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INTRODUCTION
T here are two things that have motivated me to
write this type of paper for this journal. The first
one is the supposition that the investigation and
presentation of numerous forms of high order surfaces
in projective space fall into the discipline of construc-
tive geometry. The second one is the fact that by using a
computer and combining methods of synthetic and ana-
lytic geometry we can achieve good results more easily.
In this paper I have used the above mentioned proce-
dure for one class of quartics with a double line. The
forms of these quartics could be elaborated in detail by
using method of differential geometry, but it is beyond
the concept of this paper.

1. THE PEDAL SURFACES OF 1°" ORDER AND 2™
CLASS CONGRUENCES
Let K " be one n" order and m* class congruence and P
any finite point in the projective space P?. Between the
rays of the K" and the planes of the sheaf {P} the (1,1)
correspondence is defined. Corresponding rays and
planes are perpendicular. (The perpendicularity in P?
derives from polarity with respect to the absolute conic

- pravcem kuspudalne tocke, siucajew raspada i de?i:’
generacr;e) od konh su neka ﬂustnrana konst ik

pravcemka;e sadrze apsolutu, kuspidalne ocke

[7, p.357]). The locus of intersections of the correspond-
ing rays and planes is a surface which is called the pedal
surface of congrence K" for the pole P. According to
Kranjeevidé[2] it is (2n+m)™ order surface which passes
n times through the absolute conic.

The purpose of this paper is to elaborate some pedal
surfaces of congruence K *. It is shown by Sturm([9, p.37]
that the rays of congruence K,? can be determined as
bisecants of a broken up space curve of 3* order. Let ¢
be a conic and d a line having a unique common point
O. Let ¥ be the plane of the conic ¢, and @ be the plane
determined by the line d and the tangent o to the conic ¢
at the point O (Fig.1). If lines of the star { O} which are
not incident with planes y and @, and lines in the plane
Y which are not incident with a point O, are excluded,
the other bisecants of ¢ and d form the congruence
K ?(c,d). (Fig.2 illustrates the rising of the unique ray
through every real point, and Fig.3 the rising of two rays
in arbitrary plane when they are real).
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Singular points of K %(c,d) (points through which ' rays
of the congruence pass) lie on the ¢ and d. The rays of
K *(c,d) which are incident with a point T e d, T# O,
generate a 2™ degree cone X, determined by the vertex
T, and the conic ¢ (Fig.4). The rays of K *(c,d) which are
incident with a point T € ¢, T # O, form the pencil of
lines (T') in the plane & determined by T and d (Fig.5).
The rays of K *(c,d) which are incident with a point O
form two pencils of lines (O) in the planes Y and ®
(Fig.6).

Singular planes of K *(c,d) (planes which contain ' rays
of the congruence) are the planes of the pencil [d] and
the plane Y.

Inversions with respect to a quadric 'V, in the projective
space P*, mean transformations i,:P*—P’ where corre-
sponding points A and i,(A) are conjugate points with
respect to ‘P If lines wich pass through A and i (A) form
K 12( ¢,d) , inversion is called the quartic inversion in
space. It is Cremona transformation with singular points
on the curves d, ¢ and €%, where €° is the 6™ order space
curve of the double points of the parabolic involutions
inducted by ¥ on the rays of K *(c,d) [1].

Itis proved [1, p.192] that for every plane ¢, i, (¢) is the
4% order surface, with the double line d, which contains
¢ and €°. These surfaces, according to Sturm(8, p.315],
belong to the class of n™ order surfaces with a multiple
line with the (n-2)* order of multiplicity. According to
[4, p.1575] they form one of the four based types in
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Kummer [3] classification of quartics which pass through
conics. It was proved by Meyer([4,p.1631-1636] that the
4" order surface with a double line d contains: sixteen
simple lines, four pinch-points™ on the double line and,
besides o' conics which lie in the planes of the pencil
[d], other 128 conics which lie in 64 planes. It is shown
[1] which points and lines in the plane ¢ were trans-
formed into the mentioned lines, pinch- points and con-
ics on the surface i (¢).

