishrani leguminoza vezana je s dušićnom fiksacijom u krvičama korijena i redukcijom nitrata prije sinteze bjelančevina. Primjena optimalnih količina samog molibdena ili u kombinaciji s drugim ionima pokazala se uspješnom u povišenju prinosa, broja nodula, te količine dušika, bjelančevina, aminokiselina, ugljikohidrata, karotina, klorofil i askorbinske kiseline u različitim kulturama, kao i u povećanju aktivnosti proteolitičkih fermenta.

Općenito se uzima, prema rezultatima dobivenim u brojnim istraživanjima, da se u prosjeku u tlu nalazi oko 2,0 ppm ukupnog molibdena, a da se prosječne pristupačne količine kreću na razini 0,2 ppm.

Pričuva molibdena u tlu mogu se ocijeniti na osnovi bilance molibdena dobivena prema vrijednosti pH + (10 x Mo ppm). Vrijednost < 6,3 i 6,3 do 8,2 označavaju siromaštvo na molibdenu, odnosno nedovoljne pričuve molibdena. Biljke općenito pokazuju deficijenciju molibdena, kada je količina pristupačnog molibdena u tlu manja od 0,1 ppm. Kada je količina molibdena iznad 0,9 ppm, onda on postaje štetan.

Pođemo li od ovako koncipiranih osnovnih problema vezanih s molibdenom kao biogenim elementom, onda su rezultati pokusa koje želimo iznijeti u ovom radu jedan, ali praktično vrlo važan problem vezan s uzgojem lucerne na kiselim tlima.
PREGLED LITERATURE

Pitanje efikasnosti molibdena u vezi je i s njegovom koncentracijom u lucerni, pa JAMES et al. (ibid.) iznose, da je kritična razina u lucerni 0,3 do 0,5 ppm. Prema istim autorima željeni odnos molibdena u krmi-između hranidbene deficijencije u usjevu i toksičnosti za stoku — je vrlo uzak. Donja je granica za dobru ishranu biljaka 0,5 do 1 ppm, a gornja za dobru ishranu životinja 5 do 10 ppm. Naprotiv, prema REISENAUER (1956) ne treba očekivati porast prinosa lucerne od gnojivne molibdenom kod razine molibdena u lišću veće od 0,4 do 0,5 ppm, dok autor istovremeno citirajući podatke EVANSA i PURVISA navodi da su oni dobili porast prinosa primjenom molibdena s njegovim gornjim sadržajem od 0,77 i 0,85 ppm. Ove očigledne anomalije vje-
rojatno rezultiraju od antagonizma mangana i molibdena na što upućuju WALKER i dr.

RUBINS (1956) upozorava, da jako kalificirana ili prirodno neutrlna tla mogu biti iscrpljena u pogledu pristupačnog molibdena uzgojem usjeva ili ispiranjem. RADIMIROV et al. (1969) upućuje na interakciju odnosno supstituciju dušika i molibdena.

Prema MUNNSU (1965) najveća korist od primjene vapna na kiseliom tlu bila je poboljšanje nodulacija, iako lucerna nije bila deficitarna na dušiku, ali je i reakcija na vapno bila eliminirana primjenom fosfora, što indicira na toksičnost aluminija. Interakciju fosfora i kalcija u uzgoju lucerne dobio je i DOMBOVAR (1965), kao i ALLINSON (1971), ali s varijabilnim rezultatima.

Jedan od uvjeta efikasnog korištenja molibdena iz tla je prema PODZOLKINI (1966) dobra opskrbljenost fosforom kao rezultat supstitucije iona MoO₄⁻ ionima fosforne kiseline. SELEVOCA (1969) iznosi da na teškom glinastom tlu fiziološki kisela dušična gnojiva smanjuju, a fosfati povećavaju mobilnost molibdena u tlu. AMIN i JOHAM (1968) povezuju oslobađanje molibdena s oksidacijsko-reducijskim procesima.

ROBINSON i EDGINTON (1954) povezuju pristupačnost molibdena sa slobodnim željeznim hidroksidima kao inhibitori nim faktorima u pristupačnosti molibdena tla, zadržavajući molibden u netopovom obliku.

Rezultati RATNERA i AKIMOČKINE (1967) pokazuju da zahtijeva uloga molibdena u kiselim tima može prije svega doći do izražaja u povijesnom fiziološke ravnoteže unutarnje sredine u tkivima biljaka na račun jačanja uloge kalcija i fosfora, glavnih antagonista aluminija, u znatnoj mjeri i mangana, pri njihovoj suvišnoj akumulaciji u biljkama.

U svjetlu svega što smo u ovom prikazu iznijeli mogli bismo zaključiti mišljenjem KLINEA (ibid.), da je zamjenjivanje kalificacije molibdena ograničeno na ona tla gdje je prvenstveni zadatak kalificacije oslobađanja molibdena, budući da tretiranje molibdenom ne može ispuniti druge uloge kalificacije i dodati, da je, pored svoje složenosti, ovu pitanje prilično rasvijetljeno zahvaljujući upravo brojnim radovima u kojima je ova problematika tretirana. No, problem sam po sebi toliko je važan, da postoji puno opravdanje za njegovo istraživanje u specifičnim uvjetima tla i klime, čemu su posvećena i naša istraživanja.

KLIMATSKIJE I EDAFSKE KARAKTERISTIKE

a) Klima

Zbog nemogućnosti da na ovom mjestu ulazimo u detaljniju analizu klimatskih karakteristika ovog područja, dajemo grafički prikaz klime u razdoblju pokusnog rada klimadijagramima prema Walteru i Liethu. Prema prikazanim klimadijagramima (graf. 1, 2, 3, 4 i 5) vide se znatna kolebanja meteoroloških elemenata, prvenstveno oborina i temperature,

Godine 1971. su hidrotermički odnosi bili potpuno poremećeni. Posebno treba podvući pojavu dvaju izrazito sušnih razdoblja — sredinom julta i sredinom jeseni — uz izraziti ukupni deficit oborina tokom drugog dijela vegetacijskog razdoblja, ali i godine u cjelini.

1973. godina također je u pogledu hidrotermičkog odnosa znatno odstupala od prosjeka, pa već početkom vegetacije lucerne dolazi do pojave suše, koja biva prekinuta izrazitim humiditetom u travnju uz ponovnu slabiju izraženost suše, koja, međutim, postiže svoju kulminaciju sredinom julta. No, umanjene količine oborina tokom vegetacijskog razdoblja ove godine nisu u većoj mjeri poremetile normalni razvojni ritam lucerne, jer su rezerve vlage iz prethodne godine bile znatne, pa se čak može reći da je ova godina s agroklimatskog stajališta bila pojavljena u usporedbi s 1972. godinom.

