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Zatvaranje cijevi ‘pro§irenjem‘B—Splih,e:ploha :
SAZETAK

U radu je prikazan algoritam za zatvaranje cijevi re-
prezentiranih tenzorskim produktom B-spline ploha'

Plohe u obliku cijevi pro3iruju se i zatvaraju pravokut-

nim dijelovima (trostranim). Geometrijski podaci dijela

koji zatvara su zajednitki singularni vrh novih rubnih

dijelova i rubni uvjeti prvog reda na tom vrhu. Tada

se totke prosirenja kontrolne mreze racuna;u iz tih po-

dataka. Korisnicki unos algoritma je, osim cijevi, sin-

gularna totka zatvaranja. Rubni se uvjeti biraju au-
tomatski, a da bi se postigao glatki oblik dijela koji za-

tvara oni se djelomitno racunaju i iz uvjeta zagladivanja. -
Sto vide, totka zatvaranja takoder se moze izratunati iz

uvjeta zagladivanja §to vodr do automatskog zatvaranja

cijevi.

Klju€ne rijeti: CAGD, B-spline plohe, zagladivanje

1 Introduction

in design processes. Such surfaces are, for example,

a handle, a bottle, a telephon receiver, etc. From the
geometric viewpoint any rotational surface with full par-
allel circles and any swept surface with closed generator
curves is a pipe. Since the modelling systems do not al-
low in general to specify a single point as a closed sectional
curve, in order to get a closed end of a pipe a new sur-
face has to be constructed and fitted to the pipe. It may
also happen that the exact shape of the covering part at the
end of a tube is not prescribed, it simply has to be smooth
and fit correctly. For the solution of this modelling prob-
lem we present an algorithm developed for tensor product
B-spline surfaces of degrees (3,2). The tube shaped sur-
face will be extended and closed by degenerate rectangular
(three—sided) patches. The user inputs of the algorithm are
the closing point, which is the common singular vertex of
the three—sided patches and, if required, the position of the
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tangent plane or the tangent direction of the longitudinal
boundary curves at this point. The remaining data, which
are necessary for the equations of the new patches will be
computed from a fairness condition. We will also show an
automatic closing of the pipe, where even the position of
the closing point is computed from a fairness condition.

The tensor product B—spline surface is determined by n x m
control points and by the B—spline basis functions of 3rd
and 2nd degree over the periodic knot vectors {t}"+3 and
{s}™+2, respectively. We assume that the (i, j)th patch of
the tube shaped surface is given by a parametric vector
equation in the following matrix form

riglu) = [1 e o) [B0)] [vis] [BP0)] (192,

(uv) €[0,1]x[0,1], i=1,...

(D
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(tir1 — 1i)?
tiv3 — i) (tivz — 1)
is the coefficient matrix [1] of the ith non—uniform cubic
B-spline basis function determined by the given knot vec-

b44=(

tor
t-2<,..., < Iny3.

The first parameter of the patch is

t—1t )
u=———o, tE€[ttiy1]
tiy1 — 1

Denoting the elements of the matrix [B5~2) (s)] by b again,

) b b, 0
[Bj (s)]= =2byy 2bn O |,
by by b3
b=
Sjy1—Sj-1
bu:_w_,
Sj4l —Sj-1

1 1
by = —(sj+1—5j ( &5 ),
(5 2 Sji+1—Sj-1  Sj¥2—Sj

_ Si41— S
sj42= )’
is the coefficient matrix of the jth quadratic B—spline basis

b33

function determined by the given knot vector
521 <o < Smpae
The second parameter of the patch is

§—5j

Y= m’ s e [Sj,Sj+1].
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In the expressions of the coefficient matrices we accept the
convention g =0.
The matrix
Vij  Vijm Vij
Vi = Vitr,j Vitrj+r Viglj+2
“ Vir2,j Vigzj+1 Vigzj+2
Vits,j Vissj+1 Vigsjs2

)

i=1,...,n=-3, j=1,....m—-2

is built from the control points Vi; (k = i,...,i+ 3,
I=j,...,j+?2) of the (i, j)th patch.

