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SQUARE EULERIAN QUADRUPLES

Allan J. MacLeod

Abstract. We consider the problem of finding four different rational
squares, such that the product of any two plus the sum of the same two
always gives a square. We give some historical background to this problem
and exhibit the small number of solutions found so far.

1. Introduction

The genesis of this work is the following section taken from Chapter 19
in Volume 2 of Dickson’s “History of the Theory of Numbers” [1].

Fermat treated the problem to find four numbers such that the product of
any two increased by the sum of those two gives a square. He made use of
three squares such that the product of any two increased by the sum of the
same two gives a square. Stating that there is an infinitude of such sets of
three squares, he cited 4, 3504384/d, 2019241/d, where d = 203401. However,
he actually used the squares 25/9, 64/9, 196/9, of Diophantus V, 5, which have
the additional property that the product of any two increased by the third gives
a square. Taking these three squares as three of our numbers and x as the
fourth, we are to satisfy

34

9
x +

25

9
= �,

73

9
x +

64

9
= �,

205

9
x +

196

9
= �.

This “triple equation” with squares as constant terms is readily solved. T.L.
Heath found x to be the ratio of two numbers each of 21 digits.

This section generated several questions:

1. Is there “an infinitude of such sets of three squares”?
2. Where did the example 4, 3504384/d, 2019241/d come from?
3. What is the x found by Heath and can we find a smaller value - smaller

meaning fewer digits in its rational form?
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4. What would the solution have been with the original example of Fer-
mat?

5. Can we use the set of 3 squares to find a fourth square, so that the 4
squares are a solution to Fermat’s problem?

Given a set {a1, a2, . . . , am} such that aiaj+ai+aj = � for 1 ≤ i < j ≤ m,
Dujella [2, 3] called such a set an Eulerian m-tuple, in honour of Euler who
found the first example of a quadruple of numbers.

To be historically accurate, however, we should note that what Euler was
considering was sets {b1, b2, b3, b4} with bibj − 1 = �. This is related to the
present problem since

aiaj + ai + aj = (ai + 1)(aj + 1) − 1

2. Infinitude of Eulerian Triples of Squares

We wish to find x, y, z such that

x2y2 + x2 + y2 = a2,(2.1)

x2z2 + x2 + z2 = b2,(2.2)

y2z2 + y2 + z2 = c2.(2.3)

Rather than have a complicated analysis, we show that there are an infinite
number of solutions with x = 2.

Thus we look for y, z with

(2.4) 5y2 + 4 = a2, 5z2 + 4 = b2, y2z2 + y2 + z2 = c2.

Rational solutions of 5t2 +4 = � can be parameterised as t = 4f/(5−f2),
with f rational. Thus y = 4m/(5 − m2) and z = 4n/(5 − n2), which can be
substituted into the third part of (1).

We find that m and n must satisfy

d2 = m2n4 + (m4 − 4m2 + 25)n2 + 25m2

for d rational.
Define d = Y/m and n = X/m, giving the quartic relation

Y 2 = X4 + (m4 − 4m2 + 25)X2 + 25m4

This quartic has an obvious rational point X = 0, Y = 5m2, and so is
birationally equivalent to an elliptic curve if m 6= 0. Using the standard
method described by Mordell [4], we find the elliptic curve (with m = p/q)
(2.5)
J2 = K3 −2(p4 −4p2q2 +25q4)K2 +(p8 −8p6q2 −34p4q4 −200p2q6 +625q8)K

with the relation n = J/(2pqK).
The curve has 3 points of order 2 with J = 0, which lead to z = 0, so we

need other rational points for non-trivial solutions. Evidence suggests that



SQUARE EULERIAN QUADRUPLES 3

the torsion subgroup is just isomorphic to Z2×Z2, but this would be difficult
to prove. If true, we need the curves to have rank greater than 0 for solutions.

