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Common spatial pattern (CSP) method is highly successful in calculating spatial filters for motor imagery-based
brain-computer interfaces (BCIs). However, conventional CSP algorithm is based on a single wide frequency band
with a poor frequency selectivity which will lead to poor recognition accuracy. To solve this problem, a novel
Partitioned CSP (PCSP) algorithm is proposed to find the most relevant spatial frequency distribution with motor
imaginary, so that the algorithm has flexible frequency selectivity. Firstly, we partition the dataset into frequency
components using a constant-bandwidth filters bank. Then, a features selection method based on the Bhattacharyya
distance is adopted for PCSP features ranking, selection and evaluation. Subsequently, the PCSP features are
used to obtain scores which reflect the classification capability and being used for EEG signal classification. The
experimental results on 4 subjects showed that the PCSP method significantly outperforms the other two existing
approaches based on conventional CSP and Common Spatio-Spectral Pattern (CSSP).
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Metoda raspodijeljenog zajedničkog prostornog uzorka za klasifikaciju EEG signala sučelja mozak-
računalo u jednoj procjeni. Metoda zajedničkog prostornog uzorka (eng. common spatial pattern, CSP) je
vrlo uspješna u izračunu prostornih filtara za sučelja mozak-računalo zasnovana na motoričkoj predodžbi (eng.
brain-computer interface, BCI). Me�utim, konvencionalni CSP algoritam je zasnovan na jednom širokom po-
jasu frekvencija s lošom selektivnosti frekvencija što rezultira manjom točnošću prepoznavanja. Za rješavanje
navedenog problema u ovom radu je predložen novi raspodijeljeni CSP algoritam za pronalaženje najznačajnije
prostorno frekvencijske distribucije s motoričkom predodžbom, sa svojstvima fleksibilne selektivnosti frekvencije.
Početna faza metode je podjela podataka na frekvencijske komponente korištenjem filtarskog sloga s konstantnom
širinom pojasa. Potom, prilago�ena je metoda odabira svojstava zasnovana na Bhattacharyya udaljenosti za ran-
giranje, odabir i evaluaciju PCSP svojstava. Zatim, PCSP svojstva se koriste za dobivanje ocjena koje reflektiraju
mogućnosti klasifikacije te za klasifikaciju EEG signala. Eksperimentalni rezultati na 4 ispitanika pokazali su da
PCSP metoda po performansama značajno nadmašuje druga dva postojeća pristupa zasnovana na konvencionalnom
CSP-u i zajedničkom prostor-spektralnom uzorku (eng. common spatio-spectral pattern, CSSP).

Ključne riječi: podijeljeni CSP, motorička predodžba, sučelje mozak-računalo, klasifikacija u jednoj procjeni

1 INTRODUCTION

Nowadys,the most popular brain signal used for BCI is
the scalp-recorded electroencephalogram (EEG), because
it is a noninvasive measurement of brain electrical activ-
ities and has a high temporal resolution [1]. EEG-based
BCI systems enable a subject, such as a disable person,
to send commands for controlling a computer application
or an electronic device such as a telephone only by means
of brain activity [2].To achieve this aim, using classifica-
tion algorithms is the most popular approach [3–5] . These
algorithms are used to identify patterns of brain activ-
ity [6]. Among various exiting patterns, the event-related
de-synchronization/synchronization (ERD/ERS) patterns

during motor imagery are widely used. The CSP algo-
rithm [7] is highly successful in calculating spatial filters
for detecting ERD/ERS effects [8]. CSP is a decomposi-
tion method that finds a set of spatial patterns which are
well suited to discriminate between different mental states
induced by motor imagery as they focus on the synchro-
nization and de-synchronization effects occurring over dif-
ferent locations of the sensorimotor cortex after performed
motor imagery. It is designed to find a set of spatial pat-
terns which maximize the power/variance ratios of the fil-
tered signals between the two classes. It can be calcu-
lated by simultaneously diagonalize the covariance matri-
ces corresponding to two classes of data. For the classifi-
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cation of two classes of motor imageries,CSP can achieve
the average accuracy above 90% on single trial EEG mea-
surements [9]. However,this spatial filter is highly sensi-
tive to noise and artifacts like eye blinks or loose elec-
trodes [10], and it must only be applied to the informa-
tive frequency bands (mu and beta rhythms) i.e. in the 8-
30 Hz range,which is specific to each subject because of
the fact that neurophysiologically the discriminative band
of ERD varies from one subject to another [8]. If uti-
lizing CSP algorithm to the EEG data with a poor fre-
quency bands selection will lead to a poor classify ac-
curacy. Moreover, the performance of CSP severely de-
pends on the preprocessing procedure of the temporal fil-
tering, because CSP detects the changes of rhythmic ac-
tivities based on the variances of signals. Only having the
EEG signals band-pass filtered through the frequency do-
main of interest, high or low signal variances could reflect
a strong or weak rhythmic activity respectively [11]. Addi-
tionally, The CSP method is prone to over-fitting resulting
from simultaneously diagonalization of covariance matri-
ces, which is a typical problem if there is only a small train-
ing set, and if there are a large number of channels [12].

