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 Path planning is one of the most fundamental de-

sired autonomous navigation capabilities for air-

crafts. A sensible environment modeling method 

plays a significant role in improving the path plan-

ning algorithm, and the electric potential principle 

has a unique advantage in this regard. Due to the 

random node generation of the sampling-based 

algorithm, it is difficult to generate an optimum 

path. In the integration of electric potential cost 

function and probability function, the calculation 

has approved that there is a negative correlation 

between the path cost value and probability value, 

that is, the lower the cost value, the higher the 

probability that the path nodes is to be selected. 

Meanwhile, the electric potential value of the en-

tire path is also used to evaluate the safety of an 

entire route. The simulation results depict that, 

compared with other traditional methods, the algo-

rithm proposed in this article has distinctive supe-

riority in raising and enhancing computational 

efficiency and path safety. 
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1 Introduction 
 

Most of missions require aircrafts to follow prede-

fined paths autonomously, so path planning is fun-

damental for all of them. Currently, a gradually in-

creasing number of aircraft in the airspace, limited 

paths resources, rapid changes of weather condi-

tions, and other factors extremely affect flight safety 

so that flight environment has become seriously 

complex. Meanwhile, the requirements of emergen-

cy tasks which must apply aircraft are gradually 

increasing and therefore the high computational ef-

ficiency and path security level of the path planning 

algorithm are extremely important. 

The  purpose  of  path  planning  is to find a suitable 

 

 

path for aircraft considering certain constraints 

(such as threats, path length, fuel consumption, arri- 

val time, etc.). Due to an increasing number of fur-

ther findings in path planning methods, researchers 

constantly seek to make modifications for many of 

these methods, such as topology method [1], artifi-

cial potential field [2], grid method [3], gravitation-

al search algorithm [4], intelligent optimization al-

gorithms [5,6] and so on. The topology method gen-

erates the path through analyzing the geometrical 

relationship between the vertices of the obstacle and 

the boundary. The method is actually a geometric 

modeling method for the environment, and the cal-

culation process is fairly simple. The computational 

complexity is affected by the number of obstacles, if  



240 H. Renke, W. Ruixuan et al.: A new path planning approach… 
______________________________________________________________________________________________________________________ 

 

the location of the obstacle is changed, then it is 

necessary to reconstruct the map. Since the time 

when the artificial potential field method was pro-

posed, it has been used widely in path planning 

problem, although it has some defects, such as: the 

“trap” area of the potential field, the search blind 

spot among adjacent barriers. According to the grid 

method, environment is represented by grids, and 

the heuristics information is stored in each grid. The 

classical grid-based methods, such as A*, D* algo-

rithm, can get the feasible path by the calculation of 

the cost map, although the computation of these 

algorithms is inefficient and can only be used for 

the low-dimension and discrete space. The intelli-

gent optimization algorithm such as genetic algo-

rithm (GA), ant colony algorithm, particle swarm 

optimization (PSO), artificial fish swarm algorithm, 

artificial bee colony algorithm and so on, can well 

solve the path planning problems. GSA is similar to 

PSO algorithm, and the convergence is superior to 

the PSO and GA. Iterations in such algorithms have 

a magnificent relevance to the accuracy of the re-

sults, if times of iterations are short, the accuracy 

cannot sometimes be satisfactory. In comparison 

with other methods mentioned above, these algo-

rithms are easy to fall into local minima, and the 

calculation process can be more complicated in 

dealing with the problem of path planning in com-

plex environment and high dimensional space. In 

recent years, researchers proposed some optimiza-

tion algorithms based on the laws of physics, such 

as: gravitational search algorithm, physicomimetics 

method [7], electromagnetism-like algorithm [8], 

central force optimization [9] and so on. These al-

gorithms use the physical laws to describe the rela-

tionship among the various factors, and have some 

advantages in solving the optimization problems 

including path planning. 

