AMINOKISELINE U MOŠTU I VINU GRAŠEVINE, BIJELOG BURGUNDCA I TRAMINCA

Dušični spojevi dolaze u moštu i vinu u količinama koje se kreću od sto-tinu mg do nekoliko grama na litru (Dimotakis (1), Nilov i Skunlin (2), Hennig (3), Ribèreau — Gayon i Peynaud (4), a uključuju proteine, polipeptide, aminokiseline, amide i amonijevi soli. Ti su spojevi od višestruke važnosti u enoloziji. Oni omogućuju razvoj kvasaca potrebnih za fermentaciju kao i bakterija koje vrše biološku degradaciju jabučne kiseline, no istovremeno po-tiću i razvoj mikroorganizama koji uzrokuju različite nepoželjne promjene u vinu. Uz to dušični spojevi sudjeluju u procesima dozrijevanja i stabilizacije vina.

Među dušičnim spojevima od posebne su važnosti aminokiseline. Osim što služe za ishranu mikroorganizama, one utječu na metabolizam kvasaca koji stvaraju SO₂ u fermentaciji (metionin, cistein) Eschenbruch (5), doprinose dežalom razvoju arome i buke vina, te sudjeluju u procesima nencimatskog posmeđivanja vina tvoreći melanoidne spojeve interakcijom sa šećerima.

Polazeći od važnosti dušičnih spojeva u vinu, kao i činjenice da raspoloženo s relativno malo podataka o kretanju pojedinih aminokiselina u moštvima i vinima naših područja, proveli smo preliminarna ispitivanja aminokiselinskog sastava mošta i mladog vina triju kvalitetnih sorata iste provenijencije.

Svrha istraživanja bila je ustanoviti razlike u količini pojedinih aminokiselina među moštvima ispitivanih sorata, moguća korelacija zavisna o godini berbe, kao i količine aminokiselina prisutnih u mladim vinima proizvedenim u poluindustrijskim uvjetima u vrijeme uobičajenog oticanja vin u s drožda.

MATERIJAL I METODIKA

Količina amonikiselina ispitana je i u mladim vinima Graševine, Traminca i Bijelog burgundca berbe 1972. godine. Moštevi sve tri sorte cijepljeni su
nakon taloženja s dvije vrste kvasaca i to Saccharomyces vini soj 62 i Saccharomyces carlsbergensis soj 25. Na 1 litru mošta dodano je 3x10⁹ stanica kvasca prethodno razmnoženih u fermentoru na podlozi mošta. Nakon cijepljenja svi su moštovi rastočeni u demijone po 50 litara, zatvoreni vreljača i smješteni u podrum na vrenje.

Tok fermentacije praćen je svakodnevnim mjerenjem refraktometarske vrijednosti i temperature. Nakon završenog vrenja i prirodnog taloženja koje je uslijedio u periodu od 45 dana, izvršen je prvi pretok vina kojom su prilikom provedene kemijske analize mladog vina uključujući i određivanje aminokiselina.

Analize osnovnih sastojaka mošta i vina provedene su postupcima uobičajenim u analizi vina, ukupnog dušika metodom prema Kjeldahlu dok je analiza aminokiselina provedena metodom prema Spackmanu (6) na aminoanalizatoru Beckman tip Unichrom.

REZULTATI I DISKUSIJA

Moštevi

U tabeli 1 prikazan je osnovni sastav ispitanih moštava. S vinarskog stajališta berbe su zbog nedovoljnog dozrijevanja grožđa, bile loše, što je vidljivo

<table>
<thead>
<tr>
<th>Tabela 1 — Osnovni sastav mošteva</th>
<th>Table 1 — Analysis of musts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berba — godina</td>
<td>Graševina</td>
</tr>
<tr>
<td>Refraktometarska vrijednost</td>
<td>18,5</td>
</tr>
<tr>
<td>Refractometer reading</td>
<td>9,36</td>
</tr>
<tr>
<td>Ukupna kiselina kao vinska g/l</td>
<td>3V (T)</td>
</tr>
<tr>
<td>Total acids as tartaric</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Kromatografija kiselina</td>
<td>856</td>
</tr>
<tr>
<td>Chromatography</td>
<td>ukupni dušik mg/l</td>
</tr>
</tbody>
</table>

U tabeli 2 izneseni su podaci o količini aminokiselina prisutnih u moštevima. Rezultati pokazuju da postoje izražene razlike u količini ukupnih aminokiselina između mošteva triju ispitanih sorata. Unutar iste sorte, zavisno o godini berbe, iako nisu zabilježena kolebanja količine ukupnih aminokiselina, dobivene su prilično izražene razlike u količini nekih aminokiselina.