Na ovom mjestu ne ćemo dalje ulaziti u podrobniju analizu prikazanih klimadijagrama, jer smatramo da oni sami po sebi dovoljno osvjetljavaju bitne značajke klimatskih, odnosno vremenskih prilika u istraživanom razdoblju u uporedbi s prosječnim klimatskim karakteristikama ovoga područja.

b) Tlo

Što se tiče tla, ističemo da je pokus postavljen na obronačnom pseudogleju, čije su karakteristične tipске oznake dijelom oslabljene u skladu s postignutim stupnjem antropogenizacije. Zadržane su ipak osnovne značajke pseudogleja, što proizlazi iz glavnih kemijskih, pa i fizičkih svojstava prije postavljanja pokusa. Tako se pH tla u N KCl kreće u rasponu od 4,1 do 4,8, humus od 1,3 do 1,7%, hidrolitski aciditet od 9,28 do 13,50, dok sadržaj biljci pristupačnog fosfora odgovara višem stupnju antropogenizacije i kreće se u rasponu od 17,5 do 34,5 mg/100 g tla, a kalija od 9,0 do 15,0 mg/100 g tla. Suma baze sposobnih za zamenju varira od 9,57 do 11,51 m. e., maksimalni kapacitet adsorpcije od 16,11 do 19,69 m. e. i stupanj zasićenosti adsorpcijskog kompleksa bazama od 53,18 do 64,26%.
Sadržaj biljci pristupačnog magnezija kretao se je od 7,8 do 8,7 mg/100 g tla, mangan od 18,0 do 19,0 mg/100 g tla, bora od 0,48 do 0,68 ppm, bakra od 4,8 do 5,0 ppm i molibdena od 0,35 do 0,40 ppm.

U vezi s fizičkim svojstvima može se podvoći da su ona budući da se radi o pseudogleju, relativno povoljna, pa podvlačimo da se porozitet kretao u površinskom sloju od 47,8 do 49,2 dublje u tlu od 39,9 do 44%, kapacitet tla za vodu od 36,6 do 38,8, odnosno 38,8 do 40,6‰, kapacitet za zrak od 9,0 do 12,6, odnosno 1,1 do 3,8‰, te volumna specifična težina od 1,34 do 1,40, odnosno 1,49 do 1,64.

METODIKA ISTRAŽivanja

Pokus je izveden na obronačnom pseudogleju na pokušalištu Poljoprivrednog školskog i istraživačkog centra u Križevcima. Osnivanje pokusa uslijeljilo je u mjesecu studenom 1970. godine. Tom prilikom izvršeni su osnovni zahvati u pokusu, tj. osnovna gnojdb i obrada tla, uključujući i kalcifikaciju. Dubina osnovne obrade tla (oranja) iznosila je 40 cm, što je u skladu s našim koncepcijama u uzgoju lucerne na pseudogleju. Pokus je izveden po metodi randomized blokova u 6 ponavljanja. Veličina pokusne parcele iznosila je 15 m². U pokusu je ispitivano 17 gnojdbnih varijanata pri čemu je gnojdb dušikom, fosforom i kalijem bila, s izuzetkom negnojene varijante, uniformna i kretala se na razini 0, odnosno 180, odnosno 220 kg/ha N, P₂O₅ i K₂O u obliku standardnih mineralnih gnojiva (vrapcno amonijaka salitra, o-bični superfosfat i kalijeva sol). Za kalcifikaciju je koristjen dolomit, a kao izvor molibdena natrijev molibdat. I dolomit i natrijev molibdat su primijenjeni u tri gradacije, bilo da se radi o njihovoj odvojenoj primjeni, bilo zajedničkoj. Doze dolomita kretale su se, dakle, na razini 2.000 (Ca₁), 4.000 (Ca₂) i 6.000 kg/ha (Ca₃), a natrijevog molibdata 2 (Mo₁), 4 (Mo₂) i 6 kg/ha (Mo₃).

Osnovnoj obradi tla prethodila je osnovna gnojdb prilikom koje su primijenjene 2/3 fosfora i kalija od ukupne količine, te cjelokupna količina dolomita. Radi efikasnijeg miješanja dolomita s tlome prije osnovne obrade tla izvršeno je tanjuranje pokusne površine, a tek nakon toga su primijenjena fosfora i kalija gnojiva. Izorano tlo ostalo je ležati preko zime, a u mjesecu travnju pristupilo se je predsjetvenim zahvatima obrade i gnojdb tla, kojom prilikom je primijenjena preostala trećina fosfora i kalija, te cjelokupna količina dušika i molibdena. Molibden je primijenjen u obliku otopine.

Sjetva inokuliranog sjemena lucerne izvršena je 22. travnja 1971. godine.

U godini sjetve izvršeno je sredinom lipnja prihramnijanje dušikom na osnovi predsjetvene norme, prije nego što je u potpunosti otipočela dušična fiksacija iz atmosfere. U drugoj i trećoj godini vršeno je rano u proljeće prihramnijanje dušičnim, fosfornim i kalijevim gnojivima s
jednakom količinom za sve varijante osim kontrolne. Godišnja količina dušika iznosila je 30, fosfora 80, a kalija 120 kg/ha.

Kemijske i fizikalne analize tla standardne izvršene su uz uznim metodom, dok su magnezij i mangan određeni prema Schachtschabelu, bor prema Berger-Truogu, bakar prema Westerhoffu i molibden prema Purvis-Petersonu.

Statistička obrada rezultata pokusa izvršena je pomoću analize varijance.

REZULTATI ISPITIVANJA

a) **Prinos**

Na ovom mjestu iznose se rezultati prinosa sijena lucerne po otkosima i godinama, kao i prosječni odnosno ukupni 3-godišnji rezultati. Premda je u pokusu bila uključena i negnojena varijanta, koja na određeni način govori o prirodnoj plodnosti tla, ali uz opasku da je u prinos na ovoj varijanti uključen značajan dio korova, u objašnjavanju efikasnosti primijenjenog dolomita, molibdena kao i njihove interakcije, težište će prema tome biti stavljen na NPK varijantu. Nema, međutim, nikakve zapreke da se vrši vrednovanje varijanta međusobno, ali posebno treba istaći djelovanje ili same kalificiokacije, ili samog molibdena, ili pak njihove interakcije. Podemo li, dakle, redom po otkosima i godinama, onda na prvom mjestu podvlačimo da su u prvoj godini dobivena samo dva otkosa. Na ovo je u prvom redu utjecao tok vremenskih prilika, koji je bio nepovoljan za lucernu. Naime, u drugom dijelu vegetacije vladao je nedostatak oborina, a to je upravo bilo vrijeme kada se očekivao jači razvoj korijenovog sistema lucerne, kako bi u drugoj godini mogla dati punu biološku rodnost. Pa, lako je već u prvom otkosu dobiveno pozitivno djelovanje primijenjenog dolomita i molibdena, razlike u visini prinosa nisu bile signifikantne (tab. 1). Može se, međutim, reći da je u odnosu na NPK gnojivedu kod svih varijanata povećanje prinosa doista izraženo. Pri ovome treba istaći da je djelovanje molibdena na razini dolomita, te da je posebno došlo do izražaja njihova interakcija kod primjene najviše doze molibdena.

I u drugom otkosu djelovanje dolomita i molibdena bilo je vrlo izraženo, s time da je izostalo djelovanje najniže doze dolomita, ali i ostale dvije varijante s dolomitom nisu dale signifikantno povećanje prinosa u odnosu na NPK varijantu (tab. 1). Treba, naprotiv, podvuci, da su sve tri doze molibdena dale signifikantno povećanje prinosa. I u ovom otkosu javlja se određena interakcija kalcija i molibdena.