If for the control points
Vi,m—l =V,"1, V,',,,,=V,"2 (i= 1,... ,n)

hold, then the (n— 3) x (m — 2) patches form a tubular
surface. The longitudinal u—parameter lines of the surface
are cubic, the v—parameter lines in the cross directions are
closed quadratic curves. These parameter lines are C? and
C! continuous functions, respectively, if there are no coin-
ciding knot values or control points [2].

By assumption, the knot vectors will be periodical in our
representation, so that -

t—2<"'<t25"'stn—2<"‘<tn+3
and
S_1 <8< < Spy2-

A usual choice of the knot values is the 'chord-length’
parametrization, when the knot values are placed accor-
ding to

tir1 —ti = Vi, Vig1 4 (i=1,...,n—1)
and
Sj+1—5; =V j, Vu jt1 (j=1,...,m—1).

Here the meaning of * in the index is that the average of
the corresponding distances or the distances in a ’typical’
point sequence in the longitudinal and cross direction of
the control net are considered. As the knot vector is longer
than a longitudinal control point sequence, the remaining
knot values at both ends are placed in equal distances. In
the cross direction the equalities s, — Sm—1 = 52 — 51 and
Sm+1— Sm = §3 — 57 are assumed.

2 Definition of the closing part

For defining a closing part at the starting borderline
i=1,j=1,...,m—2 we specify the closing point P and
generate two additional rows of patches. For this purpose
we extend the control net by 2 x m control points Vy j,
Vy,j (j=1,...,m), and reindex the former control points
to Viy2,j (i=1,...,n, j=1,...,m). The closing part of
the pipe will be a C2—continuous extension of the original
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surface in the (longitudinal) u—direction, if there are no co-
inciding control points or knot values along the connection
line. The new control points will be determined from the
point P and geometric criteria prescribed at the new end of
the pipe. The chosen geometric conditions ensure that the
boundary patches meet at the given point P, and their longi-
tudinal boundary lines end up there with prescribed tangent
vectors. We shall show that the control points of the exten-
sion are uniquely determined by suitable conditions.

Theorem.

Six control vertices w; j (i =1,...,2,j=1,...,3) of the
control net w;j (i=1,...,4,j=1,...,3) determining a
tensor product B-spline patch of degrees (3,2) over the
rectangular domain (u,v) € [0,1] x [0,1] are uniquely de-
termined by the following boundary data: the endpoints
(u = 0) of the cubic boundary curvesv =0 and v = 1, the
tangent vectors of the same curves at the given endpoints,
the cross directional tangent vector of the boundary curve
u = 0 at the corner point (u,v) = (0,0) and the twist vector
at the same corner point.

Proof. Denote a single bordering patch r ; (j = 1,...,
m—2) by R(u,v) and its control points by w;;(i=1,
...,4,j=1,...,3). In order to make the description of
the formulae simpler, we assume uniform parametrization,
i.e.t; = iand s; = j. In this case the coefficient matrices of
the periodic B—spline functions are constant, and the para-
metric equation of a patch has the following form

u,v)= uut i B(3) W B(Z) L _— T,
Rwy)=[1wa ] [BO) W [BO] v,
(uav) € [O, 1] X [O, 1],

where
(1 4 1 O
B — r(3) _l -3 0 3 0
B () =B"=%13 —6 3 o
-1 3 -3 1
(2) 1 [ 1 1 O
@ __|_ ;
BY()=B?=>|-2 2 0,
1 -2 1

Wil Wi W3
W21 W22 W23
W3] W32 W33
W41 W42 W43

In this equation the six control vertices wi,j, W2,;j
(j=1,...,3) of the extension are unknown.

The usual technique to force a curve or a surface through
a given point is to specify the point as a multiple control
point with the multiplicity d + 1 (d= degree) or to raise the
multiplicity of the corresponding knot value accordingly.
In this case the curve or the surface and also the deriva-
tives are uniquely determined and no freedom is left for the

shape control. In our representation the knot vectors are
periodic and the multiplicity of the control vertices equals
one, which enables us to prescribe additional boundary con-
ditions besides the interpolation point P.

The assumptions that the boundary lines R(u,0) and
R(u,1) end at the closing point P with the tangents T and
T}, respectively, are expressed by the equations

P = R(0,0), 3)

P=R(0,1), @)
d

To = gl;R(u’v)|u=O,v=0’ (5)
d

Ty = = R(,Y)] =1 - ©)

The assumption that the boundary line u = 0 shrinks to the
point P implies that the patch degenerates into a triangular
one, therefore we require that the vectors

9
Ty = =R(,V)] g, 0 ™

82
Tuv = mR(u,V)l

will be set to zero.