Tabela 2 — Aminokiselinski sastav mošteva

Table 2 — Free amino acids in musts mg/l

<table>
<thead>
<tr>
<th>Berba — godina Vintage — Year</th>
<th>Graševina Wälshriesling</th>
<th>Bijeli burgundac Pinot white</th>
<th>Traminac Traminer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prolin</td>
<td>128,1</td>
<td>52,9</td>
<td>166,0</td>
</tr>
<tr>
<td>2. Arginin</td>
<td>524,6</td>
<td>554,9</td>
<td>669,0</td>
</tr>
<tr>
<td>3. Glutaminska kiselina</td>
<td>126,3</td>
<td>174,0</td>
<td>124,8</td>
</tr>
<tr>
<td>4. Serin</td>
<td>99,8</td>
<td>154,0</td>
<td>94,7</td>
</tr>
<tr>
<td>5. Alanin</td>
<td>159,5</td>
<td>132,5</td>
<td>161,2</td>
</tr>
<tr>
<td>6. Treonin</td>
<td>79,8</td>
<td>79,1</td>
<td>79,2</td>
</tr>
<tr>
<td>7. Fenilalanin</td>
<td>45,3</td>
<td>42,5</td>
<td>50,2</td>
</tr>
<tr>
<td>8. Valin</td>
<td>36,7</td>
<td>38,8</td>
<td>38,4</td>
</tr>
<tr>
<td>9. Asparaginska kiselina</td>
<td>62,4</td>
<td>38,4</td>
<td>47,2</td>
</tr>
<tr>
<td>10. Leucin</td>
<td>42,8</td>
<td>43,2</td>
<td>41,6</td>
</tr>
<tr>
<td>11. Histidin</td>
<td>32,7</td>
<td>34,6</td>
<td>31,5</td>
</tr>
<tr>
<td>12. Isoleucin</td>
<td>33,4</td>
<td>33,4</td>
<td>34,0</td>
</tr>
<tr>
<td>13. Tirozin</td>
<td>16,3</td>
<td>14,0</td>
<td>16,0</td>
</tr>
<tr>
<td>14. Glicin</td>
<td>4,7</td>
<td>5,7</td>
<td>4,1</td>
</tr>
<tr>
<td>15. Metionin</td>
<td>6,6</td>
<td>4,8</td>
<td>6,6</td>
</tr>
<tr>
<td>16. Lizin</td>
<td>8,6</td>
<td>7,5</td>
<td>10,6</td>
</tr>
<tr>
<td>17. Cistin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>18. NH₃</td>
<td>34,6</td>
<td>34,6</td>
<td>53,6</td>
</tr>
</tbody>
</table>

(1) dobiveno od zaraženog grožda
produced of infected grapes

Najjače zastupljena aminokiselina u moštu Graševine bio je arginin s preko 500 mg/l, čija je količina jače varirala zavisno o zdravstvenom stanju grožda nego o godini dobivanja.
U količinama od 100 do 200 mg/l kretale su se aminokiseline glutaminska, serin i alanin, uz jače izraženo variranje zavisno o godini berbe nego o zdravstvenom stanju grožda.

Podaci dobiveni za prolin ukazuju na jako vairiranje te aminokiseline zavisno o godini berbe i zdravstvenom stanju grožda. U granicama od 25 do 80 mg/l bile su zastupljene aminokiseline treonin, leucin, fenilalanin, histidin, izoleucin i asparaginska kiselina. Osim posljednje koja je varirala zavisno i o godini u sva tri ispitana uzroka Graševina u približno istim količinama.

Ispod 25 mg/l kretale su se količine tirozina, lizina, glicina i metionina.

U velikim količinama (300 do 700 mg/l) bili su zastupljeni arginin, glutaminska, serin i alanin. Količina treonina kretala se oko 230 mg/l.

U granicama od 50 do 100 mg/l nađene su slijeđeće aminokiseline: fenilalanin, valin, asparaginska kiselina, leucin i izoleucin, uz vrlo slabo izraženo variranje obzirom na godinu berbe. Količine tirozina, glicina, metionina i lizina kretale su se u granicama od 9 do 35 mg/l.

U moštu Traminca najjače zastupljena aminokiselina bio je arginin. Za tim slijede prolin, serin, glutaminska kiselina, alanin i treonin s vrijednostima od 165 do 394 mg/l.

Ispod 100 mg/l u granicama od 50 do 85 mg/l kretali su se histidin, leucin, fenilalanin, valin, izoleucin i asparaginska kiselina.

Lizin, tirozin, metionin i glicin nađeni su u količinama manjim od 25 mg/l.

Sumirajući dobivene rezultate može se reći da postoje znatne razlike u količini ukupnih kao i pojedinih aminokiselina između tri ispitane sorte. Može se medutim zapaziti da postoje i određene pravilnosti u zastupljenosti pojedinih aminokiselina.