To overcome the limitation of conventional CSP, sev-
eral variants of CSP have been proposed to improve the
robustness and discriminativity of the extracted features
by applying regularization,incorporating data from other
sessions/subjects, or using robust estimators [5]. For in-
stance, the authors of [13, 14] regularized the covariance
matrix to increase robustness, especially in small-sample
settings. The authors of [15] present a way to robustify
the popular common spatial patterns (CSP) algorithm un-
der a max-min approach. They show that this kind of max-
min optimization makes CSP robust to outliers and reduces
its tendency to over-fit. The authors of [11] suggested
an extension of CSP called Common Spatio-Spectral Pat-
tern (CSSP) to the state space, which utilizes the method of
time delay embedding which allows for individually tuned
frequency filters at each electrode position and, thus, yields
an improved and more robust machine learning procedure.
Other authors [16,17] improve the effectiveness of the so-
lution by preserving the temporal relationship among sam-
ples of unlabeled trials. All these different methods were
proposed for specific applications scenario with those own
optimization strategy.

In this paper, we propose a novel Partitioned Com-
mon Spatial Pattern (PCSP) algorithm for single trial
EEG classification. The proposed algorithm aims to
find the most reliable spatial frequency distribution of
the motor-imagery related neurophysiological phenomena
thus achieving a higher level of subject-specificadaptation.
For that we first partitioned the EEG dataset into frequency
components covering the range represented by the 5-33 Hz
band using a bank of constant-bandwidth Butterworth fil-

ters. Then, a features selection method based on the Bhat-
tacharyya distance is adopted for PCSP features ranking,
selection and evaluation. Subsequently, the PCSP features
are used to obtain scores which reflect the classification ca-
pability and being used for EEG signal classification. The
performance of the proposed algorithm is evaluated on data
collected from 4 subjects performing motor imagery task.
The classification accuracies of the proposed algorithm are
compared with the results from two existing algorithms,
namely, CSP and CSSP.

This paper is organized as follows. Section 2 intro-
duces the mathematical background of CSP and its exten-
sion PCSP. In Section 3, we introduce the experiment setup
and data acquisition. The results and data analysis are pre-
sented in Section 4. Finally, Section 5 draws the conclu-
sion.

2 PARTITIONED COMMON SPATIAL PATTERN

2.1 The mathematical background of CSP
The purpose of Common Spatial Pattern is to design

spatial filters that lead to new time series whose variances
are optimal for the discrimination of two classes of EEG.
Details of the algorithm will be described in the following
with the example of discriminating left hand vs. right hand
imaginary. The filtered signal corresponding to the desyn-
chronization of the left hand motor cortex is characterized
by a strong motor rhythm during imagination of right hand
movements, and by an attenuated motor rhythm during left
hand imagination. This criterion is exactly what the CSP
algorithm optimizes: maximizing variance for the class of
right hand trials and at the same time minimizing variance
for left hand trials.