®

u=0,v=0

In the equations (3)—(8) the vectors on the left hand sides
are prescribed and the expressions on the right hand sides
are linear in the control vertices. These expressions are easy
to compute from equation (2). The unknown control ver-
tices can be determined from the system of vector equations
(3)—(8), and we get the following solution:

wip = —2To + Ty + w3y,

wiz = —2To — Ty + w32,

wiz = —4T; 4+ 2Ty + Ty + W33,

Wwo = % (6P+ 2Ty — T, — 3T, — 2W31),

w2y = § (6P +2To+ Ty + 3T, — 2w32),

w3 = 1 (6P +4T, — 2T — Ty — 3T, — 2w33).
These control points are uniquely determined by the pre-

scribed boundary conditions and are called phantom points
or pseudo vertices [4]. QED

®

The first extension of the method of control points to bound-
ary control of surfaces is given in [5].

While generating the closing part of the pipe the control
net of the boundary patches slide around in the (cross—
sectional) v—direction for j = 1,...,m —2. Although the
phantom points w;; and wi; overwrite the phantom points
wiy and w;3 (i = 1,2) of the preceeding neighbouring patch,
we shall show through the examples below that starting
with coplanar tangent vectors To j and Ty, (j = 1,...,

m —2), all the tangent vectors of the longitudinal u—
parameter lines of the degenerate closing patches will lie
in this plane, which is the tangent plane at the closing point
P. Moreover, the boundary line u = O shrinks to the point P
with the tangent vector T, = 0.

15
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Fig. 1: Pipe

Fig. 4: Control net of the
surface in Fig. 3

3 Examples

In the following examples the boundary data in (3)—(6) are
user inputs, the derivatives in (7) and (8) are chosen to be
zero. The closing parts of a given pipe are generated by the
phantom points (9) obtained as the solution of the system
of vector equations (3)—~(8). Three surfaces are illustrated
in Figures (3)—(6), which are generated in this way from
the tube shown in Figure 1 determined by the control net
shown in Figure 2. The tube is composed of 3 x 12 patches,
each represented by 3 x 3 facets determined by 4 x 4 pa-
rameter lines. At the upper end of the tube a row of 12 rect-
angular and a row of 12 degenerate patches are computed
from the same boundary data, the closing point P, the vec-
tor T, = To = T determining the tangent direction of the
longitudinal parameter lines at P and the null vector for the
initial value of T, and T,,. In order to generate a non sym-
metric solution, the point P does not lie on the rotational
axis of the pipe and the given direction is not parallel to the
axis. The three closings differ in the magnitude and orienta-
tion of T,,. In the first solution (Fig. 3) the magnitude of T,
is computed from a fairness condition for each bordering
patch separately (see later). In the second solution (Fig. 5)

16

Fig. 2: Control net of the pipe

Fig. 5: Closing with a fixed common
tangent
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Fig. 6: Closing with reversed tangent

the vector T, is twice as long as the average in the first
one. In the third example (Fig. 6) the prescribed tangent
vector T, is oriented in the reversed direction and has the
same length as in the second example. Here two stripes of
patches are not drawn in order to make the inwards turned
peak P visible. The angular effect in the projections of the
surfaces is due to the small number of the parameter lines.

The three examples illustrate the shaping effect of the ori-
entation and magnitude of the boundary data T, = To = T}.
The length of a tangent vector depends on the parametriza-
tion of the surface, which is hidden for the user. As it may
cause non desired shaping effects, should be determined by
the algorithm and not by the user. A well proved method
for the solution of this problem is to compute the vector
magnitudes from a fairness condition [6].

4 Fairing

We consider the magnitudes of the tangent vectors Ty and
T, of the longitudinal parameter lines at the closing point
P as scalar parameters, and write ATo and uT; in the equa-
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tions (9) instead of Ty and T, respectively. Then we com-
pute the values of A and u from a fairness condition in order
to achieve a satisfactorily smooth shape. This condition is
that A and u have their values where an appropriate fairness
functional is minimal.

