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Selection of higher values for Degree of Hybridization (DOH) increases the fuel economy and reduces the emis-
sions in the Hybrid Electric Vehicles (HEVs). Previously presented methodologies for deciding about the number of
battery modules (as an important factor influencing the vehicle performance), presents poor vehicle performance for
higher DOHs. In this paper, a new technique has been proposed for deciding about the number of battery modules
in Hybrid Electric Vehicles (HEVs), by which the high performance of the vehicle is guaranteed for higher DOHs.
The proposed methodology is based on satisfying two key designing factors: Maximum charge and discharge capa-
bility and satisfaction of the PNGV criteria. The proposed methodology, allows us to choose higher DOHs in HEVs,
which leads to lower emissions and higher levels of fuel economy. To evaluate efficiency of proposed methodology,
it has been applied on model of a test parallel passenger hybrid car available in the ADvanced VehIcle Simula-
tOR (ADVISOR) software. The obtained results have been compared with that of formerly presented techniques.
Simulation results confirm the effectiveness of proposed methodology.
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Učinkoviti pristup odabira broja baterijskih modula kod hibridnih električnih vozila. Povećanje stupnja hi-
bridizacije (DOH) ima za posljedicu smanjenje potrošnje goriva te emisije štetnih plinova kod hibridnih električnih
vozila (HEV). Postojeći pristupi za odabir broja baterijskih modula (kao važan faktor koji utječe na performanse
vozila) kod većeg stupnja DOH-a rezultiraju lošim performansama vozila. U ovom radu, predložen je novi pristup
odabira broja baterijskih modula HEV-a, koji garantira visoke performanse HEV-a i za visok stupanj DOH-a. Pred-
loženi pristup temeljen je na zadovoljavanju dva ključna zahtjeva: maksimalna sposobnost punjenja i pražnjenja
te PNGV kriterij. Predložen pristup omogućuje odabir visokog stupnja DOH-a u hibridnim električnim vozilima.
Pristup je validiran korištenjem modela hibridnog automobila dostupnog u ADvanced VehIcle SimulatoOR pro-
gramu. Dobiveni rezultati uspore�eni su s rezultatima trenutno korištenih pritupa odabira broja baterijskih modula
te je potvr�ena učinkovitost predloženog pristupa.

Ključne riječi: baterijski moduli, sposobnost punjenja i pražnjenja, hibridno električno vozilo, PNGV kriterij

1 INTRODUCTION
In recent years, several methods have been proposed

for deciding about the number of battery modules in hy-
brid electric vehicles. In [1-4] minimum number of bat-
tery modules that is needed for covering the desired driv-
ing cycle, has been chosen as the number of battery mod-
ules. That is why this simple methodology is usually called
as "minimum number of battery modules". Applying this
methodology, results in lightness of vehicle due to lower
number of battery modules that are used (advantage of this
methodology), but at the same time it leads to poor vehicle
performance (disadvantage of this methodology). In [5-9]
power matching strategy has been used for deciding about
the number of battery modules. In this technique, energy
storage system has to be capable of supplying any power

needed by electric motor. Maximum amount of power that
may be needed by the electric motor is its rated value. So,
rated power of the electric motor determines suitable num-
ber of battery modules. This methodology makes vehicle
heavier (than that of former mentioned methodology), but
leads to better vehicle performance. Also, we can find sev-
eral other techniques in [10-13].

In this paper a new methodology is introduced
that guarantees high performance of vehicle, maximizes
amount of energy absorbed by energy storage system dur-
ing regenerative braking conditions and makes it possible
to choose higher Degrees of Hybridization which leads to
lower emissions and higher levels of fuel economy. In
parallel hybrid electric vehicles, Degree of Hybridization
(DOH) is usually defined as equation (1) [2, 5, 7-9, 14-19].
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DOH =
PEM

PEM + PICE
=

PEM
PTotal

. (1)

Where, PEM is the rated power of electric motor,
PICErepresents the rated power of internal combustion en-
gine and PTotal is the total power of the HEV which is sum
of PEM and PICE.

2 PROPOSED METHODOLOGY

In this methodology, suitable number of battery mod-
ules is decided based on maximizing charge and discharge
capability of energy storage system and at the same time,
satisfying Partnership for New Generation of Vehicles
(PNGV) criteria [7, 20]. These two designing factors are
described in the following section.