Let HL and HR denote the corresponding EEG matri-
ces under the two conditions (left hand and right hand)with
dimensions N × M , where N is the number of selected
channel, and M is the number of samples in each trial.
The normalized spatial covariance of the EEG can be cal-
culated as:

XL =
HLH

T
L

tr(HLHT
L )
, XR =

HRH
T
R

tr(HRHT
R)
, (1)

where tr is the trace operator that sums up the diagonal
elements of a matrix, and T denotes the transpose operator
of a matrix. The final spatial covariances XL and XR are
respectively computed by averaging over the trials under
each condition. The composite spatial covariance matrix is
defined as:

X = XL +XR. (2)

As X is a symmetrical matrix, it can be factored into its
eigenvectors by singular value decomposition:

X = XL +XR = R0λ0R
T
0 , (3)
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where R0 is the matrix of eigenvectors and λ0 is the di-
agonal matrix of eigenvalue. Note that the eigenvalues are
assumed to be sorted in a descending order. We have the
whitening transformation matrix:

P =

√
λ−1
0 RT0 . (4)

The individual covariance matrices XL and XR are trans-
formed to:

UL = PXLP
T , UR = PXRP

T . (5)

UL and UR share common eigenvectors and the sum of
corresponding eigenvalues for the two matrices will always
be one:

UL = UλLU
T , UR = UλRU

T , λL + λR = I, (6)

where I is the identity matrix. Because the sum of two cor-
responding eigenvalues is always one, the eigenvector with
the largest eigenvalue for UL has the smallest eigenvalue
for UR and vice versa. This property makes the eigenvec-
torsU useful for classification of the two distributions. The
projection of whitened EEG onto the first and last eigen-
vectors in U will give feature vectors that are optimal for
discriminating two populations of EEG in the least squares
sense.With the projection matrix:

W = UTP. (7)

The decomposition (mapping) of a trial E can be trans-
formed into the uncorrelated components:

Z = WE. (8)

Z can be thought as EEG source components including
common and specific components of different tasks. The
original EEG E can be reconstructed by:

E = W−1Z, (9)

where W−1 is the inverse matrix of W . The columns
of W−1 are the common spatial patterns which can be re-
garded as the time-invariant vectors of EEG source distri-
bution vectors. Fig.1 shows the four most significant spa-
tial patterns extracted by CSP method for subject A.

2.2 Partitioned Common Spatial Pattern

In general, CSP algorithm was applied on a wide fre-
quency band thus finding an optimal spatial filter Pattern
based on the simultaneous diagonalization active employee
of two covariance matrices, which frequency selectivity is
not flexible and need more channels. Now we propose a
novel PCSP (Partitioned Common Spatial Pattern), which

Fig. 1. Four most significant spatial patterns extracted by
CSP.

applying the CSP method simultaneously in every parti-
tioned frequency and find the most relevant spatial fre-
quency distribution with motor imaginary, so that the algo-
rithm has flexible frequency selectivity. Moreover, it can
achieve good performance for a multi-class classification
problem.

Details of the PCSP algorithm will be described in the
following with the example of discriminating left hand vs.
right hand vs. non imaginary.

2.2.1 Frequency Decomposition

The EEG data were digitized at a sampling frequency
of 500 Hz and band-pass filtered the data on different and
overlapped frequency bands between 5 Hz and 33 Hz us-
ing a bank of constant-bandwidth Butterworth filters. But-
terworth filter is best suited for the closed loop gain to
be as close to 1 as possible within the pass-band. Roll-
offs become steeper, they approach the ideal filter more
closely. Like all filters, the typical Butterworth filter is the
low pass filter, which can be modified into a high-pass fil-
ter, or placed in series with others to form band-pass and
band-stop filters, and higher order versions of these. Here
we used a bank of fifth-order Butterworth filters with 6 Hz
bandwidth which centred on the frequency of interest. The
structure of the adopted filters bank is shown in the Fig.2.
Each filter of the bank is identified by its central frequency
k corresponding to a band-pass filter with cut-off frequen-
cies [k− 3; k+ 3]. . In this way, the EEG data was decom-
posed into its frequency components ZK(m, c),Where K
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represents the filter identifier, m denotes the length of the
data in samples and c is the number of data channel.

Fig. 2. The structure of the adopted filters bank

2.2.2 CSP Extension to Multi-class

The conventional CSP algorithm can handle only bi-
nary classification, Multi-class classification needs to ex-
tend CSP algorithm to multi-class CSP.