A frequently used fairness functional is the area integral

2

A(}\,y)———/ol/()l [(;—;R(u,v)>2+ (;v—zn(u,v)>2] dudv,  (10)

which approximates the energy function of a thin elastic
plate [3]. This fairness functional has the advantage to be
quadratic in the variables A and u, what keeps the optimiza-
tion process simple.

As the phantom points of the closing patch R(u,v) =
ry j(u,v) (j=1,... ,m—2) influence also the neighbouring
patch 2 j(u,v), we summarize the area integral for these
two patches in each step, and consider the following fair-
ness functional:

1l 9 2 ? 2
Fj(x,y)_i§2/0 /0 [(Wn,](u,vo +<37r,»,,(u,v)) :|dudv
1)
for the jth stripe while moving around the borderline of the
pipe. If the functional F; has a local minimum, then there
oF; oF;
oA ou
which is a system of linear equations for A and y. It can

be verified numerically that the solution of this system of
equations is a local minimum of Fj.

0, =0, 12)

Then we substitute A and u computed in this way into the
equations (9) in order to compute the control net of the clos-
ing patch ry j(u,v).

We can observe in the following examples that the calcu-
lated surfaces have a round, smooth shape and satisfy the
prescribed boundary conditions.
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Fig. 7: Pipe 100

The given pipe is composed of 3 x 12 patches and is rota-
tional symmetric in 6th order (Fig. 7). The closing point
P is given on the rotational axis and the vectors To and T,
are orthogonal to the axis at P. These vectors are generated
for each closing patch by projecting the longitudinal tan-
gent vectors of the given pipe at the corresponding points
of the borderline onto the plane orthogonal to the rotational

axis. The tangent plane of the closing part is prescribed by
the 12 vectors T at the closing point in this way. Then
we determine the magnitudes of these vectors by solving
the system of the equations (12), and compute the control
points of the extension by (9). The patches of the generated
closing part (Fig. 8) have a collapsed edge at P with iden-
tically zero tangent vector T,. The tangent vectors of the
longitudinal u—parameter lines at P are all coplanar lying in
the prescribed tangent plane. The smooth round shape of
the closing part can be seen in the front view (Fig. 9).

/ 100

D GHENN

0 100 100 0 -100

Fig. 9: Front view

This example, the solution in Figure 3 and several other
generated surfaces show that the closing algorithm with the
chosen fairing condition generates well shaped smooth sur-
faces. Other surface generation techniques have some dis-
advantages. The effect of multiple control points is shown
in the next example (Fig. 10). This closing is generated
without fairing with null vectors Ty at the closing point
P. The assumption A = p = 0 implies that wy j = wy ;
(j=1,...,m—2), and the surface has a slightly peaked
shape (Fig. 11).

The fairing process presented above leads to automatic gen-
eration of the closing part if the closing point P is supposed
to be moving, and its coordinates are considered as vari-
ables of the fairness functional. In the example shown in
Figure 12 the lower end of the same pipe (Fig. 7) is closed
in this way. The automatic closing of the first pipe (Fig. 1)
is shown in Figure 13. In these examples the tangent plane
at the closing point is orthogonal to the rotational axis of the

17
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Fig. 10: Closing with null tangent vectors
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Fig. 11: Front view

pipe. The prescribed tangent directions are then constructed
in radial directions in this plane. The closing point is sup-
posed to be moving along the axis. Its distance h from a
fixed point of the axis is considered as a variable of the fair-
ness functional. Then the minimization of F(A,u, k) gives
a solution for the position of the closing point and for the
unknown control points as well. In this case no user inputs
are required.

Remark. The fairness functional

/01/0l [(%R(u,v))2+2(£%;R(u,v))2+ (;%R(u)v))z] dudv

(13)

has been also used in the fairness condition, and its ef-
fect has been compared with that of the functional in (10).
Though there are differences in the numerical solutions,
no differences can be observed on the generated surfaces.
Therefore, those examples are not illustrated.

