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ON CRUSSOL’S METHOD FOR
∑4

i=1 Xn
i =

∑4
i=1 Y n

i , n = 2, 4, 6

Allan J. MacLeod

Abstract. Crussol gave a method for computing non-trivial integer
solutions to the equations in the title. We show that the method can be
linked to finding points on either of two possible elliptic curves, both of
which have rank greater than zero.

1. Introduction

Towards the end of the first section in Chapter XXIV of [1], there is
mention of a method to find a non-trivial solution of

(1.1)

4
∑

i=1

Xn
i =

4
∑

i=1

Y n
i n = 2, 4, 6

in integers. A non-trivial solution is one where the integers Xi and Yi are not
just a permutation of each other. The method is attributed to Crussol from
1913, but with no first name or even a first initial given.

As is standard in Dickson’s History, the reference to the paper just gives
the journal and the date. This is the 1913 volume 8 of Sphinx-Oedipe which
the present author has been unable to access.

In a survey article from 1950, Gloden [2] states that Crussol is a pseu-
donym for a mathematician called Roux, but, again, with no indication of
a first name or letter. Gloden does state that the Crussol/Roux method is
“élégante”, which the method certainly is. The present work puts the method
into a more general form and uses the theory of elliptic curves to allow us to
derive solutions using standard software.

In the method, we take

X1 = x + a, X2 = x − a, X3 = y + b, X4 = y − b

and

Y1 = z + a, Y2 = z − a, Y3 = t + b, Y4 = t − b
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and we can assume, without loss of generality, that x, y, z, t, a, b ∈ Q. A purely
integer result can be found by suitable scaling of a rational solution.

Substituting into (1.1) with n = 2, gives the equation

(1.2) x2 + y2 = z2 + t2.

With n = 4, a non-trivial solution requires

x4 + 6a2x2 + y4 + 6b2y2 = z4 + 6a2z2 + t4 + 6b2t2

and using t =
√

x2 + y2 − z2 this reduces to

4(x + z)(z − x)(y2 − z2 − 3(a2 − b2)) = 0

and a non-trivial solution requires, therefore,

(1.3) y2 − z2 = 3(a2 − b2).

For n = 6 we derive a complicated expression, where we use the t formula
above and y =

√
z2 + 3a2 − 3b2 to reduce the equation to

(1.4) x2 + z2 = 2a2 + 8b2.

Thus, to use Crussol’s method we have to consider 3 quadrics in P5.

2. Crussol’s Method

Dickson gives a description of Crussol’s method which we summarize in
this section. Crussol considers the equation (1.2) and combines (1.3) and (1.4)
into the equivalent

(2.1) y2 + t2 − x2 − z2 = 6(a2 − b2), x2 + y2 + z2 + t2 = 10(a2 + b2).

Then, he/she defines

x = αq − βp, y = αp + βq, z = αq + βp, t = αp − βq

which automatically satisfy (1.2). The equations in (2.1) become

(2.2) 3(a2 − b2) = (p2 − q2)(α2 − β2), 5(a2 + b2) = (p2 + q2)(α2 + β2).

He/she then defines

α = 2δ + γ, β = 2γ − δ, a = γp + δq, b = γq − δp

which satisfies the right-hand equation in (2.2). We also have α2 + β2 =
5(γ2 + δ2).

The left-hand equation becomes

γ2 − 2(p − 2q)(2p + q)

3(p2 − q2)
γδ − δ2 = 0.

For this to give rational solutions, the discriminant must be a rational
square so that

13p4 − 12p3q − 17p2q2 + 12pq3 + 13q4 = .
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A simple solution is p = 3, q = 2, which gives γ = 3, δ = 5. Using the
various definitions and clearing common factors, we find

2n + 16n + 21n + 25n = 5n + 14n + 23n + 24n

for n = 2, 4, 6.
A second simple solution is p = 1, q = 6, giving γ = 15, δ = 7 and

42n + 47n + 104n + 125n = 13n + 70n + 96n + 127n

for n = 2, 4, 6.

3. Elliptic Curve Method

(1.2) can be written

(3.1)

(

z
t

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

and since we want x, y, z, t ∈ Q, we must have cos θ and sin θ also rational.
Thus,

(3.2) cos θ =
1 − j2

1 + j2 , sin θ =
2j

1 + j2

with j ∈ Q.
(1.3) can be written

(3.3)

(

z√
3a

)

=

(

cos µ − sin µ
sin µ cos µ

)(

y√
3b

)

so that

(3.4) z = y cos µ − b(
√

3 cos µ), 3a = y(
√

3 sin µ) + 3b cos µ

Since a, b, y, z ∈ Q, we must have cos µ and
√

3 sin µ rational. Let cos µ =
F/H and

√
3 sin µ = G/H , with F, G, H ∈ Z, so that

3F 2 + G2 = 3H2.