Multi-class extensions of CSP algorithm can be ob-
tained from the following three strategies [18]:

a. One versus one (OVO): This algorithm reduces a
multi-class classification problem to several binary prob-
lems. Calculated the spatial patterns extracted by CSP
method, and then combined all the spatial patterns as the
multi-class spatial patterns. This algorithm results in high
dimension of feature extraction coefficient by translate N-
class classification problem toN×(N−1)/2 binary prob-
lems.

b. Simultaneous diagonalization (SIM): In the binary
case, the CSP algorithm finds a simultaneous diagonaliza-
tion of both covariance matrices whose eigenvalues sum to
one. Thus a possible extension to many classes, i.e., many
covariances (

∑
i)i=1,··· ,N is to find a matrix R and diago-

nal matrices (Di)i=1,··· ,N with elements in [0; 1] and with
R
∑
iR

T = Di, for all i = 1, · · · , N ,
∑N
i=1D

i = I . But
this method can be done exactly for N = 2; for N > 2, in
general, only approximative solutions can be obtained.

c. One versus the rest (OVR): By computing spatial
patterns for each class against all others, it translates N-
class problem into N new two-class problems. The OVR
approach appears rather similar to the OVO approach, but

there is in fact a large practical difference. OVR does
multi-class classification on all projected signals whereas
OVO does binary classification on the CSP patterns ac-
cording to the binary choice.

In this work, we will use OVR and OVO methods to
decompose multi-class classification problem (left hand
imagination, right hand imagination and non imagination)
into the combination of multiple binary sub-problems.
Let HL, HR and N denote the left hand imagination,
right hand imagination and non imagination. Then the
multi-class problem of identifying a state among HL, HR

and N are decomposed four binary sub-problems (N −
HLHR, HL −HR, HL −N,N −HR).

2.2.3 Selection of the optimal PCSP filters

In this step, the extraction of brain rhythm topographic
patterns by CSP is performed on each partitioned fre-
quency component of EEG signal. Then specific CSP fil-
ters are calculated for each binary sub-problem and for
each frequency component ZK . Thus, the PCSP filters
at the k − th frequency component is in the form of

W sp
k = [wsp1,k, w

sp
2,k, · · · , w

sp
c,k], (10)

where c denotes the number of data channel, k is the k−th
frequency component, sp is the vector of the binary sub-
problems, sp = [N − HLHR, HL − HR, HL − N,N −
HR]. The eigenvectors of W sp

k are sorted by decreasing
corresponding eigenvalues.

At this point, we can get the optimal PCSP vector Y spk
by applying projection transforms W sp

k to the frequency
component ZK and Y spk should contains information re-
lated to the k − th frequency component useful at solving
the spatial sub-problem sp .

2.2.4 Feature selection based on the Bhattacharyya distance

The Bhattacharyya distance has been used as a class
separability measure for feature selection and is known to
provide the upper and lower bounds of the Bayes error [19]
. It is considered to be more reliable than the Mahalanobis
distance, as the Mahalanobis distance is a particular case
of the Bhattacharyya distance when the standard devia-
tions of the two classes are the same. Therefore, when
two classes have similar means but different standard devi-
ations, the Mahalanobis distance would tend to zero, how-
ever, the Bhattacharyya distance would grow depending on
the difference between the standard deviations.

For two normally distributed classes, the Bhat-
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tacharyya distance is defined as follows:

DB =
1

8
(µ2 − µ1)T [

∑
1 +
∑

2

2
]−1(µ2 − µ1)

+
1

2
ln(

[
∑

1 +
∑

2

2√
|∑1 ||

∑
2 |

]),

(11)

where DB is the Bhattacharyya distance between classes,
µi and

∑
i are the mean vector and covariance matrix of

class i , respectively. This equation gives the class sep-
arability due to the difference between class covariance
matrices and thus guaranteeing the comparison of the two
distributions shape rather than just their means. Further-
more, the optimal Bayes classification error between the
two classes is bounded by the following expression:

ε ≤ √p1p2 exp(−DB), (12)

where pi is a priori probability of class i . We will refer to
the upper bound of the error probability evaluated from the
inequality (12) with p1 = p2 = 0.5, as the Bhattacharyya
error, εB . That is,

εB = 0.5 · exp(−DB). (13)

By setting the two prior probabilities equal, the two terms
εB and DB are equivalent in that both indicate the in-
trinsic separability of the two distributions, regardless of
their prior probabilities. In summary, advantages of us-
ing the Bhattacharyya distance are that it is computation-
ally very simple and that, since it is derived from an error
bound rather than just from an exact solution, it provides
a “smoothed” distance between the two classes in study,
which is more appropriate since real-life data usually do
not fit truly normal distributions.