Sampling-based methods can solve the problem of 

high-dimensional path planning. The rapidly explor-

ing random tree (RRT) [10] algorithm is one of 

them, and this method has been widely used for the 

complex constrained path planning problem in two-

dimensional even high-dimensional space [11]. In 

[12], the algorithm improves the convergence abil-

ity of RRT algorithm by using A* algorithm, but it 

cannot avoid the local minimum problem. In [13, 

14], the RRT algorithm is optimized by the terrain 

cost function and the geometric method. The meth-

od depicted in [15] can reduce the computational 

cost of the algorithm, but the influence of the envi-

ronment complexity is not taken into account. Ka-

raman and Frazzoli [16] prove that the probability 

of the optimal solution which is obtained from the 

RRT algorithm is 0, and the improved RRT* algo-

rithm can get the optimal result. However, the im-

proved methods mentioned above do not consider 

the distribution of the environmental threats intensi-

ty, the safety level of path and computational effi-

ciency are not considered comprehensively in the 

algorithm. 

Electric potential field theory is applied to environ-

ment modeling in this paper. As we all know, elec-

tric potential energy will change when a charge 

moves in the potential field, therefore, we have 

combined probability knowledge with this principle, 

established probability selection mechanism of path 

node and safety evaluation method. 

This paper is organized as follows. In Section II, we 

mainly analyze the potential field distribution char-

acteristics are analyzed, and the environmental 

model established. Section III introduces the basic 

principle of the electric potential energy, path node 

probability selection mechanism, and then Section 

IV completely describes the proposed algorithm. 

Section V is a simulation experiment and analysis. 

Section VI shows the conclusion. 

 

2 Path planning problem and environment 

model 
 

The main objective of path planning is to find the 

appropriate path from the start to the end point; the 

main issues to be considered are the safety of path 

and computational efficiency of algorithms. Estab-

lishing an appropriate model to describe the threat-

ening conditions is the basis for efficient path plan-

ning. Thus, flight environment threats and obstacles 

are: anti-aircraft artillery, missiles, mountains, high 

buildings, and no-fly zone. For non-aggressive ob-

stacles, boundaries can be directly set. For offensive 

threats, traditional methods commonly use the 

round or spherical scope to represent the threat 

model. These methods can not accurately describe 

the intensity of the threat. Electric potential field 

has some advantages in environment modeling. 

Typically, the closer the plane to threat, the more 

dangerous it is. That is, threat intensity is in positive 

correlation with relative distance. This is right in 

accordance with electric potential field theory, the 

closer to the charge, the stronger the electric poten-

tial. Inspired by this characteristic, we use the elec-
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tric potential field to describe the threat intensity of 

the environment. 

 

2.1 Electric potential field distribution principle 
 

In the two-dimensional Cartesian coordinate system, 

the coordinate of P  is  x,y , the coordinate of iq
 
is 

 i ix ,y , the electric potential of the charge iq at  the 

point P is: 

 
n

i
p

2 2
0i=1 i i

q1
V =

4πε (x-x ) +(y-y )


         

(1) 

 

Suppose there are n charges 1 2 3 nq ,q ,q , ,q , ac-

cording to the superposition principle of electric 

potential field, we can work out the electric poten-

tial of a certain point P , the formula is defined as 

follows: 

 

i

n n
i
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q
V = V =

4πε r
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(2) 

 

ir is the distance between P and iq . 

The electric field intensity is: 
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According to the above conclusion, we can get elec-

tric dipole potential distribution. 
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Figure 1. Electric potential of electric dipole. 

 

 

 

As shown in Fig. 1, ( )x,y is the coordinate, z is the 

electric potential. 

 

2.2 Environment modeling 

Electric field intensity is the physical quantity 

describing the electric field strength. The electric 

field intensity depends on the quantity of charge. 

We assume that the threat is positive charge, the 

coordinate is  i ix ,y , the electric potential at the 

point P is： 

 

1r (0, r ),i

i

n n
o

o

0 ii=1 i=

o i

1

q
V = V =

4πε r
 

    

(4) 

 

ir is the distance between thi threat and a certain 

point. Since kill probability of weapons is zero out-

side the effective distance, fire coverage range is 

10 rir < . Assuming that the aircraft is a point 

charge, it does not affect the electric potential field 

distribution. Here there is a target point, and since 

the target point is negatively charged, then the po-

tential becomes:  

 

, r (0, )i

n
o t

all t

0 i 0 ti=1

q q
V = -

4πε r 4πε r
       (5) 

 

3 Randomized strategy 

 
This chapter mainly introduces the electric potential 

energy principle, and studies the relationship be-

tween the electric potential energy and path. In or-

der to choose appropriate path nodes, we used the 

Gaussian kernel function to establish the probability 

selection mechanism. Finally, we proposed the 

complete path planning method. 