2.1 Maximum charge and discharge capability

The energy storage system of hybrid electric vehicles
should always be able to produce the power needed by the
electric motor. Maximum amount of propulsion power that
can be requested during a driving cycle from the electric
motor is its rated power. So, maximum amount of power
production that the energy storage system should be capa-
ble is [19]:

Maximum discharge power =
PEM

ηConverter
. (2)

Where, PEM as mentioned before, is the rated power
of the electric motor and ηConverterrepresents overall ef-
ficiency of the converters used between the energy stor-
age system and electric motor, and the electric motor also.
On the other hand, energy storage system (battery pack)
must be able to absorb the total regenerative power of
wheels, during the regenerative braking conditions. Maxi-
mum charging power of energy storage system during the
regenerative braking conditions can be calculated from (3)
[19]:

Maximum charge power = PEM × ηConverter. (3)

Therefore, the number of battery modules must be de-
cided in a way that the energy storage system be capable
of providing as much as "maximum discharge power" and
storing as much as "maximum charge power".

2.2 Satisfaction of PNGV (Partnership for New Gen-
eration of Vehicles) criteria

In 1993, the United States Government and the Chief
Executive Officers of the three major domestic automak-
ers announced the Partnership for A New Generation of
Vehicles (PNGV). PNGV is a cooperative research effort

to develop automobiles with very low emissions, safe, at-
tractive performance, and affordable prices that get up to
three times the fuel efficiency of conventional vehicles sold
today. During recent years, Partnership for New Genera-
tion of Vehicles (PNGV) organization has introduced some
measures in order to guarantee the high performance of
newly designed hybrid electric vehicles [7, 20]. These
measures are as follows:

1. 0-60 mph acceleration time must be equal or lower
than 12 seconds.

2. 40-60 mph acceleration time must be equal or lower
than 5.3 seconds.

3. 0-85 mph acceleration time must be equal or lower
than 23.4 seconds.

4. Distance covered in 5 seconds must be at least 140 ft.

5. Maximum speed must be at least 90 mph.

6. Gradeability must be at least 6.5% at 55 mph and
272 kg additional weight for 1200 seconds with
∆SoC≤0.05.

The last item (6) which is about gradeability of the hy-
brid electric vehicles has not been considered in this study.
ADvanced VehIcle SimulatOR (ADVISOR) software has
been used as the simulation tool, by which the satisfaction
of each PNGV criteria is checked [21-22].

3 BATTERY TYPE AND CONTROL STRATEGY

3.1 Battery type

There are many battery types with different character-
istics available in the industry. Due to the frequent charge
and discharge process in HEVs, the batteries have short life
time. Therefore, the old battery must be replaced by new
one frequently, which increase the cost. In recent years,
a new technology called "Desulfation" has been presented
for restoring Lead-Acid battery types. The presented tech-
nique removes the sulfate deposits from Lead-Acid bat-
tery plates, and consequently extends the battery life time,
which leads to reduction of cost. Owing to the mentioned
advantage, the Lead-Acid battery type with maximum ca-
pacity of 25 ah has been considered as the energy storage
system for the modeled hybrid car. The battery has been
modeled as an equivalent circuit with an internal resistance
Rbatt, as shown in Fig. 1 [22].

The open circuit voltage VOC and Rbatt are both func-
tions of the battery’s State of Charge (SOC) and temper-
ature. The battery temperature is assumed to be constant
(22◦ C) and the temperature effect is ignored. Instanta-
neous charge and discharge powers of this battery type
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Table 1. Brief description of variables used in the control strategy
cs_hi_soc highest desired battery state of charge 0.8
cs_lo_soc lowest desired battery state of charge 0.3

cs_electric_launch_spd_hi vehicle speed below which vehicle operates as a zero emissions vehicle
(when SOC > cs_hi_soc)

26.8 m/s

cs_electric_launch_spd_lo vehicle speed below which vehicle operates as a zero emissions vehicle
(when sc_lo_soc < SOC < cs_hi_soc)

8 m/s

cs_off_trq_frac (cs_off_trq_frac)×(torque capability of engine at current speed) = Off
Torque Envelope Minimum torque threshold, when commanded at a lower
torque, the engine will shut off if SOC > cs_lo_soc

0.6

cs_min_trq_frac (cs_min_trq_frac) × (torque capability of engine at current speed) =
Minimum Torque Envelope Minimum torque threshold, when commanded
at a lower torque, the engine will operate at the threshold torque and the
motor act as a generator, if SOC < cs_lo_soc

0.8

Fig. 1. Battery model

have been shown in Fig. 2. The data of diagram of SOC
for the applied battery have been gathered from standard
experimental implementations which have been included
in the ADVISOR software. Mass and nominal voltage of
each battery module are 11 kg and 12 V, respectively.

