A. BUTORAC,
I. TURSIĆ

UZATAMNI ODNOSE ZBIJENOSTI TLA I GNOJIDBE U UZGOJU OZIME PSENICE I ŠOJE

UVOD I PREGLED LITERATURE

Smanjena poroznost može prema Chapmanu i Cartere (ibid.) dovesti do smanjenja primosa usjeva na četiri načina: 1. redukcijom ukupnog rasta, 2. redukcijom mineralne ishrane, 3. redukcijom opskrbe vodom i 4. formiranjem toksičnih tvari u biljci i tlu.

Na poroznost tla utječe struktura i tekstura. Naime, ako je struktura oštećena ili uništena smanjuje se poroznost. Tlo nepovoljne strukture utječe lošije na infiltraciju, čak je onemogućuje, dok pri povoljniji agregaciji tlo nesmetano prima vodu. Pa, iako se praktično ne može ništa poduzeti u podlju u vezi promjenjima teksture tla, struktura tla se barem može zaštiti, a uz uživljajem slučajevima poboljšati nizom zahvata.

Sa stajališta zbijenosti tla veliko značenje prema Revutu (1972) imaju istraživanja mehanizma i uzroka negativnog djelovanja velike zbijenosti tla na primor poljoprivrednih kultura. Jasno je da zbijanje tla predstavlja samo po sebi značajnu mehaničku prepreku za širenje korijenovog sistema biljaka. Postoje opravdane sumnje o mogućnosti prodrivanja u tlo korjenčića i korijenovih džačica ako se promjer pora smaži u prosjeku na 2 do 3 desetice mikrona.

Također se može pretpostaviti (Revut, ibid.) da se zbijenosti tla znatno smanjuje pristupačnost vode za biljke, time što se gotovo sva voda

Prof. dr. Anđelko Butorac,
Mr. Ivan Tursić
Poljoprivredni fakultet Zagreb
nalazi u zoni djelovanja površinskih sila čestica tla, što dovodi do prelaženja načina vode u oblik nepristupačnih biljkama. U tome, naime, slučaj su slike koje povezuju molekule vode s česticama tla nadilaze usisavajuće sile korijena.

Zbivenost tla značajna je činilac ne samo u pogledu akumulacije vlage već i u pogledu regulacije njegovog gubitka iz tla.

Prema Veihmeyer i Hendricksonu (1948, cit. prema Revučtu, ibid.), u glinastim timima pri zbivenosti 1,6 do 1,7 g/cm³ uopće se nije moglo zapaziti korištenje usjeva, a u izvjesnim slučajevima nije moglo prodrijeti u glinu pri zbivenosti 1,46 g/cm³. Isti autor smatraju da pri zbivanju tla obilnim vlaženjem ono postaje pristupačnije korijenovom sistemu nego pri zbivanju tla mehaničkim djelovanjem. Objašnjenje ovome autoru vide u poretnjini izmjene plinova već u neznatnoj veličini pora.

U ovisnosti o mehaničkom sastavu tla zbivenost se manifestira različito, što potvrđuje rezultat nekih inozemnih istraživanja. Tako je na pjeskovitim tlu kukuřuz slabo reagirao na zbivenost tla, pa je prinos zelene masi pri zbivenosti 1,45 g/cm³ bio čak viši u posudama s rahlim tlom. Tek je u tlu pri zbivenosti 1,6 g/cm³, koja se u prirodnim uvjetima rijetko susreće, prinos kudikama niži nego u rahlim tlu.

Prema Currieu (1972, cit. prema Danielsonu, 1972) povećanje volumne težine tla je korisno, čini se, što se tiče sorpcije hraniva pod uvjetom da aeracija i fizički otvor korijena nisu limirani. Opće je poznato da fizička ili mehanička priroda tla utječe na rast biljaka njezinim utjecajem na vodu, aeraciju, temperaturu i otvor koji se javlja rastu korijena i povećanjem njegove mase (Danielson, 1972).

Cooper (1971) navodi da promjene u fizičkom stanju uključuju promjene u specifičnoj volumnoj težini, koja mijenja odnos čvrste, tekuće i plinovite faze. U prekomjerno zbivenom tlu ne može se vršiti brza izmjena plinova, pa je i sadržaj kisika u njemu suviše nizak, što umanjuje razvoj korijena. Kako iznosi Mckibben (1971) stupanj zbivenosti tla u velikoj mjeri upravlja odnosom zraka, vode i temperature, te snažno utječe na klijanje i nicanje usjeva, kao i na sve faze razvoja usjeva i proizvodnju.

750
Ako proces zbijanja u osnovi predstavlja promjene u volumenu za odredenu masu tla, što drugim riječima, znači promjenu u specifičnoj volumnoj težini odnosno porozitetu, onda se promjena u volumenu mora ogledati u kompresiji krutih čestic, kompresiji tekuće i plinovite faze u porama, kao i u premještanju čestica tla (Harris, 1971).