Theorem 1.1.

The pedal surface ® of K *(c,d) for the pole P is the ima-
ge of the plane at infinity given by quartic inversion with
respect to K *(c,d) and any sphere with the center P.

Proof. For every point Ae P*, i (A) lies in the polar plane
of A with respect to the quadric V. For every point A~ at
infinity the polar plane with respect to sphere with the
center P is the plane through P which is perpendicular
to every line which passes through A~. Therefore, if ¥ is
a sphere with the center P, for every point A~ ¢~, i (A™)
is the intersection of the ray of K *(c,d), which passes
through A~ and the plane through P which is perpendic-
ular to that ray.

* According to Salmon [6, p.300], the pinch-points of a surface locus
are points on its double curve at which the two tangent planes coinci-
de; at a pinch -point any section, except certain sections, has a cusp.

These points Meyer[4] termed Kuspidalpunkte , and in [1] I transla-
ted them as cuspidal points. Now, I want to match the terms with [6].
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Corollary 1.1.
The pedal surface ® is the 4" order surface with the
double line d , and contains the absolute conic.

Proof. That is a direct consequence of the theorem 1.1.
and properties of the quartic inversion. Namely, it is pro-
ved [1] that for every plane ¢, quadric ¥ and K *(c,d),
i,(9) is the 4™ order surface with the double line d which
cuts ¢ at two rays of K *(c,d) and the intersection conic
of ¢and V. Since ¢ cuts a sphere in the absolute conic,
® passes through it.

Corollary 1.2.
Besides the double line d on the pedal surface ® only
four, two or none simple real lines can exist.

Proof. According to [1] sixteen simple lines of i, (¢) are
the images of the lines DC,, DC, and DE, where
{D}=dn¢, {C,.C,}=cn¢and {E,i=1,..6}=e*N¢. If ¥
is a sphere and ¢ the plane at infinity, points E, lie on
the absolute conic, so DE, are imaginary lines. The point
D is always real and C|, C, are real and distinct, real and
consecutive or a pair of imaginary points if generatrix ¢
of K *(c,d) is a hyperbola, a parabola or an ellipse. It is
clear from the definition of the transformation that a real
point is corresponding with a real point and an imagi-
nary with an imaginary point. Since it is true for points,
itis also true for lines. Since every of the lines DC,, DC,
and DE, is transformed into one conic which is an im-
age of the point D, and the two lines in the plane of the
pencil [d] hence on the surface @ four, two or none sim-
ple real lines exist if ¢ is a hyperbola, a parabola or an
ellipse.

Considering corollary 1.2. pedal surfaces of K *(c,d)
could be classified by the numbers of simple lines of
them.

Theorem 1.2.

Every plane ¢ [d], which cuts a conic c in the point C,
cuts the pedal surface ® of K *(c,d) for the pole P in the
line d and the circle with the diameter CP’ where P’ is
the normal projection of P on the plane é.

Proof. According to [1] every line 7 < & €[] is trans-
formed into two conics. One of them is the image of the

intersection point of ¢ and d, which doesn’t lie in 6, and -

the other is the image of ¢ given by generalized quadrat-
ic inversion (this inversion was described in details by
Nice[5]) in the plane & for the pole C and with respect to
the intersection conic of ¥ and 6. In conditions of the
theorem the base conic of quadratic inversion is the cir-

cle with the center P’ and ¢ is the line at infinity in the
plane 8. The image of ¢ is the locus of intersections of
perpendicular lines through C and P’ , which is the cir-
cle with the diameter CP’.

This theorem will be the basis for the constructive elab-
oration of pedal surfaces.

If either of the generatrices ¢ or d be the curve at infini-
ty, the pedal surface @, according to [1], breaks up into
the plane at infinity and one cubic surface. In other cas-
es, since the plane ¢~ is in general position with respect
to the generatrices of K *(c,d), ® could degenerate or
break up only if Ped or Pec.