Gledano, međutim, u cjelini u godini osnivanja lucerna je dala relativno visoke prinose sijena neovisno o varijanti (tab. 1, graf 13), s time da su prinosi u prvom otkosu bili znatno iznad prinosa u drugom što se može objasniti nedostatkom vlage u drugom dijelu vegetacije. Na osnovi dobivenih rezultata pokusa vidi se, da su, s izuzetkom niske i srednje dože dolomita, sve varijante signifikantno bolje u odnosu na NPK vari-
jantu. Posebno značenje ima ovdje djelovanje samog molibdena, naročito u drugom otkosu. Premda je pod utjecajem niske i srednje doze dolomita prinos povećan, u prosjeku za 8%, ove doze nisu bile dovoljne, da bi dale u prvoj godini signifikantno povećanje prinosa. Ova pojava može se također povezati s kratkim vremenskim razdobljem u kojem...
nije moglo doći do pune aktivacije unešenog dolomita. Da je pri tome
značajna aktivacija molibdena, pokazuju viši prinosi dobiveni samo nje-
govom primjenom ili u interakciji s dolomitom. Zanimljivo je istaći, da
visoka doza dolomita nije sa svim dozama molibdena dala uvijek naj-
više prinose.
Tabela 1 — Prinos sijena lucerne u q/ha

<table>
<thead>
<tr>
<th>Varijanta gnojidbe</th>
<th>Doze moliđbena — Doses of molybdenum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Otkos-clip pno</td>
<td>1.</td>
</tr>
<tr>
<td>Uku-clip pno</td>
<td>1.</td>
</tr>
<tr>
<td>Total</td>
<td>1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0</th>
<th>(\text{Mo}_1)</th>
<th>(\text{Mo}_2)</th>
<th>(\text{Mo}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPK</td>
<td>40,1</td>
<td>11,9</td>
<td>52,0</td>
<td>45,5</td>
</tr>
<tr>
<td>NPKCa₁</td>
<td>44,1</td>
<td>11,8</td>
<td>55,9</td>
<td>48,2</td>
</tr>
<tr>
<td>NPKCa₂</td>
<td>44,0</td>
<td>12,1</td>
<td>56,1</td>
<td>44,9</td>
</tr>
<tr>
<td>NPKCa₃</td>
<td>47,8</td>
<td>14,4</td>
<td>62,2</td>
<td>45,9</td>
</tr>
<tr>
<td>(\phi)</td>
<td>31,2</td>
<td>10,0</td>
<td>41,2</td>
<td>31,2</td>
</tr>
</tbody>
</table>

| GD₅₅⁰⁰ | 4,1 | 6,7 |
| GD₅₅⁰⁰ | 5,5 | 8,9 |

Krčenje prinosa lucerne po varijantama gnojidbe

Variation of alfalfa yield after treatment

26
Ne manje važno pitanje od efikasnosti dolomita, molibdena ili njihove interakcije u odnosu na NPK gnojidbu su međusobni odnosi različitih doza dolomita i molibdena. U vezi s time treba podući, da su sve varijante od srednje doze molibdena pa nadalje bile signifikantno bolje od niske doze dolomita ili gotovo sve od srednje doze dolomita, dok kod preostalog dijela varijanata nije bilo signifikantno boljih, iako postoji i kod njih tendencija ka višim prinosima. Drugim riječima, ne bi bilo oporavdaja za primjenu viših doza dolomita i molibdena, pogotovo kada je u pitanju njihova interakcija, ili bi ovo opravdavanje bilo ograničenog dometa, tim više što lucerna svoj puni biološki razvoj u pravilu postiže u drugoj godini.

U drugoj godini obavljena su četiri otkosa lucerne. Rezultati po otkosima, kao i ukupni prinos prikazani su u tabeli 2a, odnosno graf. 13. Kao što se je moglo očekivati, neovisno o varijanti gnojidbe, prinos se je smanjivao od prvog prema četvrtom otkosu, pri čemu treba uzeti u obzir djelomičnu zakorovljenost lucerne u prvom otkosu. Razina prinosa u cijelosti zadovoljava u prvoj godini, dok se to ne mogli reći za četvrti otkos. Ova vegetacijska godina nije bila povoljna za lucernu obzirom na jako izražen humiditet klime. Time su ujedno stvoreni nepovoljni uvjeti u tlu za razvoj nadoša na korijen lucerne — iši su sve više u pravcu anaerobiozisa — pa je u vezi s time smanjena i efikasnost molibdena.

U prvom otkosu prve dvije gradacije dolomita nisu dale signifikantno povećanje prinosa. Čak što više u potpunosti je izostalo djelovanje niske gradacije, dok je visoka dala signifikantno povećanje prinosa. Za djelovanje molibdena značajno je podući signifikantni porast prinosa lucerne. Interakcija je samo kod najniže doze molibdena izražena s najnižom dozom dolomita. Sa srednjom i visokom dozom molibdena izražena je kod niske i srednje doze dolomita i u svim ovim slučajevima prinosi su bili signifikantno bolji u odnosu na NPK gnojidbu. Zamijetno je podući da je u sva tri slučaja interakcija molibdena s visokom dozom dolomita izostala.

U drugom otkosu, makar da su srednja i visoka doza dolomita u odnosu na NPK gnojidbu dale povećanje prinosa za oko 6%, ovo povećanje nije bilo signifikantno. Istovremeno je niska doza dolomita dala niži prinos u odnosu na NPK gnojidbu. Prinos je pod utjecajem molibdena signifikantno bolji, ali je i u ovom otkosu najslabije fertilizacijom povećano. Interakcija je također došla do izražaja i s izuzetkom samo dvije varijante srednja i visoka doza dolomita. Interakcija je također došla do izražaja i s izuzetkom samo dvije varijante srednja i visoka doza dolomita. Interakcija je također došla do izražaja i s izuzetkom samo dvije varijante srednja i visoka doza dolomita. Interakcija je također došla do izražaja i s izuzetkom samo dvije varijante srednja i visoka doza dolomita. Interakcija je također došla do izražaja i s izuzetkom samo dvije varijante srednja i visoka doza dolomita. Interakcija je također došla do izražaja i s
vegetacijskog razdoblja. Postoji također određena interakcija dolomita i molibdena, ali je manje izražena nego u prethodna dva otkosa.

Za četvrti otkos se može reći da je zbog nepovoljnih klimatsko-zemljišnih uvjeta djelomično nastupilo izjednačenje u visini prinosa, tim više što su vremenske nepogode onemogućile pravovremeno obavljanje trećeg otkosa. Odatle i prekratko vremensko razdoblje za normalni razvoj lucerne u ovom otoksu. Stoga su i prinosi niži od potencijalnih. Pa ako je riječ o signifikantnosti, onda je ona vrlo slabo izražena i to samo kod visoke doze dolomita, ali i kod niske doze molibdena, te u interakciji visoke doze dolomita s niskom i srednjom dozom molibdena. Ovim podacima treba ipak pridati samo relativnu važnost upravo zbog nepovoljnih uvjeta u razvoju lucerne.

Gledani sumarno rezultati pokusa druge godine pokazuju, da su sig.