Raney et al. citirajući rezultate Scarsbrooka et al. (1952) te Veihmeyera i Hendricksona (1948) podvlače da može doći do restrikcije u razvoju korijena u teškim tlima ako specifična volumna težina poraste iznad 1,4, dok, suprotno tome, u lakšim tlima korijen neće biti ograničen u razvoju pri volumnoj težini manjoj od 1,6. Smatraju, analogno nekim već citiranim autorima, da su kompaktni slojevi ili horizonti nepovoljni za razvoj korijena zbog nedostatka vlage ili kisika, dok mehaničke smetnje onemogućuju penetraciju korijena.

Nećemo pogriješiti ako kažemo da je za potpuno razumijevanje reakcije biljaka u zbijenom tlu potrebno u prvom redu razumjeti njihove fiziološke potrebe i reakciju prema drugim ambijentalnim faktorima. Onim časom čim zbijanje tla počne alterirati njegovu sposobnost da osigura tekuće potrebe korijena i sposobnosti korijena da usvoji ove tekuće potrebe iz tla, ono može znatno ograničiti razvoj biljaka.

Russell i Goss (1976) smatraju da je dovoljna prisutnost pora promjera 60 do 100 mikrona važna zbog procjednosti, aeracije i razvoja korijena, pa, citirajući Schumanova opažanja, navode da rast volumne težine od 1,2 na 1,5 smanjuje ukupni volumen pora većih od 100 mikrona sa 17,4 na 1,6%.

Da bi se riješili brojni problemi u domeni zbijanja tla i utvrđivio utjecaj zbijanja, prije svega na prinos poljoprivrednih kultura, provode se model pokusi. Pomoću njih se, među ostalim, žele utvrditi optimalni parametri tijekom kojih svrstavaju tla. O takvim istraživanjima bilo je više riječi u nekim našim ranijim radovima (Butorac, Tomić, Turšić, 1975; Turšić, 1977). Ovdje samo podsećamo da u tom pravcu šteta istraživanja Rosenberga i Willitsa (1962), Taylor i Burnett (1968), van Oosterkera (1968), Kunzea et al. (1968), Smierzchalskog (1972), Sienkiwicza i Gonetove (1972), Kovačeva et al. (1972), Szirteove (1972), Siposa i Szirtesove (1972) i dr.

Već spomenuta naša istraživanja, iako su bila više orijentacijskog karaktera, pružila su određeni uvid u ovu problematiku i dala potrebne elemente u kojem bi ih pravcu trebalo dalje usmjeriti.

Rezultati sadašnjih istraživanja, i pored toga što je u njima naglasak stavljen na zbijenost tla odnosno specifičnu volumnu težinu, pokazuju također kako se pri različitoj zbijenosti vlada gnojdbna. Na osnovi citiranih radova iz literature može se bez sumnje zaključiti da je stupanj zbijenosti tla značajan faktor koji definira plodnost tla, pa i nezavisno o tome problemu on je vrlo zanimljiv sa stajališta uzgoja biljaka i osigurana optimalnih edafskih uvjeta za njihov razvoj.
METODIKA ISTRAŽIVANJA

Polazeći od postavljenog cilja u ovim istraživanjima, u stakleniku Zavoda za opću proizvodnju bilja poljoprivrednog fakulteta u Zagrebu izvedena su četiri model pokusa na četiri različita tipa tla i to na:

1. orjenici (lokalitet Porč),
2. pseudogleju (lokalitet Križevci),
3. smeđem tlu na carbonatnom lesu (lokalitet Brezovac, PIK »Beljce«),
4. aluvijalnom tlu (lokalitet Maksmir, Zagreb)

Pokusi su provedeni prema splitplot metodu u četiri ponavljanja. Osnovni su u jesen 1974. godine. Trajali su dvije godine. U svakom pokusu je bilo zastupljeno devet varijanata (2-faktorijelni 3x3). Zbijenost tla odnosno volumena specifična težina tla je ispitivana u tri razine — 1,2 (Stv.), 1,4 (Stv.) i 1,6 (Stv.) kg/m², a isto tako i mineralna gnojivba u tri gradacije, s time da je količina dušika po vegetacijskoj posudi iznosila za pšenicu 1,0, 1,5 i 2,0 g, a za soju 0,5, 0,75 i 1,0 g, ovisno o varijanti. Količina fosfora za obje kulture, također po vegetacijskoj posudi, iznosila je 1,5, 2,0 i 2,5 g, a kalija 1,0, 1,5 i 2,0 g. Gnojidbene varijante bile su slijedeće: N₂P₂K₂, N₂P₂K₂, N₂P₂K₂. U pokusima su, prema tome, istraživana dva faktora: specifična volumena težina tla (zbijenost tla) i mineralna gnojivba odnosno njihove kombinacije.

Prve godine je kao test kultura bila zastupana ožima pšenica, sorta li-bellula, a druge soja, sorta aliona.