2. THE PEDAL SURFACES OF A SPECIAL
CONGRUENCE K?

The purpose of this section is to investigate one class of
pedal surfaces of the type E and find the way for their
construction using Wolfram Research Mathematica®.
This special congruence is determined by the circle ¢
which lies in the plane y perpendicular to the line d.
Since drawing in Mathematica® demands parametric
equations of surfaces, K *(c,d) is connected with a right-
handed Cartesian coordinate system (O,x,3,z). The posi-
tion of generatrices of Klz(c,d) and orientations of an-

gles u and v are as in Fig.7.
A

l Fig. 7

Since
d=x=0, y=0

CE(X~0)2+)/2=02, z=0, >0 and if

P=(p.g.7)

the pedal surface of K *(c,d) for the pole P is uniquely
determined with four numbers a, p, g and r. It will be
designated ® [q, p, g, r].

It is clear that between the pencil of planes [d] and the
semiclosed interval [-0.57,0.57) one-to-one mapping

u ¢> &u) exists (Fig.8). According to theorem 1.2. eve-
ry plane &u) cuts ® [q, p, g, r] into the circle ¢ (u) with
the diameter CP’. In the plane &u) (O,1,z) is the Carte-
sian coordinate system where axis ¢, intersection of &(u)
and the plane xy, has positive orientation in the semi-
plane x>0 (Fig.8).
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Since

to(#)=2acosu and /p (%) = pcosu+ gsinu
then
ts(#) =0.5((2a+ p) cos u+ gsinx) and

R(u)= 0.5\/ ((2a—- p)cos u—gsinu)* + r* .
Therefore,

1(v) = R(z)sinv+ £5(u)

z(v)=R(#)cosv+0.5r ,ve[0,2m) (1)
are parametric equations of the circle ;(u) in the coor-
dinate system (O,t,z) in the plane 8 ().
Since '

x=rcosu and y=/sinx,
then

X(u,v) = cos u(R(u)sinv+ 75(u))

Y(u,v) =sinu(R(u)sinv+ 75(x)) 2)
z(u#,v)=R(u)cosv+0.57,

uel-0.5m,0.5n), vel0,2m)

are parametric equations of the surface @ [q, p, g, r] in
the coordinate system (O, x,),z). It is clear that v-curves
are circles in the planes &(u) of the pencil [d], and u-
-curves will be used only for drawing and they will not
be analysed.
One of the parameters q, p, g, r could be eliminated from
the equations (2), but trying to preserve the geometric
interpretation of these numbers we use the form (2).
Now, Mathematica® can draw every surface @ [q, p, g, r].
One example is shown in the Fig. 9.

In[1]:=

<<Graphics‘ParametricPlot*

<<Graphics‘Colors* :
A[RGBColor[r_,g_,b_1]:=RGBColor[r,0,0]
AlGrayLevel[x_]]:=GrayLevel[1-x]

Tla_,p_,q_]:=.5(2a Cos[ul+p Cos[ul+q Sin[u])
Rla_,p_,q_,r_1:=.55qrt[(2a Cos[ul-p Cos[ul-q Sin[u])A2+rAr2]
X[a_,p_,q_,r_]:=Cos[ul(Sin[v] R[a,p,q,r]+T[a,p,q])
Yla_,p_,q_,r_1:=Sin[ul(Sin[v] R[a,p,q,r]+T[a,p,q])
Z[a_,p_,q_,r_1:=Cos[v] R[a,p,q,rl+.5r
ParametricP1ot3D[{X[3,-2,4,1]1,Y[3,-2,4,1],2[3,-2,4,1]},
{u,-Pi/2,Pi/2,Pi/40},{v,0,2Pi,Pi/12} ,ViewPoint->{1,4.5,-3},
Boxed->False, Ticks->None,Axes->False,
ColorOutput->A,Background->GrayLevel[.2]]
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Fig.9

In order to make forms of surfaces clearer we can present
only parts of them. Generatrices of K *(c,d) and a pole P
can be drawn on @ [q, p, g, r], too. By changing a view-
point a surface could be seen in the best way. A few
examples are shown in Fig. 10. Because of the loss of
the four colours and thus reduced clarity of the pictures,
some details (points, blackening of some lines) are add-
ed to Mathematica graphics.