Gledani sumarno rezultati pokusa druge godine pokazuju, da su sig.

Ako se dalje gleda opravdanost razlika u prinosima unutar različitih gradacija dolomita i molibdena ili njihove zajedničke primjene, onda je npr. u odnosu na srednju dozu dolomita signifikantno bolji prinos dala visoka doza dolomita, sve do samog molibdena, kao i niska i srednja doza dolomita sa srednjom dozom molibdena i srednja doza dolomita sa najvišom dozom molibdena. Ista konstatacija vrijedi za ove varijante u odnosu na sve tri gradacije dolomita s niskom dozom molibdena. Ova posljednja je dala signifikantno bolje prinose u odnosu na sve varijante pokusa, odnosno pokazala se je najboljom u ovoj godini. Ili je signifikantno bolja npr. varijanta sa srednjom dozom dolomita i molibdena od varijante samo sa srednjom dozom molibdena.

Kao i u prvoj godini, u drugoj godini se ukazuju mogućnosti opravdane primjene visoke gradacije dolomita ili niske molibdena, ali ne i visoke gradacije molibdena, kao i opravdane zajedničke primjene dolomita i molibdena, pri čemu su se njihove gradacije ponašale varijabilno. Najprihvatljivije bi, obzirom na visinu prinosa, mogle biti varijante s niskom i srednjom dozom dolomita u interakciji sa srednjom dozom molibdena, ili kao najbolja varijanta u pokusu — srednja doza dolomita i visoka doza molibdena.

Ukupni prinos dobiven u trećoj godini se unekoliko razlikuje od ukupnog prinosa u drugoj godini, dok su odnosi po otkosima dosta divergentni (tab. 2b, graf. 13), pa bi se upravo zbog te činjenice razlike mogle pripisati drugoj konstelaciji meteoroloških elemenata tokom vegetatione. Činjenica je također da su u vegetacijskom razdoblju u ovoj godini vremenske prilike bile znatno povoljnije za razvoj lucerne nego u prethodne dvije godine.
Ocjenjuje li se djelovanje fertilizacije po otkosima, onda treba pod-
vići da su u prvom otkosu srednja i visoka doza dolomita dale signi-
fikantno povećanje prinosa, ali da ovo isto vrijedi samo za nisku dozu
molibdena. O interakciji se može govoriti samo kod primjene niske i
srednje doze dolomita s niskom i srednjom dozom molibdena kod kojih
se javlja signifikantno povećanje prinosa u odnosu na NPK gnojidbu.

U drugom otkosu efikasnost gnojidbe jače je izražena, pri čemu tre-
ba posebno istaći djelovanje srednje doze dolomita, ali i djelovanje
molibdena pojačano, tako da su sve varijante srednje i srednje-
dolomita i molibdena jače je izražena nego u prethodnom otkosu, odnosno kod većeg dijela varijanta dobiveno je
signifikantno povećanje prinosa u odnosu na NPK gnojidbu. U tom su
ogledu međusobni odnosi po gradacijama dosta varijabilni.

Prinosi u drugom i trećem otkosu relativno su izjednačeni, premda
nešto viši u trećem, ali u oba otkosa gotovo za polovinu manji od prin-
osa u prvom otkosu. Djelovanje dolomita došlo je najjače do izražaja
u ovom otkosu, ali samo kod srednje i visoke doze, a isto tako i mo-
libden u sve tri doze — porast prinosa je signifikantno bolji — što go-
vorid o sukcesivnom povećanju njegovog djelovanja od prvog prema
trećem otkosu. Pa, iako u četvrtom otkosu nešto opada još uvijek je
visokosignifikantno. Kada je u pitanju interakcija dolomita i molibdena,
onda bi se prema dobivenim rezultatima moglo reći da se i tu radi pr-
venstveno o djelovanju molibdena, s time da je ona izražena u stupnju,
koji i većinu ovih varijanata čini signifikantno boljim od NPK gnojidbe.

Prinos u četvrtom otkosu za dva i više puta prelazi prinos u istom
otkosu prošle godine, što se može dovesti u vezu s povoljnim stanjem
vegetacijskih faktora, ali i još uvijek značajnim biološkim potencijalom
ucerne. Djelovanje dolomita još je uvijek izraženo, a isto tako i mo-
libdena, s izvjesnim prednostima u korist molibdena. Uspoređuje li se
zajedničko djelovanje dolomita i molibdena, npr. s molibdentom, onda je
ono, iako signifikantno bolje od same NPK gnojidbe, po svojem djelova-
vanju slabije.

Djelovanje gnojdbi po otkosima bilo je, dakle, varijabilno, pa da
vidimo kako se ono ogleda u ukupnom godišnjem prinosu. Kao prvo
može se podvuci, da je izostalo djelovanje niske doze dolomita, ali su
srednja i visoka doza dale signifikantno viši prinos u odnosu na NPK
gnojidbu. Gradacije molibdena su se razlikovale unekoliko po svojem
djelovanju. Sve su bile signifikantno bolje od NPK gnojidbe, a među
njima na prvom mjestu niska gradacija, dok je to u prvoj godini bila
srednja. U drugoj su razlike bile slabije izražene.

I u pogledu interakcije dolomita i molibdena postoji signifikant-
nost u odnosu na NPK gnojidbu s izuzetkom visoke doze dolomita i
niske doze molibdena. Gotovo da je zajedničko djelovanje slabije izra-
ženo od odvojene primjene bilo dolomita, bilo molibdena. Manje više
isti stupanj signifikantnosti javlja se kod svih ovih varijanata i u od-
nosu prema niskoj dozi dolomita. Signifikantno su bolje od srednje i vi-
<table>
<thead>
<tr>
<th>Varijanta gnojiva</th>
<th>Doza molibdena —</th>
<th>Otkos-Cipping</th>
<th>Ukupno</th>
<th>Doze molibdena —</th>
<th>Otkos-Cipping</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Mo<sub>1</sub></td>
<td>1. 2. 3. 4. Total</td>
<td>1. 2. 3. 4. Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPK</td>
<td>63,8</td>
<td>47,6</td>
<td>28,1</td>
<td>10,6</td>
<td>150,1</td>
<td>69,8</td>
</tr>
<tr>
<td>NPKCa<sub>1</sub></td>
<td>66,2</td>
<td>46,0</td>
<td>27,2</td>
<td>10,8</td>
<td>150,2</td>
<td>75,7</td>
</tr>
<tr>
<td>NPKCa<sub>2</sub></td>
<td>63,6</td>
<td>50,5</td>
<td>30,1</td>
<td>10,8</td>
<td>155,0</td>
<td>63,5</td>
</tr>
<tr>
<td>NPKCa<sub>3</sub></td>
<td>79,8</td>
<td>50,6</td>
<td>29,7</td>
<td>11,6</td>
<td>171,7</td>
<td>64,7</td>
</tr>
<tr>
<td>φ</td>
<td>29,6</td>
<td>41,7</td>
<td>25,5</td>
<td>10,2</td>
<td>107,0</td>
<td></td>
</tr>
<tr>
<td>GD<sub>5</sub></td>
<td>3,8</td>
<td>3,7</td>
<td>2,7</td>
<td>0,8</td>
<td>7,8</td>
<td></td>
</tr>
<tr>
<td>GD<sub>1</sub></td>
<td>5,0</td>
<td>4,9</td>
<td>3,6</td>
<td>1,0</td>
<td>10,6</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2b