 

3.1 Electric potential energy 

We usually define the electric field intensity 

as E=F/q , q  is a charge, F  is an electric field 

force. If q is a unit of electricity, the electric field 

intensity is equal to the electric field force. 
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Figure 2. A charge moves in the electric potential 

from A to B.  

As shown in Fig. 2 the point charge re
 

moves in 

the electric field generated by charge q , their dis-

tance is r , dl is a small path along AB . Electric 

potential energy is: 

0dW q d E l
                        

(6) 

 

The electric field intensity is 

 

2
0

1 q

4 r



E re

                      

(7) 

 

Using (6), we obtain 

 

0

2
0

qq1
dW dr

4 r

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And d d cos drl θ re l ，so the whole electric 

potential energy along the path is: 
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And because 

 

r
0

q 1
V d
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Using (8), we obtain 

 

0 A BW q (V V ) 
                     

(10) 

In a certain range, the aircraft will be affected by 

the superimposed electric potential generated by the 

threat and target point at the same time. That is to 

say, the charge is moving in an electric field, energy 

of the charge changes. For superimposed electric 

field, at two points i,j , the energy is: 

 

0W ( ( ) ( ))i,j all allq V i V j              (11) 
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Figure 3. Electric potential and path length. 

 

In Fig. 3 the electric potential energy is determined 

by the relative electric potential value of the start 

point initx and the end point goalx .The reduction of 

potential is U , and ΔU ΔU 0i+ j-

i j

+ =  . Name-

ly, the increase in electric potentialΔU+ is equal to 

the decreaseΔU- , and 

 

W Uij ij=q
                            

(12) 

 

So, we only consider the increased electric potential 

energy. 

Path length is l ，electric potential energy is w(p) , 

for one path, potential energy can be expressed as: 

 

0W(p) ( ( ) ( ))all allq V i V j l    (13) 

 

Path coefficient δ is a very small number (e.g., 

0.01δ  ), it can guarantee the shortest path to be 

selected if the paths have the same electric potential 

energy 
0 ( ( ) ( ))all allq V i V j . That is, the shorter the 

path is, the smaller the W(p) . 
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3.2 Probability selection mechanism 

 

In the potential field, we combined the Gauss kernel 

function with the electric potential energy, thus es-

tablishing the probability selection mechanism, 

which can effectively promote the path node to bias 

toward the target point. To prevent local minimum, 

we retained some nodes which are away from the 

target point if they are in accordance with the prob-

ability condition. Calculation process is as follows: 

Gaussian kernel function is 

 

2

x( ) x( )
(x) exp

2

i j
f

k

 
  

             

(14) 

 

k is a given parameter. x( ) x( )i j repre-

sents V ( ) V ( )all alli j , if x( ) x( ) 0i j  ，

probability that the note j will be selected can be 

calculated according to the above-mentioned formu-

la；if x( ) x( ) 0i j  ，it indicates the node biased 

toward the target point, probability is 1. 

Assume that there are n paths, each path 

has m nodes. The probability of given thi path is：

_ rand _ select

[1,m]

p (p )(p )i i
i j j

j

   

_ randpi
j is the probability of an randomly given 

node, _ selectpi
j is its selection probability. 

For thi path, the probability that each parent node 

randomly generated the new node is the same that is
 

1
n

, so 
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1
p (p )

n

i
i j
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Using (14), we have 
m

1
p ( )

n
i j

j
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j

i
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Using (13), and ignored the path coefficient δ , we 

get 

m 2 m
0

W(p )1
p exp( )

(n) q (2 )

i
i

k
 

            

(15) 

Then we can get the following conclusion: the 

smaller the w(p )i , the greater the probability p i . To 

reach the target point first, the probability of path 

with the least potential energy must reach its maxi-

mum. 