3.2 Control strategy

In this study, electric assist control strategy has been
used for controlling the test vehicle. In this strategy, the
internal combustion engine provides the base load power
(which is almost constant) and the electric motor produces
the additional power needed by vehicle and maintains the
charge in the batteries. The main advantage of electric as-
sist control strategy is that it prevents the propulsion power
system from low efficiency operation. This strategy uses
electric motor for producing additional power needed by
vehicle and maintaining charge in the batteries. Variety of
conditions that electric motor is used by this control strat-
egy is as follows [21-22].

(1) The motor can be used for all driving torque below
a certain minimum vehicle speed. (2) The motor is used for
torque assist if the required torque is greater than the max-
imum producible by the engine at the engine’s operating
speed. (3) The motor charges the batteries by regenerative
braking. (4) When the engine would run inefficiently at
the required engine torque at a given speed, the engine will

Fig. 2. Instantaneous Discharge Power vs. SOC

Fig. 3. Instantaneous Charge Power vs. SOC

shut off and the motor will produce the required torque.
(5) When the Battery State of Charge (SOC) is low, the
engine will provide excess torque which will be used by
the motor to charge the battery. Brief description of con-
trol variables, have been shown in Table 1. Figures 4 and
5 illustrates the control strategy and Internal Combustion
Engine (ICE) operation modes. When SOC < cs_lo_soc
(Figure 5) additional torque is required from the engine to
charge the battery pack. This additional charging torque is
proportional to the difference between SOC and average of
cs_hi_soc and cs_lo_soc. This engine torque is prevented
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Fig. 4. Engine operation mode when SOC > cs_lo_soc

Fig. 5. Engine operation mode when SOC < cs_lo_soc

from being below a certain fraction of maximum engine
torque (cs_min_trq_frac) at the current operating speed
(Minimum Torque Envelope) [19-20].

4 VEHICLE DEFINITION

In this paper we have classified the cars according to
their total propulsion power, not the size or mass. Based
on this assumption, the cars are grouped into three small,
medium (mid-size) and large classes. The cars with the
total propulsion power lower than 100 kW are called small.
Medium cars are the ones that their total propulsion power
lies in the [100 KW-200 kW] interval. The cars with the
propulsion power higher than 200 KW, are called large. In
this study, a small size parallel passenger hybrid car has
been modeled and used, as the test vehicle, for conducting
simulations.

All the vehicle parameters have been taken from mod-
els provided in the ADVISOR software, which have been
gathered from real experimental implementations. Vehicle
and propulsion parameters have been shown in Tables 2
and 3, respectively [21-22].

As Table 3 shows, rated powers of used electric mo-
tor and internal combustion engine (ICE) are 31 kW and
63 kW, respectively. So, total power of the test vehicle is
considered to be 94 kW. It is assumed that this total power
is constant during the simulations. Table 4 also, elaborates

different components that have been used for modeling the
test vehicle in ADVISOR software.

Table 2. Vehicle parameters
Parameter Value
Coefficient of Drag 0.3
Vehicle Frontal Area [m2] 1.746
Vehicle Wheelbase [m] 2.55
Vehicle Glider Mass [kg] 918
Vehicle Cargo mass [kg] 136
Wheel Radius [m] 0.282
Air Density [kg/m3] 1.2
Coefficient of Rolling Resistance 0.009

Table 3. Propulsion parameters

Internal
Combustion
Engine (ICE)

Manufacture -
Type Saturn 1.9L SOHC

SI
Max.Power 63 kW
Peak Efficiency 0.34

Electric
Motor (EM)

Manufacture Toyota Prius
Type Permanent Magnet
Max.Power 31 kW
Mass 57 kg
Peak Efficiency 0.91

Table 4. Components used for modelling the vehicle in
ADVISOR

Component Name Model
Fuel Converter FC_SI63_emis
Electric Motor MC_PRIUS_JPN
Exhaust After-treatment EX_SI
Transmission TX_5SPD
Wheel/Axle WH_SMCAR
Power Train Control PTC_PAR_CD
Energy Storage System ESS_PB25

A combination of UDDS (Urban Dynamometer Driv-
ing Schedule) and HWFET (High Way Fuel Economy
Test) has been used as the driving cycle in the simulations,
which has been shown in Fig. 6.