Stupnjevanje zbijenosti tla odnosno različita volumena specifična težina postignuta je zbijanjem zrakosuhog tla s izuzetkom najmanje volumene specifične težine, gdje to nije bilo potrebno. Gnojiva su unešena u tlo na uzu- elan način — u obliku standardnih mineralnih gnojiva: vapnenoamonijskog nitrata, običnog superfosfata i kalijeve soli. Preciznije rečeno: superfosfat i kalijeva sol su iznijetišani s cijelokupnom masom tla, dok je dušik u pšeni- ce korišten u tri jednake doze, tj. unešen je u »sjetveni sloj« tla odnosno korišten za dva prihranjivanja (30. siječnja u fazi busanja i 1. travnja u fazi vtanja). Ko što je već podvučeno količina dušika u soje bila je upola manja nego u pšenici. Primijenjena je u 1/2 u »sjetveni sloj«, a u 1/2 prihranjivanju (22. lipnja).

Osnovni podaci o tlu i meteorološkim uvjetima

a) Tlo

Osvremeni li se samo ukratko na važnija fizička i kemijeka svojstva, logično je za očekivati da se tla korištena u pokusima međusobno razlikuju. Detaljnije su ona obrađena u jednom drugom radu (BUTORAC, TOMIĆ, TURAPIĆ, 1975). Sadržaj gline u orjenici iznosi u oružnom sloju 65,6%, a gline i praha zajedno 79,1%; u pseudogleju se kreće na razini 23% za gli-
nu, a oko 52% za prah i glinu zajedno; u smeđem tlu glina iznosi 26,3%, a prah i glina zajedno 61,4%, te u aluvijalnom tlu glina 23,8%, a prah i glina zajedno 61,8%. Također za površinski sloj tla, volumen pora iznosi u crvenici 56,2, pseudogleja 47,1, smeđeg tla 46,9 i aluvijalnog tla 46,4%. S druge strane, retencijski kapacitet tla za vodu iznosi u crvenici 45,1, pseudogleja 39,8, smeđeg tla 35,8 i aluvijalnog tla 40%, a kapacitet tla za zrak redom za ova tla: 11,1, 7,5, 11,1 i 6,8%. Volumna specifična težina svakako je najmanja u crvenici i u površinskom sloju crvenici (0 do 20 cm) iznosi 1,13, u sloju od 20 do 40 cm 1,31, a u sloju od 40 do 60 cm 1,45; u površinskom sloju pseudogleja (0 do 20 cm) 1,41; a u sloju od 49 do 69 1,57; u površinskom sloju smeđeg tla (0 do 20 cm), kao i u sloju ispod njega (20 do 40 cm) 1,40, a u dublje tlu (40 do 50 cm) 1,50; te na kraju u površinskom sloju aluvijalnog tla (0 do 21 cm) 1,42, u sloju ispod njega (21 do 38 cm) 1,57, a još dublje u tlu (38 do 65) 1,51.

Što se pak tiče kemijskih svojstava, svi odabrani tipovi tla za ove pokasne prilike su povoljni. Tako pH u crvenici iznosi 60, pseudogleja 5,2, smeđeg i aluvijalnog tla 7,0. U pogledu sadržaja humusa među ovim tlima nema većih razlika i on se u površinskom sloju kreće uglavnom na razini od 2%.

Bičić pristupačnim fosforom najslabije je opskrbljena crvenica (4,3 mg), zatim aluvijalno tlo (11,0 mg), dok se smeđe tlo (21,5 mg) i pseudoglej (20,8 mg) nalaze na donjoj granici i klase prema RH i emu. Sadržaj biljke pristupačnog kalija u crvenici iznosi 14,0, pseudogleja 11,0, smeđeg tla 26,0 i aluvijalnog tla 10,5 mg/100 g tla.

Zasićenost adsorpcijskog kompleksa bazama manje- više povoljna je u svih tala i iznosi u crvenici 78,0, pseudogleja 69,4, smeđeg tla 96,3 i aluvijalnog tla 97,8%.

b) Meteorološki uvjeti

Za ocjenu meteoroloških uvjeta u toku eksperimentalnog rada koriste se podaci Agrometeorološke — aerološke — sinoptičkog opservatorija u Maksimiru, koji se nalazi u neposrednoj blizini staklenika Zavoda za opću proizvodnju bilja Poljoprivrednog fakulteta u kojem su provedeni pokusi. (tab. 1) Prikazani meteorološki podaci imaju relativnu vrijednost za ova istraživanja s obzirom na izmijenjene klimatske uvjete koji vladaju u stakleniku. Oni za zatvoreni dio staklenika ne bi niti bili uporabivi. No, pokusi su izvedeni na otvorenom prostoru staklenika, što opravdava korištenje meteoroloških podataka obližnjeg meteorološkog opservatorija.