If we experiment, we quickly find that m = 1/2 gives a curve J2 =
K3 − 770K2 + 146625K which has rank 1 with generator P = (245, 2100).
m = 1/2 gives y = 8/19 and the point P gives n = 15/7 and z = 21, and it
easily checked that {4, 64/361, 441} is a square Eulerian triple.

Since the curve has rank 1 we have that integral multiples of P are also
rational points on the curve. For example, doubling the point P leads to
the values K = 187489/441, J = 651232/9261 and so n = 376/9093 and an
alternative z of 13675872/413271869. There are thus an infinite number of
Eulerian triples with x = 2, y = 8/19.

3. Numerical Values

It is totally unclear from Fermat’s original work where his numerical ex-
ample involving 4 comes from, as he just states this result with no supporting
algebra or computation. As we saw in this last section, there are much simpler
sets which include 4.

We now consider the system

(3.1)
34

9
x +

25

9
= �,

73

9
x +

64

9
= �,

205

9
x +

196

9
= �.

We first write

34

9
x +

25

9
=

(

5

3
+ fx

)2

which gives x = 2(17 − 15f)/(9f2).
Substituting this into the second and third equations, we find the following

two equations must have rational solutions:

2(288f2 − 1095f + 1241) = e2,

2(882f2 − 3075f + 3485) = h2.

Now, in the first equation, f = 17/15 gives e = 136/5, so, if we substitute
e = 136/5 + g(f − 17/15), we can solve to find

f =
17g2 − 816g − 23058

15(g2 − 576)

and if we substitute this into the other quadratic relation we find, clearing
denominators, that we must have a rational solution to
(3.2)
s2 = 14161g4 + 731544g3 + 28206441g2 + 639486144g + 6471280836 = G(g)

Since 14161 = 1192 we can attempt to complete the square, by form-
ing G(g) − (αg2 + βg + γ)2. Simple arithmetic shows that if α = 119, β =
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21516/7, γ = 919177353/11662 then

G(g) − (αg2 + βg + γ)2 =
1581221503125(13328g + 22275)

136002244

Thus, we have a square solution when g = −22275/13328, which gives
f = 142415972261/56567733755 and finally

x =
−459818598496844787200

631629004828419699201

where both numerator and denominator have 21 digits.
Because equation (3.2) has leading coefficient 1192 it can be transformed

into an elliptic curve. Mordell’s method leads to the curve j2 = k3+20478k2+
99801585k with

g =
3(105j − 44(163k + 2348685))

34(49k + 560880)
.

This curve has 3 points of order 2 with k = 0, −7999, −12483 all with
j = 0. The first leads to x = 0 whilst the other two give undefined values for
f . Thus we need points of infinite order. Cremona’s mwrank program shows
the rank to be 2 with generators (−9984, −222768) and (−8379, −114912).
The first gives g = −543/8, f = 269/147 and x = −50176/72361, significantly
simpler than Heath’s value.

With regard to the {4, 3504384/203401, 2019241/203401} triple of squares
we can perform an identical analysis. The corresponding value of x from
completing the square is

x =
−28448417598272924003671204878289354665765410185967616

36828906078832095599985737816846193226885934523284161

where both numerator and denominator have 53 digits.
Attempts, as before, to find a smaller value of x lead to the elliptic curve

v2 = u3 + 10450883424805u2 + 26734915668323655104674200u.

The completing the square values lead to a point of infinite order on this
curve with u = −9390695817653070336/2019241. Investigations with APECS,
mwrank, and SAGE were unable to find other generators. Both APECS and
mwrank give 3 as an upper bound for the rank. The root number is −1, so the
parity conjecture suggests the rank is 1 or 3, but we are unable to be exact.

4. Square Quadruples

We now consider the problem of finding {x1, x2, x3, x4} with all 6 combi-
nations x2

i x2
j + x2

i + x2
j = � for i 6= j.