Kad bi se ispitivane sorte svrstale po količini ukupnih aminokiselina redoslijed bi bio Bijeli burgundac, Traminac, Graševina, posljednja s gotovo dvostruko manjom količinom nego prve dvije. Pokuša li se grupirati pojedine aminokiseline prema zastupljenosti u moštевima moglo bi ih se svrstati u tri grupe. Najzastupljenije aminokiseline u sva tri mošta bile su arginin, prolin, glutaminska kiselina, alanin, serin i treonin.

U znatno manjim količinama nađeni su fenilalanin, valin, asparaginska kiselina, leucin, histidin i izoleucin.

U vrlo malim količinama bili su prisutni tirozin, metionin, lizin i glicin.

Na osnovi rezultata ispitivanja količine aminokisela u groždu, Kliewer (7) razlikuje sorte s dominantnim prolinom, dominantnim argininom i intermedijarne. U sorte s dominantnim argininom ubraja uz ostale mrišni Traminac, što se podudara i s našim rezultatima, dok se u slučaju Burgundca bijelog kojeg Kliewer svrstava u sorte s približno jednakim količinama proline i arginina, naši podaci razlikuju. Prateći kretanje proli-

Amanokiseline serin, glutaminska kiselina, treonin i alanin zastupljene su u grožđu odnosno moštu prema rezultatima Kliewera (7). Annelia (8) i nekih drugih autora u količinama i do nekoliko stotina mg/l, dok su ostale prisutne u znatno manjim količinama, što je u skladu s iznesenim rezultatima naših ispitivanja.

Na aminokiselinski sastav grožđa i mošta utječe veliki broj faktora kao što su sorta, stupanj zrelosti, primjenjena agrotehnika, ekološki uvjeti kao i način dobivanja mošta, što otežava uspoređivanje rezultata dobivenih od pojedinih autora.

Table 3 — Analysis of wines

<table>
<thead>
<tr>
<th></th>
<th>Graševina</th>
<th>Bijeli burgunddac</th>
<th>Traminac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wälschriesling</td>
<td>Pinot white</td>
<td>Traminer</td>
</tr>
<tr>
<td>Alkohol vol. %</td>
<td>11,21</td>
<td>11,34</td>
<td>12,17</td>
</tr>
<tr>
<td>Alcohol vol. %</td>
<td>12,17</td>
<td>11,95</td>
<td>13,35</td>
</tr>
<tr>
<td>Ukupna kiselina</td>
<td>11,95</td>
<td>11,67</td>
<td>9,15</td>
</tr>
<tr>
<td>Kao viinska g/l</td>
<td>9,15</td>
<td>9,81</td>
<td></td>
</tr>
<tr>
<td>Total acid as tartaric</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Hapitva kiselina</td>
<td>0,39</td>
<td>0,43</td>
<td>0,46</td>
</tr>
<tr>
<td>Kao octena g/l</td>
<td>0,44</td>
<td>0,46</td>
<td>0,39</td>
</tr>
<tr>
<td>Volatil acid as acetic</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Kromatografska kiselina</td>
<td>***</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Chromatography of acids J (M)</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>248</td>
<td>286</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>491</td>
<td>477</td>
<td>491</td>
</tr>
</tbody>
</table>

(1) Vrsta kvasca: Saccharomyces carlsbergensis W — 25
(2) Yeast culture: Saccharomysec vini 63, 91
U Tramincu i Graševini u kojima je najzastupljenija aminokiselina u moštu bio arginin zapažaju se slične tendencije u kretanju arginina i prolina u vini nakon fermentacije. U oba je vina i uz obje vrste kvasaca zabilježen porast količine prolina, dok je arginin porastao uz Saccharomyces carlsbergensis, a lageno se smanjio uz Saccharomyces vini.

U Burgundcu bijelom obje su se aminokiseline i prolin i arginin smanjile prijelazom mošta u vino. Smanjenje je bilo jače izraženo uz Saccharomyces carlsbergensis nego uz Saccharomyces vini. Serin se u svim ispitivanim vinima smanjio u odnosu na prvobitne količine u moštu. Nije bilo niska pravilnosti u promjenama alanina ni zavisno o sorti niti zavisno o kvascu. Aminokiseline treonin, leucin, fenilalanin, valin, histidin i izoleucin smanjile su se u vini Graševina za 70 — 90%, Aromatic 43 — 87% i Burgundca bijelog za 30 — 90%. Tiruzin i metionin smanjili su se u vini Graševine za 13 — 45%, Aromatic 8 — 55%, a Burgundca bijelog od 17 — 55%. U vini Graševine i Burgundca smanjila se količina asparaginske kiseline od 8,5 do 45% dok je u Tramincu zabilježen lagani porast. U sva tri vina uočen je porast količine lizin i glicina.