The further investigation of the surfaces ® [qa, p, g, 1]
(the areas of the elliptic, parabolic or hyperbolic points;
the real singular points which depend on the coordinates
D, g, r; the Gaussian and geodesic curvature; a geodesic
lines, etc.) which demands methods of differential ge-
ometry is beyond the concept of this paper, as it is said
in the introduction.

3. SOME PROPERTIES OF THE SURFACES & [a,p,q, 7l
In the cylindrical coordinate system (O, t,u,z) the system
of v-curvesi.e., circles c (u), is presented by equations:
(r-t5(2))* + (2= 0.57)2 = R* (&),

uel-0.5m,0.57) ‘ 3)

Proposition 3.1. .
@[ a,p,q,r] is symetric with respect to the plane z=0.5r.

Proof. For every center S of the c (), z,=0.5r.

Proposition 3.2.
Circles c (u)) and c (u,) meet the line d in the same

points if and only if w + u, = arctan g

p

Proof. If t=0 then from (3) the intersection points of

¢ (u) and d are (o,o,iwf,?2 (4) = 12(u) +0.57).
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If ®[a,p,q,r] doesn’t break up™ (i.e., p#0 v g #0) and
Nu,) # &u,) (i.e., u, # uy+km, ke Z)
then
12(U) = 12,() <&
p(cos2u,—cos2u,) = g(sin2u,—sin2u,) &
psin(u,+u,)sin(u,—u,) = geos(u,+u,)sin(u,—u,) <
w+u= arctan Z .

V4
In Fig.11 is one example.

Proposition 3.3.
If the special case (p > 0, g = r = 0) is excluded the
pinch-points of ®[a,r,q,r] are

(0,0,0.Sri\/O.ZSrz —a(ptp+ qz)]

If 4a(p+\p*+ & )§ P, then ®[a,p,q,r] has four,

three or two real pinch-points.

Proof. At any point T on the double line d two tangent
planes of ®[a,p,q,r] are determined by d and two
tangents of any curve on ®[a,p,q,r] which passes
through T. Therefore at Te d the two tangent planes are
the planes of two circles c(u) which pass through T.
From the proposition 3.2. it is clear that the two
tangent planes coincide for the angles u, and u,; if

() u,=05 arctanz,
V4
u, = 0.5 arctan 7_7 if —ZZO,
7 2 p
or
u,=0.5 arctanz,
V4

u;=0.5 arctanZ + Z if L0

7 2 p
Since the planes &;) and &) are the tangent planes
at the pinch-points, by the substitution of u, and uy,
into the equations

iy = 1_1’/?2 (u) - tj,(u) +0.57 the coordinates of

pinch-points follow as the proposition says.
Since a>0 then

1P2[0,0,0.5ri'\/0.25r2—a(P_ P2+92)J

are always real points, and

3}",[O,O,O.Sri\/O.ZSr2 —a(p+\p*+ QZ)J

" The cases when these pedal surfaces break up will be elabo-
rated later in the paper.

14

are real and distinct, real and consecutive or imaginary

if 4a(p+\ P +74)S P
In Fig.12 are three examples.

In the special case (p > 0, g = r = 0) the points P, and
P, coincide with the point O, and O is not a cusp but a
contact point of two branches of the any plane section
through it (Fig.10.8).