5 About the curvature entities

Consider a three—sided patch R(u,v) = x(u,v)i+y(u,v)j+
z(u,v)k of the generated closing part presented in a lo-
cal coordinate system, the origin of which is in the singu-
lar vertex P(z = 0,v € [0,1]) and the x, y axes lie in the
tangent plane at this vertex (Fig. 14). Though the nor-
mal vector of this tangent plane is the null vector due to
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Fig. 13: Automatic closing of the pipe in Fig. 1

Ty= %R(u,v) =0 (u=0,v € [0,1]), the tangent plane of
the surface considered as a point set does exist. The u—
parameter lines of the patch end up at the singular vertex
with coplanar tangent vectors, no pair of which are paral-
lel. Under these conditions the technique of the so—called
height function can be applied for the computation of the
GauB curvature at the singular point [8]. The height func-
tion z = h(x,y) is defined in the neighbourhood of the sin-
gular point over the tangent plane. It is a single—valued,
C%—smooth uniquely defined function, and provides a lo-
cal second order approximation of the degenerate surface at
the singular point. The exact representation of the height
function is not necessary for the computation of the GauB
curvature, only its second derivatives in the singular vertex.

By assumption, (0,0) = 0 and £}(0,0) = k(0,0) =0,
therefore the GauB curvature at the origin is

K= hf\:,x(oa 0) hgy(oao) - [hgy(oao)]zv (14)

0
50

150
140
130
120

0
50 100 150

Fig. 14: Closing patch and the local coordinate system
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and the normal curvature in a direction given by the unit
vector (xq, Yo) in the tangent plane is

Ko = Hj(0,0)x% +21,(0,0) xo.yo + 5 (0,0)yg.  (15)

Now we substitute the normal curvatures K, of the approxi-
mating surface z = h(x,y) by the curvature at the point (0, 0)
of the isoparametric surface curve v = const of the surface
R(u,v), which has the tangent direction (xg, ya). Choosing
three u—parameter lines with pairwise linearly independent
tangent directions, three linear equations can be written in
this way for the three unknown values A, (0,0), A, (0,0)
and £,(0,0). Solving the system of equations (15) we get
the GauB curvature of the surface z = h(x,y). As stated
in [8] and verified by our calculations, this Gaul} curvature
does not depend (with relatively large of 1 percent error)
on the three chosen surface curves v = const of the surface
R(u,v), if a height function exists. The existence of the
height function is ensured by the conditions

(9 (0,0) — 9, y(0,1)) - 9,9y W(0,v) # 0
and
9, det (W'(0,v)) #0 forall ve|[0,1],

where y(u,v) = (x(u,v), y(u,v)) and dety’(u,v)) is the de-
terminant of the Jacobian of y(u,v) [8]. These conditions
can be checked easily for polynomial spline functions.

In our example (Fig. 8) the Monge representation of the
surface does not exist, because the determinant of the Jaco-
bian matrix of (x(u,v), y(u,v)) in the singular point is zero,
but the conditions of the existence of the height function
hold. Consequently, the GauB curvature computed by the
above described method can be defined as the GauB3 cur-
vature of the surface R(u,v) in the singular vertex. The
result of the computation for the patches of the closing part
in Figure 8 was zero. For other surfaces generated without
fairing, where the tangent vectors T, specified in radial di-
rections in the tangent plane at the closing point are shorter
then those computed from the fairness condition, the GauB3
curvature was positive.

For the surface in Figure 10 the conditions of the existence
of a height function do not hold, consequently, the Gauf3
curvature at the closing point does not exist.

6 Conclusions

The presented algorithm developed for a special extension
of tube shaped surfaces works on tensor product B—spline
surfaces of (3,2) degrees. The extension for closing the
pipe at one end is composed from degenerate rectangular
patches. Their control nets have been created by using the
method of phantom (pseudo) vertices. These control points
are computed from prescribed boundary conditions, there-
fore cannot be used for interactive shape control in the usual

way. A fairness condition has been applied to avoid uncon-
venient user inputs, for example, specifying the magnitudes
of tangent vectors. Also, an automatic closing of a pipe
has been shown based on the minimization of a fairness
functional. The given method can be extended without sig-
nificant changes to rational B—spline surfaces with the re-
striction that the weights of the control points of the newly
generated patches are fixed and the weights of the phantom
points equal one.

The computations have been carried out with the help of
Mathematica [7], the control nets have been generated
by the modelling system of the author implemented on
a 16 MB PC.
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