Ako je najprije vrijedi o temperaturama, bez utjecaja na njihovu dublju analizu, onda se vidi da se radi o godinama s natpisno toplim zimama, što naražno vrijedi za 1975. godinu. To u podjednoj mjeri potvrđuju vrijednosti srednjih mjesečnih, kao i maksimalnih i minimalnih, također mjesečnih, temperaturar zraka. No, dok su u 1975. godini samo veljača i prosinac bili hladni, u 1976. pored njih bili su još i siječanj i ožujak. Relativna vlaga zraka manje- više kretala se unutar granica koje su svojstvene kontinentalnom dijelu Hrvatske.

753
Oborine su se 1975. godine kretale znatno ispod višegodišnjeg prosjeka, a u 1976. su mu se približile. No važnije je naglasiti da im je distribucija bila vrlo nepravilna. Prije svega zimsku oborine bile su u obje godine znatno ispod višegodišnjih prosječnih, dok su letjene bile vrlo obilne, kao i jesenske u 1976. godini. Obje kulture bile su u potpunosti izložene djelovanju ovih oborina u otvorenom prostoru staklenika, da bi se tako što više približile vladajućim meteorološkim uvjetima.

Tabela 1 — Meteorološki podaci

<table>
<thead>
<tr>
<th>Mjesec</th>
<th>Temperature zraka, °C</th>
<th>Relativna vlažnost zraka, %</th>
<th>Precipitation, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air temperature average</td>
<td>maksimalna maximum</td>
<td>minimalna minimum</td>
</tr>
<tr>
<td>I</td>
<td>4,4 1,4 9,0 6,0 0,1</td>
<td>-3,2</td>
<td>80 75</td>
</tr>
<tr>
<td>II</td>
<td>2,0 0,8 6,9 3,9</td>
<td>-2,1</td>
<td>72 79</td>
</tr>
<tr>
<td>III</td>
<td>7,2 2,0 12,7 7,9</td>
<td>2,2</td>
<td>75 72</td>
</tr>
<tr>
<td>IV</td>
<td>10,6 10,7 16,0 16,8</td>
<td>4,9</td>
<td>5,5 66 65</td>
</tr>
<tr>
<td>V</td>
<td>16,8 15,1 22,2 21,5</td>
<td>11,0</td>
<td>8,3 70 69</td>
</tr>
<tr>
<td>VI</td>
<td>17,5 17,8 22,8 24,3</td>
<td>12,8</td>
<td>11,9 74 70</td>
</tr>
<tr>
<td>VII</td>
<td>20,1 20,7 25,9 26,8</td>
<td>14,4</td>
<td>14,8 74 68</td>
</tr>
<tr>
<td>VIII</td>
<td>19,1 16,4 25,0 22,5</td>
<td>14,3</td>
<td>11,2 79 79</td>
</tr>
<tr>
<td>IX</td>
<td>18,0 14,6 24,3 20,4</td>
<td>12,6</td>
<td>9,6 82 80</td>
</tr>
<tr>
<td>X</td>
<td>9,7 10,3 14,4 15,1</td>
<td>5,7</td>
<td>7,0 85 89</td>
</tr>
<tr>
<td>XI</td>
<td>4,3 7,2 7,3 11,1</td>
<td>1,7</td>
<td>3,9 84 86</td>
</tr>
<tr>
<td>XII</td>
<td>1,0 0,8 4,0 3,5</td>
<td>-1,7</td>
<td>-2,0 86 88</td>
</tr>
</tbody>
</table>

REZULTATI ISTRAŽIVANJA I DISKUSIJA

a) Ozima pšenica

pšenice uvjetovan je specifičnim mikroklimatskim uvjetima uzgoja u stakleniku.

Voštana i puna zrioba uslijedile su brzo nakon mliječne, pa je početak srpnja izvršena "žetva".

Razmotrit ćemo dalje djelovanje pokusnih faktora, tj. zbivenosti tla i gnojivke, kao i njihovih kombinacija na prinos pšenice.

Zbivenost tla odnosno volumena specifična težina u pogledu prinosa pšenice dosla je signifikantno do izražaja na pseudogleju i smeđem tlu na karbonatnom lesu (tabl. 2). Suprotno ovim tlima, signifikantno djelovanje zbivenosti izostalo je na crvenici i aluviju. Na crvenici je prisutna tendencija smanjenja prinosa s povećanjem zbivenosti, dok na aluviju nema čak ni takve tendencije. Prema našoj pretpostavci aluvijalno tlo je povoljno do te mjere, tako da čak ni jače zbivanje (Stv 1,6) nije moglo dovesti do pada prinosa. Pad prinosa pri najvećoj volumnoj specifičnoj težini na pseudogleju i smeđem tlu je statistički opravdano i prema srednjoj i najmanjoj volumnoj težini. I smeđe tlo na karbonatnom lesu spada, dakako, u naša najbolja tla, ali se vlada drugačije u pogledu utjecaja zbivenosti na prinos pšenice nego aluvijalno tlo. U nekim ranijim istraživanjima (Butorac, Tomic, Turšić, 1975) u kojima je zbivenost tla kombinirana s intervalom vlažnosti njeno je djelovanje na crvenici i aluvijalnom tlu bilo nešto drugačije: u crvenici je s povećanjem zbivenosti prinos rastao, a u aluviju pri najvećoj zbivenosti bio najniži, ali bez statističke opravdanosti. Pseudoglej se manje — više i ranije i sada vlada na isti način. Jača zbivenost, naime, dovodi sigurno do nepovoljnijih uvjeta za razvoj usjeva, pa shodno tome i opadanja prinosa.