5 SIMULATION SPECIFICATIONS

In order to evaluate efficiency of proposed methodol-
ogy, it is applied to a small size parallel passenger hybrid
car. Vehicle mass, performance, emissions and fuel econ-
omy are selected as target parameters to be monitored dur-
ing simulations. It is assumed that, vehicle performance is
represented by distance covered in 5 seconds, 0-60, 40-60,
0-85 mph acceleration times, gradeability and maximum
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Fig. 6. Combined driving cycle (UDDS+HWFET)

speed. Brief description of simulation methodology comes
in the following.

Step 1: Total power of the test vehicle is kept constant
and the DOH is altered within its valid range by increment
steps of 0.05.

Step 2: For each DOH, number of battery modules is
calculated applying each of newly and previously proposed
methodologies (minimum number of battery modules as
first method, power matching as second method and newly
proposed methodology as third method).

Step 3: For each DOH, corresponding value of target
parameters are extracted from ADVISOR software.

Step 4: Comparing the results obtained for each
methodology, most efficient methodology is introduced.

6 SIMULATION RESULTS

As mentioned before, total power of the test vehicle is
assumed to be 94 kW. Since for DOH < 0.3, the elec-
tric motor and for DOH > 0.65 the ICE, are not capa-
ble of providing needed power, valid range of DOH for
first methodology (minimum number of battery modules)
is [0.3-0.65]. For the same reason, the valid range of DOH
for second methodology is [0.45-0.65]. In third methodol-
ogy, the electric motor is not capable of providing needed
power for DOH < 0.35. Also for DOH > 0.55, it is not
possible to satisfy all the PNGV criteria simultaneously.
So, the valid range for DOH, while using the new proposed
methodology (third methodology) is [0.35-0.55].

Simulation methodology, described in previous section
has been applied on each of newly and previously pre-
sented methodologies. Obtained results have been shown
in Tables 5-7. Figure 7 and 8, respectively show the num-
ber of battery modules and vehicle mass calculated by each
of newly and previously proposed methodologies, for each
DOH.

Figure 7 shows that for lower DOHs, almost the same
number of battery modules is calculated by each of three
methods, but for higher DOHs, number of battery mod-
ules calculated by third method (proposed methodology) is

Fig. 7. Number of battery modules for each DOH

Fig. 8. Vehicle mass vs. DOH

much higher than other two methods, because higher num-
ber of battery modules is needed to satisfy PNGV crite-
ria. Higher number of battery modules, calculated by third
method (proposed methodology), makes the car heavy and
huge. Heaviness and hugeness of the vehicle are the main
disadvantages of the proposed methodology. Figure 9
shows the fuel economy of the test vehicle, obtained by
each of three methods. All the three methods have almost
the same effect on the fuel economy of the car. Also, it can
be seen that higher degrees of hybridizations (DOHs), re-
sults in higher levels of fuel economy. Figure 10 illustrates
the variation of emissions versus different DOHs. Varia-
tion pattern of emissions for all the three methods are the
same. Choosing higher DOHs, leads to lower levels of ve-
hicle emissions. In this study, Emissions of the vehicle has
been defined as (4).

Emissions =
[HC + CO + NOx]

3
. (4)
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Fig. 9. Fuel economy vs. DOH

Fig. 10. Emissions vs. DOH

Fig. 11. 0-60 mph Acceleration times vs. DOH

Figures 11 to 13 show the 0-60, 40-60 and 0-85 mph
acceleration times of the car, respectively. While using
first and second methods, the acceleration times begin to
increase dramatically as the DOH increases, but when the
third method (proposed methodology) is used, these accel-
eration times remain within the limits assigned by PNGV.
This satisfaction of PNGV criteria, guarantees high perfor-
mance of the vehicle. For DOHs higher than 0.55 it is not
possible to keep the 40-60 acceleration time within the lim-
its of PNGV. That is why we haven’t plotted this interval,
in figure 12.