In this paper, we applying the feature extraction algo-
rithm in each Y spk and calculating a binary class separabil-
ity measure based on the Mahalanobis distance to identify
which Y spk contain the most useful information regarding
each sub-problem sp .Then the optimal spatial frequency
features were selected according to the highest separabil-
ity measure. The spatial frequency confidence maps were
utilized to indicate the distribution of information content.
Let us take the example of the spatial frequency confidence
map for the HL − N binary sub-problem. The values of
information content were coded as the gray levels (white
for the highest and black for the lowest) in the spatial
frequency confidence map (checkerboard). As shown in
Fig.3, the color cluster of confidence map will fade to black
when the gray level is close to zero which indicates the
spatial frequency transformation does not lead to any use-
ful information in discriminating the two classes. While
the higher of gray level, the more discriminatory capabil-
ity of the projection. Two red circles were used to mark the

highest separability measure namely the most relevant spa-
tial frequency filters. We can see that the frequencies focus
on mu rhythm (8-14Hz) and beta rhythm (15-30Hz). This
phenomenon is coincident with both the event-related syn-
chronization and de-synchronization phenomena in motor
imagery.

In our feature selection scheme, we find the relevant
frequency component in the mu and beta rhythms for each
binary sub-problem. Also we are interested only in those
spatial filters associated with the highest and lowest eigen-
values for each binary sub-problem.

Based on the aforementioned study, we can separate
the whole search-space into 4 sub-spaces as shown in Fig.
4. The spatial frequency filters were sort according to the
eigenvalues. For each of the identified sub-spaces only one
cluster with the highest binary separability measure is se-
lected. The green-highlighted clusters correspond to the
most relevant spatial frequency filters.

In this way, we can find the optimal spatial frequency
filters by applying the above selection scheme to each
search-space sp .

Fig. 3. The spatial frequency confidence map for the binary
sub-problem.

3 EXPERIMENTAL SETUP AND DATA ACQUISI-
TION

Subjects participated in the experimental study were
four male students of Shandong University of Science and
Technology and they were aged between 21 and 30, right-
handed. All subjects had normal or corrected-to-normal
vision. They all gave informed consent as approved by the
Ethics Committee.
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Fig. 4. The spatial frequency confidence map of search-
space.

Subjects were asked to sit in an armchair with two
hands relaxing, and looked at a 17" computer monitor ap-
proximately 1 m in front of the subject at their eye level.
62 channels of EEG signals were recorded in a shielded
room by a 64 channel high-resolution EEG/ERP Systems
(SynAmps2, Neuroscan) in our Lab using the following
channels located at the positions of the 10-20 international
electrode-positioning standard: FP1,FPZ, FP2, AF3, AF4,
F7, F5, F3, F1, FZ, F2, F4, F6, F8, FT7,FC5, FC3, FC1,
FCZ, FC2, FC4, FC6, FT8, T7, C5, C3,C1,CZ,C2, C4, C6,
T8, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6,TP8, P7,
P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ,PO4,
PO6, PO8, CB1, O1, OZ, O2 and CB2. Skin-electrode
junction impedances were maintained below 5 k Ω. Sig-
nals were digitized at a sampling frequency of 500 Hz and
band-pass filtered between 5 Hz and 33 Hz. The data col-
lection procedure has three stages: (1) Subject preparation,
(2) Training data collection and (3) Test data collection.
The paradigm required the subject to control a cursor mov-
ing on the monitor by imagining the movements of his right
hand, left hand or null for 2 seconds with a 4 second break
between trials. For each subject, the data were collected
over two sessions with a 15 minute break. The first ses-
sion was conducted without feedback, and 60 trials (20 tri-
als for each class) obtained in this session were used for
training and analysis. 150 trials (50trials for each class) in
the next session were taken as testing data to give online
feedbacks. Fig.5 shows the on-line feedback paradigm of
the three-class motor imagery tasks. Three green arrows
represent tasks corresponding to left hand, right hand, and
non imagination, respectively. The progress bars provide

real-time visual feedback.

Fig. 5. The on-line feedback paradigm of motor imagery
tasks

4 RESULTS AND DATA ANALYSIS

In this section, the proposed PCSP-based scheme is ap-
plied to the datasets, and the experimental results are pre-
sented respectively. For performance evaluation, the error
classification rate is used to measure the classification ac-
curacy.