Consider first finding a triple (t, y, z) satisfying the square condition for
each possible pairing.
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The rational solutions to (t2 + 1)s2 + t2 = � can be parameterized by
s = 2 t m/(t2 + 1 − m2) with m ∈ Q, so let

(4.1) y =
2 t m

t2 − m2 + 1
, z =

2 t n

t2 − n2 + 1
,

where m, n ∈ Q.
We find that y2z2 + y2 + z2 = � requires

(4.2) m2n4 + (m4 − 4m2 + t4 + 2t2 + 1)n2 + m2(t4 + 2t2 + 1) = �.

Considering m and t as parameters, this quartic in n has an obvious
solution when n = 0, so is birationally equivalent to an elliptic curve. After
some standard algebra we find the elliptic curve to be

(4.3) v2 = u(u − T1)(u − T2)

where

T1 = (m2 + 2m + t2 + 1)(m2 − 2m + t2 + 1),

T2 = (m2 + 2m − t2 − 1)(m2 − 2m − t2 − 1)

with the reverse transformation

(4.4) n =
v

2mu
.

This elliptic curve often has rank zero, but we can find enough curves with
strictly positive rank to generate as many triples as we need. For example,
m = 3, t = 1 gives a curve with rank 1 and generator (4, 54). This gives
n = 9/4 and the triple (1, 6/7, 72/49). It seems (numerically) that this curve
has rank 0 roughly half the time, as expected.

To expand to a fourth value, we require to find w with (k2 +1)w2 +k2 = �
assuming that k is a known fixed value from (t, y, z). From before, w =
2rt/(t2 + 1 − r2), which we substitute into (y2 + 1)w2 + w2 = �, to find that
r must satisfy

(4.5) y2r4 + (2t2(y2 + 2) − 2y2)r2 + t4y2 + 2t2y2 + y2 = �.

This quartic has an obvious solution when r = 0, so is birationally equiv-
alent to an elliptic curve. We find the curve

(4.6) V 2 = U3 + (t2(2y2 + 1) + y2)U2 + (t4y2(y2 + 1) + t2y2(y2 + 1))U

with r = V/(y(t2(y2 + 1) + U)).
This elliptic curve can be easily transformed to have integer coefficients.

We first restricted our programs to searching for integer points on the curve,
some of which lead to values of w different from t, y, z. The final test is to
compute w2z2 + w2 + z2 and to test whether this is square.

This methodology was coded using the simple multiple precision UBASIC

system, and run for several hours on a PC. The code finds hundreds of exam-
ples with 5 of the 6 identities equal to a square, but only one example with
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all 6 square. This solution is

{

(

3

5

)2

,

(

224

107

)2

,

(

8

5

)2

, 182

}

.

We then coded the method using Pari-gp and found rational generators
of the elliptic curve. This, however, did not discover a single extra solution
despite extensive computing. To find further solutions, if possible, we had to
specialize the search procedure as follows.

Numerical investigation showed that u = m2(m + 2)2 − (t2 + 1)2 would
give a point on the curve (4.3) if

4m2 − (t2 + 1)2 = .

This quadric has a solution when m = 5(t2 + 1)/6 and the standard
quadric parameterisation method gives

(4.7) m =
(t2 + 1)(5k2 − 16k + 20)

6(k2 − 4)
.

Doing all the various substitutions eventually gives

(4.8) n =
8(k − 1)(k − 4)

5k2 − 16k + 20

and all of these can be substituted into (4.1) to give a parametric triple (t, y, z)
with

y =
12t(4 − k2)(5k2 − 16k + 20)

(5k2 − 16k + 20)2t2 − (k2 + 16k − 44)(11k2 − 16k − 4)
,

z =
16t(k − 1)(k − 4)(5k2 − 16k + 20)

(5k2 − 16k + 20)2t2 − 3(k2 − 8k + 4)(13k2 − 56k + 52)
.

All this can be plugged into (4.6) but the resulting equation is horrible
and there is no point printing it out. This approach gives only one elliptic
curve per set of parameters to search for solutions and is thus faster. With
this methodology we found the second solution

{

(

352

3419

)2

,

(

3

13

)2

,

(

72

199

)2

,

(

10

13

)2
}

.
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Kvadratne Eulerove četvorke
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