Using the standard method of parameterizing a quadric, we have

(3.5) cos µ =
3k2 − 1

3k2 + 1
,

√
3 sin µ =

6k

3k2 + 1

with k ∈ Q.
Thus

(3.6) y =
a(3k2 + 1) + b(1 − 3k2)

2k
, z =

a(3k2 − 1) − b(3k2 + 1)

2k
.
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Now, z = ((1 − j2)x − 2jy)/(1 + j2), and substituting these two formulae
for y and z, we have a slightly more complicated formula for x in terms of
a, b, j, k,
(3.7)

x =
a((j2+1)(3k2−1) + 2j(3k2+1)) − b((j2+1)(3k2+1) + 2j(3k2−1))

2k(1 − j2)
.

Substituting into (1.4) gives the quadratic equation in a and b

(3.8) a2 − f1(j, k)

f2(j, k)
ab + b2 = 0

where

f1 = 2(j2 + 1)(j(3k2 + 1) + 3k2 − 1)(j(3k2 − 1) + 3k2 + 1)

and

f2 = j4(9k4 − 10k2 + 1) + 2j3(3k2 + 1)(3k2 − 1) + 2j2(9k4 + 10k2 + 1)

+ 2j(3k2 + 1)(3k2 − 1) + 9k4 − 10k2 + 1.

The equation (3.8) has rational solutions for a, b if f2
1 − 4f2

2 is a rational
square. After removing square factors, we must have D ∈ Q such that

(3.9) D2 = (9k2(j2 + 1) − 5(j − 1)2)(5k2(j + 1)2 − j2 − 1)

or, written alternatively as

(3.10) D2 = (j2(5k2 − 1) + 10jk2 + 5k2 − 1)(j2(9k2 − 5) + 10j + 9k2 − 5).

The quartic (3.9) is made square with k = 1, whilst (3.10) is a square
when j = 2. Thus both quartics are birationally equivalent to elliptic curves.
Using standard methods described by Mordell in [3], we find that (3.9) is
equivalent to the curve

(3.11) Ej : V 2 = U(U + (j2 − 4)2)(U + (4j2 − 1)2)

defined over Q(j), with k = 1 + 1/f where

(3.12) f =
V − (7j2 + 5j + 7)U + (j2 − 4)2(4j2 − 1)2

2(j + 2)(2j + 1)(U − (j − 2)2(2j − 1)2)
.

The quartic (3.10) is equivalent to

(3.13) Ek : V 2 = U3 − 4(45k4 − 59k2 + 5)U2 + 100(k2 − 1)2(9k2 − 1)2U

defined over Q(k), with j = 2 + 1/g and

(3.14) g =
V + (7 − 33k2)U + 60(k2 − 1)2(9k2 − 1)

10(9k2 − 1)(U − 9(k2 − 1)2)
.
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4. Elliptic Curve Properties

The curves Ej have discriminant

∆ = 3600(j + 1)2(j − 1)2(j + 2)4(j − 2)4(j2 + 1)2(2j + 1)4(2j − 1)4

so we must assume |j| 6= 1, 2, 1/2 for a non-singular curve.
The curves have 3 points of order two at (−(j2 − 4)2, 0), (−(4j2 − 1)2, 0)

and (0, 0). Investigation finds points of order 4 at

( (j2 − 4)(4j2 − 1) , ± 5(j2 − 1)(j2 − 4, (4j2 − 1) )

and

( −(j2 − 4)(4j2 − 1) , ± 3(j2 − 4)(4j2 − 1)(j2 + 1) )

and we now show that the torsion subgroup is isomorphic to Z/2Z ⊕ Z/4Z.
The presence of 3 points of order two and 4 points of order 4 means that

the only alternative torsion structure is Z/2Z ⊕ Z/8Z. Suppose P is a point
of order 8, 2P must have order 4, and the form of the elliptic curve gives that
the U -coordinate of 2P must be a rational square.

Consider first d2 = (j2 − 4)(4j2 − 1) = 4j4 − 17j2 + 4. This is birationally
equivalent to the elliptic curve G2 = H3 + 136H2 + 3600H with j = 8H/G.
This curve has rank 0 using ellrank. Thus the only rational points are the
torsion points (0, 0), (−36, 0), (−100, 0), (60, ±960) and (−60, ±240). These
points only give j = ±2, ±1/2, which have already been excluded as giving
singular curves.

For d2 = −(j2 − 4)(4j2 − 1) = −4j4 + 17j2 − 4, j = 1 gives d = 3,
so the quartic is birationally equivalent to the elliptic curve G2 = H(H +
144)(H + 225) with j = (9H + G)/(G − 9H). This curve also has rank
0, and 7 finite torsion points (0, 0), (−144, 0), (−225, 0), (180, ±4860) and
(−180, ±540). These points all lead to values of j which give a singular elliptic
curve.