Table 2b

<table>
<thead>
<tr>
<th>Varijanta gnojiva</th>
<th>Godina —</th>
<th>Otkos-Cipping</th>
<th>Ukupno</th>
<th>Doze molibdena —</th>
<th>Otkos-Cipping</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td>1. 2. 3. 4. Total</td>
<td>1. 2. 3. 4. Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPK</td>
<td>67,4</td>
<td>28,1</td>
<td>30,1</td>
<td>23,8</td>
<td>149,4</td>
<td>74,7</td>
</tr>
<tr>
<td>NPKCa<sub>1</sub></td>
<td>67,6</td>
<td>28,0</td>
<td>29,8</td>
<td>25,6</td>
<td>151,0</td>
<td>70,6</td>
</tr>
<tr>
<td>NPKCa<sub>2</sub></td>
<td>71,1</td>
<td>34,0</td>
<td>34,1</td>
<td>24,3</td>
<td>164,1</td>
<td>70,7</td>
</tr>
<tr>
<td>NPKCa<sub>3</sub></td>
<td>70,8</td>
<td>29,4</td>
<td>35,5</td>
<td>27,2</td>
<td>162,9</td>
<td>68,3</td>
</tr>
<tr>
<td>φ</td>
<td>55,8</td>
<td>23,4</td>
<td>26,1</td>
<td>23,5</td>
<td>128,8</td>
<td></td>
</tr>
<tr>
<td>GD<sub>5</sub></td>
<td>2,7</td>
<td>1,7</td>
<td>1,7</td>
<td>0,9</td>
<td>5,1</td>
<td></td>
</tr>
<tr>
<td>GD<sub>1</sub></td>
<td>3,6</td>
<td>2,3</td>
<td>2,2</td>
<td>1,2</td>
<td>6,8</td>
<td></td>
</tr>
</tbody>
</table>

Soke doze molibdena varijante sa zajedničkom primjenom dolomita u niskoj i srednjoj gradaciji sa srednjom dozom molibdena, ali su neke virijante prema drugoj strani significantno lošije od njih, kao što su i significantno lošije od ovih varijanata u kojima se, dakle, radi o zajedničkoj primjeni dolomita i molibdena u višim gradacijama.

Zanimljivo je istaći da su u ovoj godini najbolje bile varijante s niskom i srednjom dozom dolomita u interakciji sa srednjom dozom molibdena, što se po razini prinosa podudara s istim varijantama prethodne godine, koje su, kao što smo već ranije istakli, ipak zaostajale za
lucerne u q/ha

yield in q/ha

Year: 1972.

<table>
<thead>
<tr>
<th>Doses of molybdenum</th>
<th>Mo₂</th>
<th>Otkos-Clipping</th>
<th>Total</th>
<th>Mo₃</th>
<th>Otkos-Clipping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>70,1</td>
<td>54,0</td>
<td>29,0</td>
<td>10,0</td>
<td>163,1</td>
<td>68,3</td>
<td>51,5</td>
</tr>
<tr>
<td>72,9</td>
<td>51,2</td>
<td>34,8</td>
<td>11,2</td>
<td>170,1</td>
<td>72,1</td>
<td>48,5</td>
</tr>
<tr>
<td>71,9</td>
<td>56,0</td>
<td>31,8</td>
<td>10,8</td>
<td>170,5</td>
<td>79,4</td>
<td>56,6</td>
</tr>
<tr>
<td>63,2</td>
<td>53,2</td>
<td>29,5</td>
<td>12,0</td>
<td>157,9</td>
<td>65,8</td>
<td>52,5</td>
</tr>
</tbody>
</table>

Year: 1973.

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>70,0</td>
<td>31,8</td>
<td>37,4</td>
<td>26,6</td>
<td>165,8</td>
<td>69,3</td>
<td>30,2</td>
<td>36,9</td>
<td>25,6</td>
<td>162,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73,6</td>
<td>35,2</td>
<td>36,7</td>
<td>25,7</td>
<td>171,2</td>
<td>68,1</td>
<td>31,7</td>
<td>38,0</td>
<td>26,3</td>
<td>164,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74,2</td>
<td>33,8</td>
<td>37,2</td>
<td>26,1</td>
<td>171,3</td>
<td>68,3</td>
<td>29,3</td>
<td>36,5</td>
<td>26,7</td>
<td>160,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68,3</td>
<td>30,9</td>
<td>34,0</td>
<td>25,3</td>
<td>158,5</td>
<td>68,8</td>
<td>29,8</td>
<td>34,6</td>
<td>26,3</td>
<td>159,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Varijantom sa srednjom dozom dolomita u interakciji s visokom dozom molibdena kao najboljom u toj godini.

U tabeli 3 i grafikonu 13 daju se rezultati prosječnih odnosno ukupnih 3-godišnjih prinosa. Ovi rezultati u prvom redu upućuju na signifikantno bolje djelovanje srednje i visoke doze dolomita, kao i na signifikantno bolje djelovanje sve tri doze molibdena u odnosu na NPK gnojdbu, pri čemu je signifikantnost dvostruko jača izražena kod svih doza molibdena prema srednjoj dozi dolomita ili podjednaka s visokom dozom dolomita. To istovremeno znači, da nije bilo bitnih razlika u djelovanju između primijenjenih doza molibdena.
Tabela 3 — Prosječni odnosno ukupni 3-godišnji prinos sijena lucerne u q/ha

<table>
<thead>
<tr>
<th>Varijanta gnojidbe Treatment</th>
<th>Doze molibdena — Doses of molybdenum</th>
<th>Φ</th>
<th>Mo₁</th>
<th>Mo₂</th>
<th>Mo₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prosječni Ukuđeni</td>
<td>prosječni Ukuđeni</td>
<td>prosječni Ukuđeni</td>
<td>prosječni Ukuđeni</td>
<td>prosječni Ukuđeni</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>Total</td>
<td>Average</td>
<td>Total</td>
<td>Average</td>
</tr>
<tr>
<td>NPK</td>
<td>117,2</td>
<td>351,5</td>
<td>131,9</td>
<td>395,7</td>
<td>132,0</td>
</tr>
<tr>
<td>NPKCa₁</td>
<td>119,0</td>
<td>357,0</td>
<td>133,2</td>
<td>3997</td>
<td>134,7</td>
</tr>
<tr>
<td>NPKCa₂</td>
<td>125,1</td>
<td>375,2</td>
<td>125,9</td>
<td>377,6</td>
<td>135,4</td>
</tr>
<tr>
<td>NPKCa₃</td>
<td>132,3</td>
<td>396,8</td>
<td>125,8</td>
<td>377,4</td>
<td>127,3</td>
</tr>
<tr>
<td>φ</td>
<td>92,3</td>
<td>277,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GD₅₀