Tabela 2 — Prinos znana ozime pšenice u ovisnosti o specifičnoj volumnoj
težini tla, g/veg., posudi

Specifična	Tip tla — Soil type	Smeđe tlo na karbonatnom lesu	Aluvijalno	Brown soil on carbonate loess	
volumena	Serbica	Pseudoglej	Smeđe tlo	na karbonatnom lesu	
— težina tla	(Terra rossa)	Pseudogley		Brown soil on carbonate loess	
Apparent	Red soil				
specific gravity of soil, kg/dm³					
1,2	18,61	18,10	18,95	17,60	
1,4	18,44	18,08	19,25	18,30	
1,6	17,10	15,83	16,66	17,69	
LSD	5%	1,70	1,68	1,70	1,86
Što se pak tiče gnojidbe, najeno je djelovanje potpuno logično u smislu primijenjenih doza. Naime, na svim je trima gnojidba pokazala signifikanatno djelovanje na visinu prinosa pšenice (tab. 3). Bez izuzetka s rastom primijenjene doze prinos raste. Čak što više, unutar gradacije gnojidbe, tj. od niske preko srednje do visoke razlike su signifikantne, unatoč manje više povoljnih kemijskih svojstava svih tipova tala, u prvom redu, s izuzetkom crvenice, relativno povoljne opekbljenosti fosforom. Zelimo naglasiti da je pri postojećoj aktualnoj plodnosti gnojidba došla do punog izražaja.

Tabela 3 — Prinos zrna oźime pšenice u ovisnosti o gnojidbi, g/vec, posudi

<table>
<thead>
<tr>
<th>Gnojidba, g/vec, posudi</th>
<th>Tip tla — Soil type</th>
<th>Smeđe tlo na karbonatom lesu</th>
<th>Aluvijalno tlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/vec, posudi</td>
<td>Crvenica</td>
<td>Pseudogley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Terra rossa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red soil</td>
<td>Pseudogley</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>on carbonate loess</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alluvium</td>
<td></td>
</tr>
<tr>
<td>N<sub>15</sub>P<sub>15</sub>K<sub>15</sub></td>
<td>15,62</td>
<td>14,87</td>
<td>16,07</td>
</tr>
<tr>
<td>N<sub>15</sub>P<sub>20</sub>K<sub>15</sub></td>
<td>18,89</td>
<td>16,50</td>
<td>18,18</td>
</tr>
<tr>
<td>N<sub>20</sub>P<sub>20</sub>K<sub>20</sub></td>
<td>19,64</td>
<td>20,65</td>
<td>20,68</td>
</tr>
<tr>
<td>5%</td>
<td>1,32</td>
<td>1,63</td>
<td>1,67</td>
</tr>
<tr>
<td>LSD</td>
<td>1,85</td>
<td>2,23</td>
<td>2,28</td>
</tr>
</tbody>
</table>

Najzanimljivije je svakako vidjeti kako su se u pogledu prinosa oźime pšenice vladale kombinacije volumne specifične težine tla i gnojidbe. Nema sumnje da je u tom pogledu prevladao utjecaj fertilizacije. (tab. 4). To je u potpunoj sukladnosti s onim što je već navedeno za djelovanje same zbijenosti i same fertilizacije. U tom pogledu gotovo bez izuzetka svi tipovi tala vladaju se analogno. Očigledno je da savršena zbijenost tla ne može biti zamijenjena pojačanom gnojidbom odnosno da kompenzacija takve vrsti i ne postoji. Učini li se detaljnija analiza prema tipovima tala, onda treba podvuci da je na crvenici apsolutno najviši prinos dala kombinacija srednje volumne težine i najviše gnojidbe. U isto vrijeme kombinacije sve tri specifične volumne težine i najniže gnojidbe dale su najslabije prinos iz čega se može zaključiti da i pri manjoj zbijenosti tla nije moguće postići više prinoso ako izostane adekvatna gnojidba.