 

4 Path planning method 
 

Here, node grows around the parent node with a 

certain step according to the model of RRT algo-

rithm. When the electric potential energy decreases, 

a new node is added to the extended tree. When it is 

faced with threat, electric potential energy rapidly 

becomes large enough so that the tree expansion 

fails, selection probability mechanism is initiated to 

determine whether to accept the new node or not, 

and also to calculate the probability. Repeat the 

above process to make sure that the path is a bias 

toward the target point, and finally a small propor-

tion of the path selects the shortest branch. The 

complete method is as follows: 

First, we define the environment C . Assuming that 

there are several threats in the environment, the air-

craft is a positive charge, the target point and threats 

are positive charges. We set the influence scope of 

the potential field generated by each charge and tar-

get point. Assuming that the target point is a nega-

tive charge, the quantity of this electric charge is 

large, and its potential field covers the whole envi-

ronment. C free is non-threatening area, T  is an 

extended tree,
 

x is the point of T , and 

T C free . initx is the start point, goalx is the target 

point, randx is the random point, 

and Crand freex  . 

Then we start to select the new node. Randomly 

generate a node randx , we calculate the distance 

between randx and all nodes in the tree, assuming 

that nearx is the closest node in the tree 

to randx . Dis i j(x ,x ) is geometric distance of two 

nodes ， here we use Euclidean distance. We 

have Dis( ) Dis( )near rand randx ,x x,x . On the 

straight line between the point randx  and nearx , a 

node point newx is defined and the condition met 

that Dis( )near randx ,x =ρ ,and step ρ>0 . Then 

parent node of xnear , xnear  and xnew , the three  
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Figure 4. Algorithm flow chart. 

 

nodes form a corner, in order to ensure that the path 

is smooth, we define that angle of the corner must 

be greater than 135°,if not, reselect a new node. 

Final step is probability selection. Calculate the po-

tential change V(x , x )near new  between 

xnear and xnew ; if V(x , x ) 0near new  , newx is add-

ed to the tree, otherwise the probability of being 

selected is 
2

x x
P exp

2

near new

k

 
  

 
. If there is no 

new node, then reselect randx . Repeat the above 

steps. The algorithm flow chart is as follows, 

Extend _ Tree(T) Reached indicates that the new 

node of the tree has reached the target point. 

 

5 Simulation 
 

In this section, we conducted simulation experi-

ments to compare the efficiency of the different al-

gorithms, security level and length of the paths. 
Simulation software: Matlab 7.0; computer operat-

ing system: Windows XP, CPU is Inter Core i3, fre-

quency is 3.3GHz. Assuming that the size of envi-

ronment is50 50 , 0.01δ  ， 1 2k  . 

Firstly, under the same conditions we compare RRT 

algorithm, A* algorithm and proposed algorithm to 

test the computation time, path length and other fac-

tors. There are 13 threats, the threat intensity is de-

termined by the quantity of electric charge, which 

are +1C and +2C, respectively, the target point is -

10Cand the aircraft is +1C. 
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Figure 5. RRT algorithm. 
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Figure 6. Proposed algorithm and A* algorithm. 
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Table 1. Algorithm performance comparison 

 

Algorithm 
Time length Electric potential 

s km J 

Proposed 0.9 78 -27.0476 

A* 9.4 76 -26.3611 

RRT 4.3 92 -31.8905 

 
 

As shown above, nodes are given randomly in RRT 

algorithm. The biggest advantage of this way is its 

strong ability to search in the unknown space, but as 

most of the search is invalid, computational costs 

have also increased dramatically, and the generated 

path is not optimal. In Fig. 6, the blue line repre-

sents the path generated by the A* algorithm, and 

the red line is generated by the proposed algorithm. 

Since the electric potential value reflects the attrac-

tion of the target point, the lower the absolute value 

of the electric potential value is, the shorter the 

length of the path. It is evident that, A* algorithm 

(here the Manhattan distance as the heuristic func-

tion) can find the shortest path to the target point, 

but in the complex environment, calculation time is 

the longest, and the algorithm does not consider the 

aircraft's motion constraints. The path generated by 

proposed algorithm is quite short and smooth, 

whereas the calculation time is the shortest. 