4,5 13,4

5,9 17,6

Interakcija molibdena i dolomita, je bila signifikantno bolja od NPK gnojide kao i niske doze dolomita u cjelini, po svojem djelovanju i iznad srednje doze dolomita, ali ne uvijek i signifikantno bolja, dok su samo neke varijante bolje od visoke doze samog dolomita ili samog molibdena. Ova prednost u posljednjem slučaju samo je relativna. Karakteristično je, međutim, da unutar iste vrste tretiranja nisu uvijek i najviše doze dale najviše prinos lucerne. Podvlačimo, da je to u slučaju dolomita bila visoka doza, u slučaju molibdena srednja, ali gotovo ista i niska doza, a u slučaju interakcije podjednako srednja doza dolomita s visokom ili srednjom molibdena. Odmah iza njih slijedi niska doza dolomita sa srednjom dozom molibdena, pa zatim niska doza dolomita sa niskom molibdena. Razlike među njima nisu signifikantne.

b) Promjene glavnih kemijskih svojstava tla

Zanimljivo je, obzirom na karakter istraživanja, da li su se i u kojoj mjeri tretiranja izvršena u pokusu odrazila na promjene nekih važnijih kemijskih svojstava tla, te da li ove promjene stoje u užoj vezi s prinosom sijena lucerne.

Ako u prvom redu razmotrimo kiselost tla, onda vidimo da je ona prije osnivanja pokusa prilično varirala, te da je na kraju prve vegetatione u pravilu smanjena (graf. 6). Smanjenje kiselosti tla moglo bi se dovesti u vezu s primjenom dolomita, premda ova konstatacija ima relativnu vrijednost, jer je do smanjenja došlo i kod varijanata bez dolomita. Krajem druge vegetatione postoji u pravilu daljnja tendencija smanjenja kiselosti tla, posebno kod najviše doze dolomita. Izrazito vlažne vremenske prilike pogodovale su intenzivnom ispiranju kalcija, a i drugih baza, u dublje slojeve tla, što pokazuju rezultati lizimetrijskih mjerenja u neposrednoj blizini pokusa, pa smanjenje kiselosti tla nije
bilo u skladu s očekivanim. Ovakva tvrdnja nalazi dobrim dijelom svoju potvrdu u kiselosti tla krajem treće vegetacije, kada je u pravilu došlo do njenog izrazitijeg smanjenja, pri čemu je sigurno značajnu ulogu odigrala cjelokupna dinamika tla, jer se smanjenje javlja i kod varijanata bez dolomita. Klimatski je ova godina bila poveljnjica od prethodne, ali ne i prosječna, pa je i to značajan faktor koji utječe na procese u tlu. Uzgavši u cijelini može se ipak reći, da je izostalo očekivano djelovanje dolominta, ali da kiselost sama po sebi nije limittirala prinos sjena lucerne, niti su prinosi u direktnoj vezi s kiselosti tla, iako ima i takvih ten, dencija.

Stanje biljci pristupačnog fosfora u tlu prije osnivanja pokusa bilo je vrlo promjenljivo (graf. 7). Promjenljivost je ostala vrlo izrazita u toku pokusnog rada, s time da se javlja opća tendencija pada biljca pristupačnog fosfora u tlu, više u krajem druge nego prve godine, a u trećoj godini izraziti skok gotovo kod svih varijanata. Pođe li se od toga da se je fosfor u tlu nalazio općenito na zadovoljavajućoj razini kod svih varijanata, ipak se može reći da postoji tendencija u promjeni visine prinosa s promjenama fonda fosfora u tlu prema varijanata pokusa.

I za biljci pristupačnog kalija u tlu postoji prilično izražen variabilitet prije osnivanja pokusa, ali su granice mnogo uže u usporedbi s fosforom (graf. 8). Kod fosfora su kolebanja, naime, isla od donje granice druge klase u smislu klasifikacije Riehma do gornje granice prve klase, pa i više, a kod kalija ona se kreću manje više unutar granice treće klase do sredine druge klase. Promjene su vrlo heterogene po varijantama gnojilbice i po godinama, pa iako je lucerna veliki konzument kalija ne postoji čvršća povezanost prinosa s promjenama kalija u tlu.

Kod humusa od svih ispitivanih svojstava tla su kolebanja po varijantama najmanje izražena bilo u pogledu početnog stanja, bilo daljnjih promjena tokom vegetacije (graf. 9). Ovo je sasvim i shvatljivo u svjetlu onoga što se zna o njegovom stvaranju i razgradnji u tlu. Stoga je teže u ovakvo kratkom razdoblju uočiti da bi postojala čvršća veza prinosa i humusa, makar da takvu vezu ne treba isključiti gledajući je prvenstveno sa stajališta biološke aktivacije dušika u tlu.

Hidrolitski aciditet u toku pokusnoga rada koleba, prema još uvijek ostaje iznad granice tolerantne za usjeve poput lucerne (graf. 10). Kao značajno treba istaći, da se je tlo u pogledu hidrolitskog aciditeta prilično razlikovalo prije postavljanja pokusa, pa i ovo treba uzeti u obzir u ocjenjivanju efekta kalcifikacije. Najveće smanjenje hidrolitske kiselosti postignuto je u pravilu u drugoj godini, precima je već nakon prve zabilježeno njeni smanjenje. U trećoj godini postoji tendencija ponovnog rasta hidrolitske kiselosti. Razumije se da je u suzbijanju suvišne hidrolitske kiselosti najvažniju ulogu igrao dolomit, jer gnojiva primijenjena u pokusu po svom karakteru nisu to mogla, pri čemu i visoka doza dolomita dolazila u pravilu najviše do izražaja. Tendencija uzajamne veze s prinosom tek se nazire.
Maksimalni kapacitet adsorpcije već prije izvršenih tretiranja u pokusu ne zadovoljava i u pravilu se u toku pokusnoga rada dalje smanjuje (graf. 11). Zapravo i nisu postignute vrijednosti, koje bi se približile kulturnim tlima (25 do 30 m. e.), pa je i dalje ostala slaba retencija hranjivih tvari. Do naročitog smanjenja maksimalnog kapaciteta adsorpcije došlo je krajem prve vegetacije. Ne bi se moglo reći da su vrijednosti maksimalnog kapaciteta adsorpcije bile u užoj vezi s prinosom lucerne, jer općenito govoreći zbog njihovog pada nije istovremeno dolazilo do promjena prinosa lucerne.

I kod stupnja zasićenosti adsorpcijskog kompleksa baza ma došlo je u toku istraživanja do određenih promjena (graf. 12). Najviše, međutim, začuđuje pad svih vrijednosti po varijantama ispod početnog stanja krajem prve vegetacije i to znatno ispod limita pogodnog za usjeve kao što je lucerna. Ovako niske vrijednosti imaju određenu tipsku značajku, ali ih je teško dovesti u vezu sa stupnjem antropogenizacije pokusnog tla. One ipak upućuju na vrlo izrazita kolebanja, pa ove i sve druge vrijednosti kemijskih svojstava tla treba uzeti kao koristan pokazatelj nastalih promjena u tlu, imajući uvijek na umu cjelokupnu dinamiku tla zbog koje su moguća značajna kolebanja u toku godine.