Na pseudogleju je najviši prinos dala kombinacija najniže volumne težine i najviše gnojidbe, a spriječava joj se ista varijanta gnojidbe sa srednjom volumnom težinom. I ovde su kombinacije najniže gnojidbe u kombinaciji sa sve tri volumne težine najslabije. To u potpunosti vrijedi

<table>
<thead>
<tr>
<th>Specifična volumna težina tla</th>
<th>Gnojidba, g/veg. posudi</th>
<th>Tip tla — Crvenica Terra Rossa (Pseudoglej Red soil)</th>
<th>Soil type</th>
<th>Aluvijalno tlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent specific gravity of soil, g/cm³</td>
<td>Fertilizing, g per pot</td>
<td>Pseudogley</td>
<td>Smeđe tlo na karbonatnom lesu</td>
<td>Brown soil on carbonate loess</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>16,07</td>
<td>14,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>20,07</td>
<td>16,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>19,70</td>
<td>23,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>15,55</td>
<td>15,87</td>
</tr>
<tr>
<td>1,4</td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>19,27</td>
<td>17,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>20,50</td>
<td>21,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>15,25</td>
<td>14,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>17,32</td>
<td>15,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁₀P₁₀K₁₀</td>
<td>18,72</td>
<td>17,65</td>
</tr>
<tr>
<td>LSD</td>
<td></td>
<td></td>
<td>2,87</td>
<td>2,78</td>
</tr>
<tr>
<td>1%</td>
<td></td>
<td></td>
<td>4,00</td>
<td>3,91</td>
</tr>
</tbody>
</table>

za smeđe i aluvijalno tlo. Na ovim su tlima najbolje kombinacije najniže volumne težine i najviše gnojidbe, ali im se približava srednja volumna težina, također s najjačom gnojidbom.

I da zaključimo: kombinacije specifične volumne težine tla, što u isto vrijeme znači i različite zbivnosti tla i mineralne gnojidbe pokazuju signifikantno djelovanje na visinu prinosa pšenice na svim istraživanim tipovima tala. Prednost je na strani manje zbivnosti i jače gnojidbe bez obzira o kojem se testiranom tlu radi.

b) Soja

Ova kultura je došla u pokusima nakon ozime pšenice. Njena sjetva izvršena je 20. travnja na crvenici i pseudogleju, a 21. travnja na smeđem i aluvijalnom tlu. Kotiledoni su se pojavili 4. svibnja. Početni razvitak soje bio je vrlo nejednolik. Sredinom svibnja razvila je većim dijelom prvi par pravih listova, ponegdje i drugi, dok se istovremeno nalaz ili u fazi kotiledona, ali vrlo varijabilno prema pokusima i varijantama. U fazi butonizacije
soja se nalazila početkom treće dekade lipnja. U to vrijeme djelomično su se počeli otvarati cvjetovi. Biljke su se razlikovale i svojom bojom. One s niskom dozom dušika bile su svijetlozelene, a s visokom tamnozelene boje.

Početkom svibnja soja je ušla u punu cvatnju. Među varijantama postojale su razlike u visini rasta, naročito unutar različite zbijenosti tla. Visinom rasta najviše odskaču biljke pri najnižoj zbijenosti tla. U njih su u to vrijeme već potpuno formirane mahune pri bazi stabljike.

Krajem pak prve dekade srpnja soja je u gornjim dijelovima stabljike još uvijek u cvatnji. Cvjetovi su bijeli i manje uočljivi, što je inače povezano s karakteristikom soje da je samopošto. Razlike među varijantama pokuša i dalje su očljive, ali su biljke nakon prihranjivanja dušikom jednoličnije zelene boje.

Početkom druge dekade kolovoza listovi soje su intenzivno žuti i opadanju, naročito pri jačoj zbijenosti tla odnosno pri nižim gradacijama dušične gnojive. Sjemenke u mahunama potpuno su formirane i zriju, a budući se radi o ranoj sorti (altona) to je sasvim logično. Početkom rujna soja je uglavnom potpuno sazrela, pa je tada obavljena njena berba. No, značajno je naglasiti da je u varijantama gnojenih većom dozom dušika još uvijek bilo zelenih mahuna, pa je njihova berba izvršena naknadno.

Analogno pšenici razmotrit će se dalje djelovanje zbijenosti i gnojivde odnosno njihovih kombinacija na prinos soje.

Tablica 5 — Prinos soje u ovisnosti o specifičnoj volumnoj težini tla, g/veg. posudi
Table 5 — Soybean yield in dependence on apparent specific gravity of soil, g per pot.

<table>
<thead>
<tr>
<th>Specifična volumna težina tla</th>
<th>Tip tla — Pseudoglej</th>
<th>Soil type — Smreć tlo na karbonatnom lesu</th>
<th>Aluvijalno tlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent specific gravity of soil, g/cm³</td>
<td>Crvenica (Terra rossa)</td>
<td>Pseudogley</td>
<td>Brown soil on carbonate loess</td>
</tr>
<tr>
<td>1,2</td>
<td>12,29</td>
<td>15,11</td>
<td>11,00</td>
</tr>
<tr>
<td>1,4</td>
<td>12,65</td>
<td>12,96</td>
<td>12,13</td>
</tr>
<tr>
<td>1,6</td>
<td>12,54</td>
<td>6,51</td>
<td>8,88</td>
</tr>
<tr>
<td>LSD</td>
<td>1,34</td>
<td>1,46</td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>2,03</td>
<td>2,2</td>
<td></td>
</tr>
</tbody>
</table>

758

Gnojidba se također vladala u pogledu visine prinosa soje gotovo potpunog analogno ozimom pšenici, (tab. 6). S povećanjem gnojidbene doze dolazi naime, do povećanja prinosa. No, u slučaju soje gnojidba na pseudogleju ne pokazuje signifikantno djelovanje, odnosno na svim je ostalim tipovima tla signifikantna.