Secondly, we compare the security of the paths gen-

erated by the three methods according to the above 

simulation results. Taking into account the aircraft's 

dynamic performance and the unknown factors in 

the environment, the closer proximity of threat, the 

more dangerous it is. Therefore, it is necessary to 

evaluate the influence of all the threats on each 

node of the path. We proposed evaluation method, 

evaluation function is: 

 

rV V , (0, )i

i

n n
o

o

0 ii=1 i=1

threat i

q
= =

4πε r
       (16) 

 

Assuming that the center of threat is at the origin of 

the coordinate frame, the electric potential along the 

gradient direction is shown in Fig. 7. The closer 

proximity to threat, the higher the intensity of threat 

is. When close to the center of threat, the threat in-

tensity is increased rapidly, so, when the distance is 

greater than 5, the threat gradually becomes 0. 
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Figure 7. Threat intensity of different electric 

charges.  
 

In order to compare the safety level of the paths, 

threat intensity is calculated as follows: the coordi-

nate of goalx  as the center of the circle, draw circles 

with different radii respectively; as the radius length 

is an arithmetic sequence, there are a series of inter-

sections between each circle and the path, so take it 

as a data point. We can get thus a number of points 

from each path. According to the above formula, we 

calculate each data point and add them together as 

the intensity of threat. 

As shown in Fig. 8, the number of data points and 

the threat intensity are linearly related. In this paper, 

the threat intensity of the path generated by the al-

gorithm is approximately equal to that of the RRT 

algorithm, and it is less than the A* algorithm, 

which indicates that the paths are far from threat, 

and that the security of paths is better. 
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Figure 8. Comparison of three algorithm threat in-

tensity. 

 

Thirdly, we test the algorithms in “chasm” area. 

Chasms area is narrow low-cost region surrounded 

by the increasing cost. Because RRT makes sam-

pling randomly, it is hard for the algorithm to exact-

ly select the point in a narrow region. 

As we can see, the circular region shown in Fig. 9 

represents the chasm area. RRT cannot make sam-

pling in such narrow regions. The path generated by 

the proposed algorithm can pass through the area 

although it failed several times. Among collected 

failure times in 50 tests, there are 36% of failure 

times in the proposed algorithm while in the RRT 

there is 96%. Proposed algorithm performance in 

the test is not very good. 
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Figure 9. RRT in chasm area. 
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Figure 10. Proposed algorithm is tested in chasm 

area for the first time. 
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Figure 11. Proposed algorithm is tested in chasm 

area for the third time. 

 

Finally, we conducted the local minimum test, com-

pared the proposed algorithm with the RRT-A* al-

gorithm. There are 6 threats arranged in the form of 

anti “C”. The start point coordinate is (1,22) , and 

the target point is (30,20) . The threats and target 

points are 1C and -10C, respectively. 

The constraint condition is 3 4  . In Fig. 12, 

the algorithm does not consider the motion con-

straints, and the generated path is much worse than 

that of Fig 13. The local minimum test shows that 

the RRT-A* algorithm improves the RRT algorithm 

by heuristic function, but local minimum problem 

has not been well solved. Proposed algorithm can 

effectively solve the problem by the probability se-

lection mechanism. 
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Figure 12. Proposed algorithm local minimum test 

without constraint condition. 
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Figure 13. Proposed algorithm local minimum test 

under constraint condition. 
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Figure 14. RRT-A* algorithm local minimum test. 

 

6    Conclusion 

 

The traditional method is not very suitable for the 

path planning problem in complex environment and 

high-dimensional space. Inspired by the principle of 

the electric potential energy and distribution princi-

ple of the electric potential field, the environmental 

model and probability selection mechanism were 

established, and finally the new path planning 

method was also proposed. It is worth mentioning 

that this method has high computational efficiency, 

but also applicability of the algorithm in complex 

environment and high-dimensional space is verified. 