Naprotiv, krajem druge vegetacije gotovo su sve vrijednosti porasle iznad početnih, što znači i one bez kalcifikacije, s neznatnom prednostju viših gradacija dolomita prema nižima. Oscilacije krajem treće godine vrlo su izrazite uz opći i značajan pad u odnosu na drugu godinu, pri čemu je opet visoka gradacija u pravilu zadržala prednost.

Gledan u cjelini stupanj zasićenosti adsorpcijskog kompleksa baza ma nije bio na potreben razini i nije dostigao one vrijednosti koje se smatraju optimalnim u uzgoju kulture. Stoga je izostala i njegova čvršća veza s prinosom.

U zaključku ovoga poglavlja treba ipak podvući, da je početno staje ispitivanih kemijskih svojstava odigralo značajnu ulogu u njihovom kretanju tokom ispitivanog razdoblja. Nastale promjenje su u pravilu pod utjecajem ispitivanih činilaca bile pozitivne. Dobiveni rezultati ipak upućuju na nužnost što homogenijeg početnog supstrata prije tretiranja, pa odatle i na svu složenost ove problematike.

DISKUSIJA

Na ovom mjestu postavlja se pitanje u kakvom svjetlu gledati rezultate dobivene u pokusu bilo u pogledu prinosi sijena lucerne, bilo promjena nastalih u pedokemijskom kompleksu ili njihove uzajamne veze u sklopu izvršene fertilizacije.

Ako, dakle, redom analiziramo pojedina tretiranja izvršena u pokusu, onda treba reći da je kalcifikacija pozitivno djelovala na višinu prinosa lucerne. Ali je tek visoka doza dolomita dala prinosi na razini sa-
mog molibdena. Poveže li se ova činjenica s aktivacijom molibdena u tlu pod utjecajem kalcija odnosno smanjenjem kiselosti tla, proizlazi da je tek visoka doza dolomita oslobodila u tlu adekvatne količine molibdena, koje su se po svojem djelovanju izjednačile s primjenjenim molibdenom. Ova tvrdnja samo je utoliko točna, ukoliko je primarna uloga kalcija bila da oslobodi molibden. Ostale dvije doze dolomita bile su po djelovanju slabije od molibdena, što znači da ne bi postojalo opravdanje za njihovu primjenu, odnosno da kalcifikacija sama po sebi nije nužna mjera u uzgoju lucerne na ovom tlu. Ipak treba dodati da kiselost tla nije smanjena u opsegu koji bi bio optimalan za oslobađanje molibdena, jer prema FOYU i BARBERU (1959), EVANSU et al. (1951), KLIEVERU i KENNEDYJU (1960), RUBINSU (1956), ALLENSONU (1971) i drugima oslobađanje molibdena javlja se to više što se reakcija tla približava neutralnoj. Ili prema KLINEU (1955) usvajanje molibdena se naglo povišuje ako pH tla raste do 8,0, iznad koje točke se usvajanje molibdena smanjuje.

Nasuprot dolomitu gradacije molibdena same po sebi nisu posebno došle do izražaja, jer su niska i srednja doza potpuno izjednačene, a visoka čak zaostaje za njima. Drugim riječima već je najniža doza omogućila dobivanje prinosa lucerne na razini najviše doze dolomita, što učvršćuje tezu da je na ovom tipu tla moguća supstitucija kalcija molibdenom. Ovi rezultati u skladu su s rezultatima drugih istraživača (YOUNG i TAKAHASKI, 1953, KLIEVER i KENNEDY, 1960, GIDDENS i PERKINS, 1960, JAMES et al., 1968. i dr.).

Požitivno djelovanje kalcija sigurno je u vezi i s poznativim promjenama u pedokemijskom kompleksu, budući da su analize pokazale relativno visoki početni sadržaj mangana u tlu, a treba pretpostaviti da se javlja i mobilni aluminij obzirom na postojeću reakciju tla. Ovo je u skladu s rezultatima JOHNA et al. (1972), SKVORCOVA (1967), a na određeni način i s mišljenjem RATNERA i AKIMOCKINE (1967), koji na ovaj problem gledaju kompleksno, pridajući veliku važnost zaštitnoj ulozi molibdena.

Ipak treba istaći da je djelovanje kalcifikacije kao i molibdena, kada su u pitanju doze, bilo primjenljivo kako po otkosima, tako i po godinama, što bi se moglo dovesti u uzajamnu vezu s promjenama edaških i klimatskih prilika pojedinih godina, naročito ovih posljednjih, koje su u pokusnom razdoblju bile vrlo varijabilne. Pri tome je sigurno postojala najuža povezanost u pogledu aktivnosti kvrzičnih bakterija, koje čine osnovnu karij u lancu putem kojeg se vrši aktivnost molibdena i fiksacija dušika, jer obrnuto smatra REISENAUER (1956) bliske lucerne na kojima nisu razvijene nodule ne reagiraju na gnojdbu molibdenom.

Stupanj izražene interakcije dolomita i molibdena logični je rezultat kako djelovanja samog dolomita, tako i molibdena. U pravilu ukazuje na daljnju mogućnost povećanja prinosa lucerne, ali ako se ova interakcija svede u okvire opravdanosti, onda u odnosu na odvojenu primjenu.
najboljih varijanata dolomita i molibdena ima samo relativnu prednost, jer se nije pokazala signifikantno boljom. Stupanj interakcije nije, međutim, u svim slučajevima jednako izražen. U osnovi bi se moglo reći, da se jača interakcija javlja kod niske i srednje doze dolomita s niskom ili srednjom dozom molibdena, a donekle i visokom. Visoka doza dolomita nasuprot ovome je izuzetak bilo o kojoj dozi molibdena je riječ. Ovi rezultati ukazuju na uzajamno korisno djelovanje kalcija i molibdena, ali nam se čini da se ova korist ne bi mogla pripisati daljnjoj po- većanoj aktivaciji molibdena iz rezervi tla već drugim pozitivnim stranama kalcifikacije, tim više što ni pozitivne promjene reakcije tla, s izuzetkom treće godine, nisu jače varirale i što same gradacije molibdena nisu pokazale različitosti u djelovanju. Dobiveni rezultati ipak govore o koristi nizih doza materijala za kalcifikaciju u aplikaciji zajedno s molibdenom, dok više doze vapnenog materijala ne bi imale opravdanja. Ovakvo gledanje nije potpuno u skladu, npr. s rezultatima FOYA i BARBERA (ibid.); i EVANS et al. (ibid., DOBRICKAJE (1964), GUPTANDA (1969), GIDDENVSA i PERKINS (1972) i dr. u čijim je ispitivanjima reakcija na molibden došla do izražaja, ali je u skladu s rezultatima KELSEY i KENNEDY (ibid., JAMESA et al. (ibid., KLINEA (ibid., ANDERSONA (ibid.), donekle SKVORCOVA i EROKINE (1972), NIJKINKA i MEDVEDEVE (1966) i dr. Ovako poštenje mišljenju potreba za ovom vrstu testiranja prema specifičnim uvjetima sredine, jer je logično da ove razlike u gledanju upravo potječu od anomalija koje se mogu javiti u tlu, kao npr. antagonizam molibdena prema drugim elementima — managanu, aluminiju i sl. I negativni rezultati s molibdenom daju naslutiti da takve anomalije postoje.