Thus all non-singular curves have Z/2Z ⊕ Z/4Z torsion.
The denominator of (3.12) is zero when U = (j −2)2(2j −1)2 which gives

V = ±5(j − 2)2(j2 + 1)(2j − 1)2. Comparing this with the above torsion
points, we only have equality when |j| = 0, 1, 2, 1/2, so, for all other values of
j this must be a point of infinite order. Numerical tests suggest that the rank
is often exactly 1 so no other general points of infinite order are possible.

For the curves Ek, the discriminant is

∆ = 2123254k2(k + 1)4(k − 1)4(3k + 1)4(3k − 1)4(10 − 9k2)(10k2 − 1)

so we have a singular curve when |k| 6= 0, 1, 1/3.
The cubic part of Ek has 3 rational roots only for the rational value k = 0,

which gives a singular curve. So, non-singular curves only have one point of
order 2, namely (0, 0). It is straightforward to show that there are two points
of order 4, at ( 10(k2 − 1)(9k2 − 1), ±60k(k2 − 1)(9k2 − 1) ).
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The transformation (3.14) has a zero denominator when U = 9(k2 − 1)2

which gives V = ±3(k2 − 1)2(81k2 + 1).

5. Solutions

We can derive parametric solutions from both the Ej and Ek curves by
using the formulae for points of infinite order. For example, for Ej with point
( (j + 2)2(2j + 1)2, −5(j + 2)2(j2 + 1)(2j + 1)2 ), we just follow through all the
various formulae and eventually arrive at Table 1.

Table 1. Parametric solution for Xi, Yi

i Xi Yi

1 4j5 − 4j4 − 13j3 + 15j2 + 4j + 4 4j5 − 8j4 − 13j3 − 32j2 + 4j
2 4j5 + 8j4 − 13j3 + 32j2 + 4j 4j5 + 4j4 − 13j3 − 15j2 + 4j − 4
3 4j4 − 32j3 − 13j2 − 8j + 4 4j5 + 4j4 + 15j3 − 13j2 − 4j + 4
4 4j5 − 4j4 + 15j3 + 13j2 − 4j − 4 4j4 + 32j3 − 13j2 + 8j + 4

Similarly, for the Ek curves we find the solutions in Table 2.

Table 2. Another parametric solution for Xi, Yi

i Xi

1 9477k5 + 30051k4 + 8190k3 + 1938k2 − 1027k + 11
2 13122k5 − 12636k4 − 11844k3 − 4056k2 + 2k + 52
3 25515k5 + 243k4 + 162k3 − 7950k2 − 77k + 27
4 2916k5 − 42930k4 + 3816k3 + 1956k2 + 948k + 14

i Yi

1 25515k5 − 243k4 + 162k3 + 7950k2 − 77k − 27
2 2916k5 + 42930k4 + 3816k3 − 1956k2 + 948k − 14
3 9477k5 − 30051k4 + 8190k3 − 1938k2 − 1027k − 11
4 13122k5 + 12636k4 − 11844k3 + 4056k2 + 2k − 52

Parametric solutions, however, miss out all the points on Ej and Ek which
do not come from an algebraic form. Analysis of sample curves with Denis
Simon’s excellent ellrank software package [5] shows curves can have ranks
of the order 3 − 5 reasonably often, and higher ranks on rare occasions. We
use the software package Pari-gp for all computations.
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We wrote a Pari program which took a rational value of j or k, and used
ellrank to find the rank and generators of Ej or Ek. Using these generators
G1, . . . , Gr and the torsion points, we formed points P on the curves with

P = n1G1 + n2G2 + . . . + nrGr + T

where |ni| ≤ L, for some small integer limit L, and T is a torsion point.
From this we computed x, y, z, t, a, b and the solutions Xi and Yi. Simple

permutation solutions were rejected.
A huge number of different solutions can be generated very quickly. Table

3 gives solutions with one of the integers in the range 1 − 9. As yet, we have
not found a primitive solution starting with an 8.

Table 3. Numerical solutions

Xi Yi

(1, 400, 421, 882) (216, 245, 482, 881)
(2, 16, 21, 25) ( 5, 14, 23, 24)
(3, 2693, 2986, 3620) (492, 2411, 3338, 3475)
(4, 195, 223, 271) (41, 173, 249, 260)
(5, 29299, 32031, 37124) (3455, 27396, 35221, 35491)
(6, 4153, 4355, 7864) (1079, 3504, 4790, 7853)
(7, 369, 394, 635) (191, 229, 457, 630)
(9, 389, 448, 562) (103, 331, 504, 542)
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O Crussolovoj metodi za
∑4

i=1 Xn
i =

∑4
i=1 Y n

i , n = 2, 4, 6
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Sažetak. Crussol je dao metodu za računanje netrivijalnih
cjelobrojnih rješenja jednadžbe iz naslova. Pokazujemo da se ta
metoda može povezati s nalaženjem točaka na dvjema eliptičkim
krivuljama, koje obje imaju pozitivan rang.
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