Tabela 6 — Prinos soje u ovisnosti o gnojidbi, g/veg. posudi

Table 6 — Soybean yield in dependence on fertilization, g per pot

<table>
<thead>
<tr>
<th>g/veg. posudi</th>
<th>Tip tla — Soil type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizing, g per pot</td>
<td>Crvenica</td>
</tr>
<tr>
<td></td>
<td>(Terra rossa)</td>
</tr>
<tr>
<td>N05P15K10</td>
<td>9,04</td>
</tr>
<tr>
<td>N075P10K15</td>
<td>12,91</td>
</tr>
<tr>
<td>N100P25K20</td>
<td>15,53</td>
</tr>
<tr>
<td>5%</td>
<td>1,69</td>
</tr>
<tr>
<td>LSD</td>
<td>2,31</td>
</tr>
</tbody>
</table>

Ovakvo vladanje gnojidbe na pseudogleju moglo bi se objasniti dominantnim djelovanjem zbijenosti tla na prinos soje. U svakom slučaju uvjeti za primanje hraniva bili su manje povoljni nego u ostalim tlima. Ako je na kraju riječ o kombinacijama zbijenosti odnosno specifične volumne težine tla i gnojidbe, onda treba respektirati kako to proizlazi iz podataka u tabeli 7, u nekim slučajevima zbijenost, a u drugim gnojidba. No, i u slučaju soje, analogno pšenici, gnojidba je i u kombinacija došla.

Tabela 7 — Prinos soje prema kombinacijama specifične volumne težine i gnojdbe tla, g/veg. posudi
Table 7 — Soybean yield according to combinations of apparent specific gravity of soil and fertilizing, g per pot

<table>
<thead>
<tr>
<th>Specifična volumna težina tla</th>
<th>Gnojidba, g/veg. posudi</th>
<th>Tip tla — Soil type</th>
<th>Apparent specific gravity of soil, g/cm³</th>
<th>Fertilizing, g per pot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crvenica</td>
<td>Pseudoglaj</td>
<td>Smeđe tlo na karbonatnom lesu Brown soil on carbonate loess</td>
<td>Aluvijalno tlo</td>
</tr>
<tr>
<td>Apparent</td>
<td>Terra rossa</td>
<td>Red soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>specific gravity of soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>N₉₀P₄₀K₁₀</td>
<td>9,05</td>
<td>13,35</td>
<td>8,45</td>
</tr>
<tr>
<td></td>
<td>N₉₀P₃₀K₁₅</td>
<td>11,90</td>
<td>14,85</td>
<td>12,07</td>
</tr>
<tr>
<td></td>
<td>N₁₀₀P₀₉₀K₁₀</td>
<td>15,92</td>
<td>17,15</td>
<td>12,50</td>
</tr>
<tr>
<td></td>
<td>N₁₀₀P₁₅K₁₀</td>
<td>8,77</td>
<td>12,12</td>
<td>9,57</td>
</tr>
<tr>
<td>1,4</td>
<td>N₉₀P₇₀K₁₅</td>
<td>12,82</td>
<td>12,80</td>
<td>10,75</td>
</tr>
<tr>
<td></td>
<td>N₁₀₀P₀₉₀K₁₀</td>
<td>16,37</td>
<td>13,97</td>
<td>16,07</td>
</tr>
<tr>
<td></td>
<td>N₀₉₀P₁₅K₁₀</td>
<td>9,30</td>
<td>6,15</td>
<td>8,62</td>
</tr>
<tr>
<td>1,6</td>
<td>N₉₀P₇₀K₁₅</td>
<td>14,02</td>
<td>6,40</td>
<td>9,22</td>
</tr>
<tr>
<td></td>
<td>N₁₀₀P₀₉₀K₁₀</td>
<td>14,30</td>
<td>7,00</td>
<td>8,80</td>
</tr>
<tr>
<td>5%</td>
<td>2,66</td>
<td>2,99</td>
<td>2,58</td>
<td>4,81</td>
</tr>
<tr>
<td>LSD</td>
<td>3,75</td>
<td>4,20</td>
<td>3,62</td>
<td>6,77</td>
</tr>
</tbody>
</table>

Zaključak se nameće sam od sebe. Naime, pri nepovoljnim fizičkim svojstvima nisu postojali uvjeti za normalno usvajanje hraniva od strane soje. Pri najnižoj zbivenosti gnojidba je došla do izražaja, pa se čak između najniže i najviše doze javljaju signifikantne razlike.