Kad je riječ o promjenama u tlu nastalim pod uzajamnim djelovanjem izvršenih tretiranja u pokusu i uzgoja lucerne, onda treba reći da su one u osnovi pozitivne, te da je postojala tendencija promjena u prinosu s promjenama u pedokemijskom kompleksu. Ipak treba reći, da promjene pod utjecajem kalcifikacije nisu bile izražene u očekivanoj opsegu. Na ovom mjestu nećemo ulaziti u detaljniju analizu ovih uzroka, jer to i nije bio primarni zadatak u pokusu, ali smatranje zanimljivim istači da u ovašnjim humidnim klimatskim uvjetima dolazi do jakog ispiranja hraniva u dublje slojeve. Pri tome je ispiranje kalcija, a mogli bismo reći i magnezija vrlo značajno. Ova dva elementa ističemo zbog toga, što su oba zastupana u dolomitu. Prema lizimetrijskim mjerjenjima izvršenim u Neposrednoj blizini pokusa, količine ispranog kalcija kretale su se 1970/71. godine od 71,5 do 100,9, a magnezija od 17,9 do 37,4 kg/ha; 1971/72. ove količine bile su znatno veće i kretale su se za kalcij od 174,1 do 257,3, a magnezij od 71,8 do 91,4 kg/ha. U obje godine radi o visokim vrijednostima, s time da je ispiranje bilo naročito potencirano u ekstremno vlažnoj 1972. godini. U svjetlu ovih činjenica prema jednoj strani i velikih količina iznesenog kalcija prema drugoj, može se objasniti i slabiji utjecaj kalcifikacije na promjene kemijskog kompleksa tla.

Na kraju se postavlja pitanje da li rezultati pokusa omogućuju do- nošenje zaključka u pogledu supstitucije kalcifikacije molibdenom u uz-

I zbog primjene molibdena u različitim dozama došlo se do spoznaje, da one ne moraju biti suviše visoke, što ga ekonomski čini atraktivnijim, a fiziološki manje opasnim za zdravlje stoke.

ZAKLJUČCI

Rezultati provedenih 3-godišnjih pokusa omogućuju nam donošenje slijedećih zaključaka:

1. Kalcifikacija je pozitivno djelovala na visinu prinosa lucerne, ali je tek najviša količina dolomita dala prinose na razini samog molibdena. Unutar gradacije molibdena razlike u djelovanju nisu posebno došle do izražaja već su naprotiv niska i srednja doza bile izjednačene, a visoka je čak zaostajala za njima.

2. Stupanj izražene interakcije kalcifikacije i molibdena ukazuju na daljnju mogućnost povećanja prinosa lucerne, ali je ova prednost samo relativna, obzirom da nije prešla granice signifikantnosti. Pri tome bi izraženu prednost vjerojatno trebalo pripisati drugim pozitivnim stranama kalcifikacije, a ne daljnjoj aktivaciji molibdena iz rezerve tla. Prema dobivenim rezultatima ipak se javlja pozitivno djelovanje nizih doza materijala za kalcifikaciju u aplikaciji zajedno s molibdenom.

3. Pozitivno djelovanje kalcifikacije u vezi je s pozitivnim promjenama u pedokemijskom kompleksu, premda nije došlo do izražaja u očekivanoj opsegu. Ovo se može objasniti jakim procesima dekalcifikacije u oraničnom sloju, potenciranim napose perhumidnim karakterom vremenskih prilika druge godine pokusnog rada, ali i značajnim količinama kalcija iznešenim u prinosu lucerne. Stoga promjene u prinosu nisu u vijek bile u čvršćoj vezi s promjenama kemijskih svojstava tla, ali je takva tendencija, bila, naročito kod nekih svojstava, prilično izražena.

4. Posebno treba podvuci da u uzgoju lucerne na obrončnom pseudogleju ne bi trebalo biti dileme da li vršiti kalcifikaciju ili je supstituirati molibdenom ako se radi o odvojenoj primjeni ovih materija. Radi li se, međutim, o njilovoj interakciji, vjerojatno će najčešće prevagnuti ekonomski momenti, pa i tu treba vjerovati da će se primjena samoga molibdena pokazati atraktivnijom, tim više što prema našim ranijim istraživanjima postoji mogućnost supstituiranja kalcifikacije primjenom fosfornih gnojiva, prvenstveno bazičnih.
EFFECTS OF MOLYBDENUM AND LIMING UPON THE ALFALFA YIELD

by

Andelko Butorac and Željko Tkalec

Summary

The aim of the investigations was to determine to what extent liming and molybdenum affect the yield of alfalfa growing on pseudogley on the slopes in North-West Croatia, whether their interaction occurs, and if it is possible to substitute molybdenum application for liming.

In the experiment, the basic ploughing was carried out at the depth of 40 cm, which is in accordance with our earlier confirmed conceptions regarding the growing of alfalfa on pseudogley. Nitrogen, phosphorus and potassium fertilizers were applied in equal doses in all the experimental treatments. Dolomite was used for liming, while sodium molybdate was the source of molybdenum. Both substances were applied in three grades, both when applied separately and together. The dolomite doses were: 2,000 (Ca₁), 4,000 (Ca₂), and 6,000 (Ca₃) kg/ha, and the doses of sodium molybdate 2 (M₀₁), 4 (M₀₂) and 6 (M₀₃) kg/ha.

The results of the alfalfa hay yield per clippings and years, as well as the mean and total 3-year yields, are presented in Tables 1, 2a, 2b and 3, and in Graph 13; the changes in the main chemical properties of the soil in Graphs 6, 7, 8, 9, 10, 11 and 12, and the climatic characteristics in Climatic diagrams 1, 2, 3, 4 and 5.

The obtained results show that liming had a positive effect upon the alfalfa yield, but only the highest dolomite dose rendered yields equal to those of molybdenum when used alone. Within the molybdenum grades there were no expressed differences in the effect, on the contrary, the effects of the low and medium doses were approximately the same, while the high dose even lagged behind them.

The extent of the expressed interaction between liming and molybdenum points to further possibilities of increasing the alfalfa yields, but the advantage is relative as it did not pass the limits of significance. This advantage should probably be ascribed to other positive features of liming and not to the supplemental activation of molybdenum from the soil resources. According to the obtained results, there is still a positive effect of lower doses of the liming material when applied together with molybdenum.

The positive effect of liming is related to the positive changes in the pedochemical complex, thought it did not appear in the expected scope. This can be explained by strong decalcification processes in the ploughing layer, intensified by perhumid climatic conditions in the second experimental year, but also by considerable quantities of calcium.
taken out in lucerne yield. Therefore, the changes in the yields were not always closely connected with the changes of the chemical properties of the soil, but such a tendency was fairly expressed, especially as regards certain properties.

It should be emphasized that when growing alfalfa on slope pseudogley, there should be no dilemma whether to apply liming or substitute molybdenum for it if they are to be applied separately. However, if it is a question of their interaction, the economic aspects will probably prevail, but also here the application of molybdenum alone might be more attractive, even more so as, according to our previous investigations, it is possible to replace liming by the application of phosphorus fertilizers, primarily the basic ones.

LITERATURA