Proposition 3.4.
Circles of the system (3) with extreme radii R, = 0.5r

and R, = 0.5\/(20-— p)2 + qz + 72 lie in the planes
determined by angles

2d_panduM=arctan 7_
q p—2a

u, = arctan

m

Proof. Considering our geometrical interpretation of
the function Rit is clear that
R(u,) £ R(u,) © R u,)) £ R¥(u,).

Since
(R (W) =0 {(Za—p)smu+ geosu = 0} -

(2a-p)cosu—gsinu=0

u = arctan g
. pP—2a
u = arctan 2ﬂ—p
g
and
(R (arctan —Z—) = —2(2a- p)* + 7)< 0,

p-2a

(#*)"(arctan ZL;—”—) =2(Qa-p)’+4°)>0

then u,, is the maximum and u,, is the minimum of the
function R2.
By the substitution of u,, and u,, into the equation

R(u) = 0.5\/((251— D) cos u— gsin #)? + r* the values
of R, and R,, follow as the proposition says.

Proposition 3.5.

In homogeneous Cartasian point coordinates
(x:y:z:w) the general equation of ®[a,p,q,r] can be
written

FryzmW) =+ y2 + 22+ %) -
—(Qa+ px+gy+r)(P + yHyw+

Rar(px+gy)w? =0 4)
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Proof.

@) If x*+ y*> #0, and w=1 the equation (4) and the equa-

tion
2+ y 47t - Qa+ p)x—qy-rz+

L2t g) )
22+ y?

are equivalent.
Replacing x by tcosu and y by tsinu the preciding equa-
tion takes the form
A+722-(Qa+ p)Ccos u+ gsinu)r—rz+

+2acos u(pcos u+ gsinu) =0 6)
which is the expanded form of the equation (3).

(ii) The other points which satisfy the equations 2+2=0
and F(x,y,z,w)=0 are the points of the line z , 1.e
(0:0:z:w), and the absolute points (1:/:0:0) of the
plane xy. Since it is easy to show that the partial deriva-
tives F, F, FZ, F vanish in the every point (0:0:z: w)
and (1:17:0:0), the points of the line z, and the absolute
points of the plane xy are singular points of the surface
F(x,y,z,w) =0 (Woods[10,p.206]).

Proposition 3.6.

The plane at infinity cuts the surface ®la,p,q,r] in the
absolute conic and the pair of isotropic lines through
the point at infinity of the line d.

Proof. For w=0 the equation (4) takes the form
? +y2 + 22)(x2 +y2) =0, and

x2+y,2+z2 =0,w=0

are the equations of the absolute conic, and

2+ y2 =0,w=0
are the equations of the isotropic lines through the point
(0:0:1:0).

Proposition 3.7.
If Pe d the pedal surface ®la,p,q,r] breaks up into
one sphere and the isotropic planes through d.

Proof. For Pe d,ie., p=0Ag=0,and w=1
the equation (4) takes the form

@+ YD) (- @)+ Y+ (2-0.57)7 -
-a*-0.25%)=0. @)

Since x? + y? =0 is the equation of the isotropic planes
through d, and

(=) +y*+(2-0.592-a*-0.25 =0
is the equation of the sphere with the center («,0,0.57)

and the radius V@ + 0.2572 , D[a, p, q, r] breaks up as

the proposition says.

Proposition 3.8.

If Pe c the pedal surface ®la,p,q,r] doesn’t degen-
erate in general case. But, for P(2a,0,0) it degener-
ates into the generatrices of K *(c,d).

Proof. For Pec,ie., g=*\ pa—- p),r=0, equation
(4) takes the form

@+ 2+ 2+ YY) -
~(2a+ p)xEA pRa- PP+ y)w+ (8)

Rar(prt pa- p)y)w? =0

which in general presents a proper surface. But, for p=2a,
=0 and w=1 the equation (4) takes the form

(P4 =2a0*+ 2 (F* +y*) =0. ©
All real points which satisfy this equation are points on

the conic ¢= 12+y2—2wc=0,z=0
and the line /= =0, y=0.
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