The raw EEG data were preprocessed by overlapping
sliding window technology. Each EEG data segment with
class labels was divided into many smaller data segments
which have the same class labels. The sliding window
keeps the same length during sliding. In this way, the EEG
data segments with the length of 1 second, 2 seconds, 3
seconds and 4 seconds were obtained to verify the perfor-
mance of the proposed algorithm in different length data
segments.

Fig. 6 and Table 1 compare the 10-folds cross valida-
tion accuracies (mean error rate and standard deviation of
the error) of four subjects obtained by CSP, CSSP and the
proposed PCSP algorithms in binary classification (Left
hand and Right hand imagination). The results show that
the proposed PCSP algorithm yielded lowest test error rate
of 2.2± 1.8% in subject 1, whereas CSP and CSSP yielded
3.1 ± 2.8%, 3.5 ± 3.3% respectively. This shows that
the proposed scheme introduced in this paper is effective
in improving the EEG-signal-classification accuracy. Fur-
thermore, the figure also demonstrates that the classifica-
tion results are subject dependant in motor imagery. For
some subjects such as “sub.1,” the classification error rate
is generally lower, while for some other subjects such as
“sub.4,” the classification error rate is generally higher.

As a further analysis we applied the CSP, CSSP and the
proposed PCSP method respectively on 1 second, 2 sec-
onds, 3 seconds and 4 seconds length data segments.

In Figs. 7 - 14 are presented results of binary classi-
fication and triple classification for the four subjects sep-
arately. The figures illustrate that sub.1 gains the lowest
error rate under 4 seconds imagination and PCSP method
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Table 1. CLASSIFICATION ACCURACIES OF 10-FOLDS CROSS-VALIDATION PERFORMED USING CSP, CSSP AND PCSP

CSP CSSP PCSP

Subjects Error rate (%) Std (%) Error rate (%) Std (%) Error rate (%) Std (%)

sub.1 3.1 2.8 3.5 3.3 2.2 1.8

sub.2 8.5 5.4 14.6 6.2 4.6 2.2

sub.3 5.3 3.8 6.0 3.9 4.3 2.1

sub.4 29.1 8.2 32.6 7.6 16.4 3.5

has outperformed all the other methods on average. More-
over, we can observe that 4 subjects all obtain better per-
formance under 4 seconds imagination than others which
may give a hint of the performance continues to increase
due to the subject learning and adaptation after some re-
peated experiments. We also compare the accuracy of bi-
nary classification and triple classification on same subject
and the results show that the former has better performance
in general.

5 CONCLUSION

In this paper, we have developed a novel Partitioned
Common Spatial Pattern algorithm for single trial EEG
classification. Unlike the conventional CSP method, The
proposed algorithm finds the optimal spatial filters for each
of the frequency components partitioned by a bank of fifth-
order Butterworth filters, extracts features and selects rel-
evant features by means of a class separability measure
based on the Bhattacharyya distance. The spatial fre-
quency confidence maps also were utilized to find the most
relevant spatial frequency filters. The advantages of the
proposed method were proved by its application to the

Fig. 6. Error rate and standard deviation of 10-folds cross
validation

Fig. 7. Error rate and standard deviation of 10-folds cross
validation for Sub.1’s binary classification

Fig. 8. Error rate and standard deviation of 10-folds cross
validation for Sub.1’s triple classification
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Fig. 9. Error rate and standard deviation of 10-folds cross
validation for Sub.2’s binary classification

Fig. 10. Error rate and standard deviation of 10-folds cross
validation for Sub.2’s triple classification

Fig. 11. Error rate and standard deviation of 10-folds cross
validation for Sub.3’s binary classification

Fig. 12. Error rate and standard deviation of 10-folds cross
validation for Sub.3’s triple classification

Fig. 13. Error rate and standard deviation of 10-folds cross
validation for Sub.4’s binary classification

Fig. 14. Error rate and standard deviation of 10-folds cross
validation for Sub.4’s triple classification
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classification of motor imagery. The experimental results
on 4 subjects demonstrated that the PCSP algorithm in-
troduced here outperforms the current state-of-the-art CSP
and CSSP algorithm in terms of classification accuracy as
well as robustness and will be a promising data exploratory
tool for developing BCI system.

In future work we will focus on how to improve the
efficiency of the proposed PCSP method in low-resolution
EEG input and small-dataset conditions.
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