U literaturi se navodi da su u vini dominantni prolin i alanin — Bidan (9), Dimotakis (1), Daničić (10), prolin — Rodopulo (11), Anelli (8), odnosno prolin i arginin — Anelli (8). Prema rezultatima navedenih autora te Kikovskog (12) u nešto većim količinama zastupljeni su histidin, arginin, asparaginska kiselina, lizin, dok u vrlo malim količinama dolaze valin, cistin triozin, treonin, metionin, fenilalanin i triptofan.

Prema navodima iz literature u toku fermentacije znatno se smanjuju količine alanina, asparaginske kiseline, glutaminske kiseline, glicina, valina, leucina, izoleucine i argmina Lafon-Lafourcade (13), Peynaud (14). Isti autori te Bidan i André (9) i Daničić (10) navode da se količine aminokiselina argmina, histidina, lizin i asparaginske kiseline mogu i povećati u odnosu na početno stanje u moštu. Većina autora smatra da kvasci ne metaboliziraju prolin — Ough i Stashak (15), Bidan (9), drugi drže da ga djelomično mogu metabolizirati, a neki: Lafon Lafourcade (13) su mišljenja da se koncentracija prolina može povećati uslijed sinteze od strane kvasaca kojim je provedena fermentacija dobiveno je smanjenje količine prolina od 7 do 98% u odnosu na količine u moštu.

Usporede li se naši rezultati s rezultatima navedenih autora vide se, da su u našim ispitivanjima smanjenja količine aminokiselina prelazom mošta u vino bilo manja. Razlozi tome mogli bi biti različiti uvjeti rada od načina postavljanja pokusa, pripreme i vremena uzimanja uzroka do metoda provođenja analize.

Budući da aminokiselinski sastav vina i kvalitetni i kvantitativni zavisi od velikom broju činilaca, neophodna su daljnja sistematska ispitivanja kako bi se problematika što cijeloviti obuhvatila.
IZVOD

Provedena su ispitivanja aminokiselinskih sastava moštava i vina triju kvalitetnih sorata grožđa Graševine, Traminca i Bijelog burgunda provenijence sjeverozapadne Hrvatske.

Rezultati ukazuju na znatne razlike kako u količini ukupnih tako i pojedinih aminokiselina u moštavima ispitivanih sorata. Dominantna aminokiselina u Graševini i Tramincu bio je aginin, a u Bijelom burgundu prolīn. Uz njih su bile jače zastupljene aminokiseline: glutaminska kiselina, alanin, serin i tretonin. U znatnom manjim količinama nađeni su fenilalanin, valin, asparaginska kiselina, leucin, histidin i izoleucin. U vrlo malim količinama bili su prisutni tirozin, metionin, lizin i glicin.

Analize aminokiselina u vinima provedene su u vrijeme 1-og pretoka vina. Najzastupljenije aminokiseline u vinu Bijelog burgunda bile su prolīn uz arginin, alanin i glutaminsku kiselinu; u Tramincu arginin uz prolīn, alemuin i glutaminsku kiselinu i prolīn.

U većim količinama nalazili su se serin, tretonin, lizin i asparaginska kiselina, dok su aminokiseline fenilalanin, valin, leucin, histidin, izoleucin, tirozin, glicin i metionin bile prisutne u vrlo malim količinama.

Prijelazom moštava vino smanjila se ukupna količina aminokiselina. Smanjenje je bilo različito u pojedinih vinima i kretalo se od 10% u Tramincu, do 40 odnosno 50% u Graševini i Bijelom burgundu.

LITERATURA

13. Lafon — Lafourcade S., Peynaud E. — Compostition azoté des vins en fonction des conditions de vinification Am. techn. agric. 10 (1963)

Summary

The amino acids content of musts and wines of three grape varieties e.g. Wälschriesling, Piont white and Traminer has been investigated.

Great differences were found between the varieties in the content of total as well as individual amino acids in musts. Arginine was the predominant amino acid in musts of Wälschriesling and Traminer, and proline in the must of Pinot white.

In larger quantities were found amino acids: glutamic acid, alanine, serine and threonine.

In smaller amounts were present phenylalanine, valine, aspartic acid, leucine, histidine and isoleucine, while tyrosine, methionine, lysine and glycine were found in very small quantities.

Wines were analyzed after the first racking of wines. Arginine, proline, alanine and glutamic acid were acid were found in large amounts.

In smaller quantities were found: serine, threonine, lysine and aspartic acid, and in a very small amounts were present phenylalanine, valine, leucine, histidine, isoleucine, tyrosine, glycine and methionine.

During conversion of must to wine by alcoholic fermentation, the quantity of total amino acids decreased. The decrease ranged from 10 per cent in Traminer to 40 respectively 50 per cent in Wälschriesling and Pinot white.