Fig. 14. Maximum speed vs. DOH

Fig. 12. 40-60 mph Acceleration times vs. DOH

Fig. 13. 0-85 mph Acceleration times vs. DOH

Maximum speed of the test vehicle has been shown in
figure 14. While using first and second methods, as DOH
increases, maximum speed of the vehicle stays nearly un-
changed till DOH=0.5. If we still keep on increasing the
DOH beyond the 0.5, maximum speed of vehicle will start
to decrease dramatically, which leads to poor vehicle per-
formance. If the proposed methodology (third method) be
applied, maximum speed will remain over 126 mph, which
helps to have better vehicle performance.

Figure 15 illustrates how gradeability of the test vehi-
cle changes with alteration of the DOH. As the DOH in-
creases, Gradeability decreases. Reduction of gradeability
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Table 5. Results of first method
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0.35 33 61 27 1738 74.8 10.3 5 20.1 126.7 18.1 0.215 0.957 0.181 160.6
0.4 38 56 27 1734 77.1 10.7 5.3 21.2 126.7 17.1 0.199 0.877 0.173 159.4

0.45 42 52 27 1728 79.2 11.2 5.6 22.5 126.8 16.1 0.183 0.796 0.166 157.1
0.5 47 47 27 1724 81.3 11.6 5.9 23.6 126.9 15.2 0.172 0.752 0.162 155.4

0.55 52 42 27 1720 83.4 12.3 6.3 25.3 123.6 14.1 0.156 0.675 0.153 152.8
0.6 56 38 27 1715 85.1 12.9 6.7 26.8 120.8 13.3 0.143 0.612 0.145 150.7

0.65 61 33 27 1710 87.9 13.7 7.2 29.1 117 12.2 0.128 0.547 0.135 147.8

Table 6. Results of second method
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0.5 47 47 28 1735 81.2 11.5 5.8 23.4 126.9 15.4 0.172 0.751 0.162 156.5
0.55 52 42 31 1764 82.9 11.9 6 24.2 126.2 14.8 0.156 0.674 0.154 154
0.6 56 38 33 1759 84.5 12.1 6.2 24.9 124.9 14.3 0.143 0.61 0.145 154.2

0.65 61 33 36 1809 88.1 12.4 6.4 25.7 123.5 13.8 0.127 0.54 0.135 153.8

for first and second methodology is noticeable, but if the
proposed methodology is used, reduction of gradeability
seems to be gradual.

Figure 16 shows the distance that vehicle covers in 5
seconds of its journey. This parameter is one of the PNGV
criteria that is satisfied while applying proposed methodol-
ogy (third method). As seen from Fig. 16, if the proposed
methodology is applied, the car covers much more distance
in 5 seconds, in comparison with other two methodologies.
It is also observed that by applying the proposed method-
ology, the distance covered in 5 seconds of car is always
higher than 159 ft.

Fig. 15. Gradeability vs. DOH
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Table 7. Results of third (proposed) method
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0.35 33 61 27 1738 74.8 10.3 5 20.1 126.7 18.1 0.215 0.957 0.181 160.6
0.4 38 56 27 1734 77.1 10.7 5.3 21.2 126.7 17.1 0.199 0.877 0.173 159.4

0.45 42 52 33 1794 79.2 10.7 5.3 21.3 126.8 17 0.183 0.797 0.167 159.9
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0.55 52 42 44 1907 83.1 10.8 5.3 21.4 126.8 16.8 0.154 0.661 0.152 159.9

Fig. 16. Distance covered in 5 seconds vs. DOH

7 CONCLUSION
In this paper, an efficient methodology has been pro-

posed for deciding about the number of battery modules,
in the hybrid electric vehicles. The proposed methodol-
ogy, makes it possible to choose higher values for DOH
in hybrid cars to have higher levels of fuel economy and
lower emissions. It also guarantees high performance of
the car. On the other hand, heaviness and hugeness of the
car imposed by the proposed methodology are of its dis-
advantages. If it be possible to produce and manufacture
batteries with higher power density and lower volume (it
won’t take long time, considering the fast advancement in
battery manufacturing technology), the proposed method-
ology will be quite practical.
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