Srednja je gnojidba u najniže i srednje volumne težine slabija od najviše, u nekih tipova signifikantno slabija, dok se u najviši volumne težine tla praktički ne može govoriti o razlikama između srednje i najviše gnojidbe. Na smedem i aluvijalnom tlu izražena je čak obrnuta tendencija. Drugim riječima, soja je vrlo nepovoljno reagirala na povećanu zbivenost tla. Može se, prema tome, povući zaključak da soja preferira manju zbivenost tla i da u potpunosti može zadovoljiti specifičnu volumnu težinu u rasponu 1,2 do 1,4; Uz druge poveljne uvjete, prije svega režim vlaženja, može se očekivati da će i gnojidba pokazati svoje puno djelovanje.
Postignuti rezultati u pokusima omogućuju donošenje ovih zaključaka:
1. Na pseudogleju i smeđem tlu na karbonatnom lesu povećana zbijenost tla (iznad 1,6) dovodi do insignificantnog smanjenja prinosa kako oznime pšenice, tako i soje, s time da je soja znatno drastičnije reagirala na povećanje zbijenosti od oznime pšenice. S druge strane, na crvenici i aluvijalnom tlu niti jedna od kultura nije insignificantno reagirala visinom prinosa na promjene zbijenosti tla. Polučeni rezultati na pseudogleju i smeđem tlu, s jedna strana, te crvenici i aluvijalnom tlu, s druge, mogu se dovesti u vezu s tipom tla, a unutar njega u prvom redu s fizikalnim svojstvima, napose strukturom tla.

2. S izuzetkom pseudogleja u slučaju soje, gnojidba je na svim ostalim tipovima tala pokazala significantno djelovanje na obje kulture. S rastom primijenjene doze prinosa raste. Nepovoljnije djelovanje gnojidbe na pseudogleju u uzgoju soje, premda je izražena tendencija povećanja prinosa s povećanjem doze, može se objasniti prije svega njegovim nepovoljnim fizikalnim svojstvima na razvitak korijenovog sistema soje.

3. Pri ocjeni zajedničkog djelovanja zbijenosti i gnojidbe na prinos oznime pšenice i soje vidi se da je prevalentan utjecaj gnojidbe. To u ostalom proizlazi iz njihovog pojedinčnog djelovanja. Dobiveni rezultati također pokazuju da suvišna zbijenost tla ne može biti kompenzirana intenzivnijom gnojidbom. Međutim, u kombinacija manje zbijenosti i jače gnojidbe dolazi do izražaja njihovo interakcijsko djelovanje na prinos oznime pšenice i soje.

4. Zbijenost tla jedan je akutnih problema suvremene poljoprivrede, pa postoji sve veća potreba da se utvrdi optimalno stanje zbijenosti za pojedine usjeve. Takvu mogućnost pružaju model pokusi, kako oni u kontrolliranim uvjetima, tako i u polju, u kojima je moguće mjerno regulirati različite stupnjeve zbijenosti, te bi stoga trebalo prići njihovom širem izvođenju kao što se to čini u nekim drugim zemljama.

INTERACTION OF SOIL COMPACTION AND FERTILIZING IN GROWING WINTER WHEAT AND SOYBEAN

Andelko Butorac and Ivan Turšić

SUMMARY

The paper presents the results of two-year model experiments on four soil types (red soil, pseudogley, brown soil on calcareous and alluvial soil), the aim of which was to study the effects of soil compaction and fertilizing on the yield of winter wheat and soybean. The results obtained for winter wheat are shown in Tables 2, 3 and 4, and those for soybean in Tables 5, 6 and 7.

The results show that the increased compaction (above 1,6) of pseudogley and brown soil on calcareous loess leads to a significant yield decrease
in both winter wheat and soybean, the latter responding more drastically to the compaction increase. On the other hand, neither crop, when grown on red and alluvial soils, responded with any significant changes of the yield to changed soil compaction.

With the exception of pseudogley in case of soybean, fertilizing had a significant effect on both crops on all the other soil types. Increased fertilizer doses resulted in higher yields. The less favourable effect of fertilizing on soybean grown on pseudogley, although there was a tendency to increased yields at higher fertilizer doses, can be explained by unfavourable physical properties of pseudogley for the development of the soybean root system.

When evaluating the interaction of compaction and fertilizing on the yield of winter wheat and soybean, the prevailing effect of fertilizing becomes evident. This also applies to their individual effects. The results also indicate that excessive compaction cannot be compensated by intensified fertilizing. However, the combination of less compaction and higher fertilizer doses brings out their full interaction on the yields of winter wheat and soybean.

Soil compaction is one of the acute problems of modern agriculture, so that there is an increasing need to determine optimal compaction for particular crops. This may be achieved by model experiments, both under controlled conditions and in the field, which enable measurable regulation of different degrees of compaction.

LITERATURA — REFERENCES