Besides, the study of this paper shows that the prin-

ciple of the electric potential energy can provide a 

new mechanism for path planning. However, for 

real-time planning problems, further studies are 

needed.  

 

References 

 
[1] Israel, L., Flores, G., Salazar, S., et al.: Dubins 

path generation for a fixed wing UAV, Interna-

tional Conference on Unmanned Aircraft Sys-

tems (ICUAS) Orlando, FL, USA, 2014, 339-

346. 

2 Yi, Y., Wang, Z.: Robot localization and path 

planning based on potential field for map 

building in static environments, Engineering 

Review, 35 (2015), 2, 171-178. 

3 Robert, J. S., Peggy, G. I. S., Clickstein, et al.: 

Robust algorithm for real-time route planning, 

IEEE Transaction on Aerospace and Electronic 

System, 36 (2000), 3, 869-878. 

4 Shamsudin, H. C., Abidin, A. F. Z., Irawan, A., 

et al.: A Fast discrete gravitational search al-

gorithm, Fourth International Conference on 

Computational Intelligence, Modelling and 

Simulation, 2012, 24-28. 

[5] Tuncer, A., Yildirim, M.: Dynamic path plan-

ning of mobile robots with improved genetic 

algorithm, Computer Electrical Engineering, 

36 (2012), 1564-1572. 

[6] Chaari, I., Koubaa, A., Bennaceur, H., et al.: 

Smart PATH: A hybrid ACO-GA algorithm for 

robot path planning, Proceedings of 2012 

IEEE Congress on Evolutionary Computation 

(CEC 2012) Brisbane, QLD, Australia, 2012. 

[7] Spears, W. M., Spears, D. F., Kerr, W., et al.: 

An overview of physicomimetics, Lecture Notes 

In Computer Science-state of the Art Series, 

3342 (2005), 84-97. 

[8] Birbil, S. I., Fang, S. C.: An electromagnetism 

like mechanism for global optimization, Jour-

nal of Global Optimization, 25 (2003), 3, 263-

282. 



248 H. Renke, W. Ruixuan et al.: A new path planning approach… 
______________________________________________________________________________________________________________________ 

 

[9] Formato, R. A.: Central force optimization: A 

new nature inspired computational framework 

for multidimensional search and optimization, 

Nature Inspired Cooperative Strategies for Op-

timization, 129 (2008), 221-238. 

[10] Lavalle, S. M., Kuffner, J. J.: Randomized ki-

nodynamic planning, International Journal of 

Robotics Research, 20 (2001), 3, 378-400.  

[11] Erion, P., Kostas, E. B., Brjan, Y. C., et al.: 

Sampling-based roadmap off trees for parallel 

motion planning, IEEE Transactions on Robot-

ics, 4 (2005), 21, 587-608. 

[12] Li, J., Liu, S., Zhang, B.: RRT-A* Motion plan-

ning algorithm for non-holonomic mobile ro-

bot, SICE Annual Conference 2014 Hokkaido 

University, Sapporo, Japan, 2014, 1833-1838. 

[13] Lee, D., Shim, D. H.: Spline-RRT* based opti-

mal path planning of terrain following flights 

for fixed-wing UAVs, The 11th International 

Conference on Ubiquitous Robots and Ambient 

Intelligence (URAI 2014) Hilton, Kuala Lum-

pur, Malaysia, 2014, 257-261. 

[14] Leel, D., Song, H., Shim, D. H..: Optimal path 

planning based on spline-RRT* for fixed-wing 

UAVs operating in three-dimensional environ-

ments, International Conference on Control, 

Automation, and Systems Gyeonggi-do, Korea, 

2014, 22-25. 

[15] Vieira, H. L., Jr, V. G.: Improving RRT’s effi-

ciency through motion primitives generation 

optimization, 2014 Joint Conference on Robot-

ics: SBR-LARS Robotics Symposium and Ro-

bocontrol, 2014, 37-42. 

[16] Karaman, S., Frazzoli, E.: Sampling-based al-

gorithms for optimal motion planning, Interna-

tional Journal of Robotics Research, 30 (2011), 

7, 846-894. 

 


