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O tetraedrima u dodekaedru

SAZETAK

60 bridova od 10 tetraedara upisanih u pravilan do-
dekaedar ¢ine tzv. GRUNBAUMOVU mrezu. Poznato je da
je ta struktura fleksibilna. Postoje jednoparametarska
gibanja koja Cuvaju simetriju s obzirom na os stranice
ili na os koja prolazi vrhom. Rad se bavi analitickim
reprezentacijama takvih gibanja. Osim toga dokazano
je da se oba gibanja mogu spojiti u dvoparametarska
gibanja koja ne Cuvaju simetriju.

On the Tetrahedra in the Dodecahedron
ABSTRACT

The 60 edges of the ten tetrahedra inscribed in a regular
pentagondodecahedron form the so-called GRUNBAUM
framework. It is already known that this structure is
flexible. There are one-parameter motions which pre-
serve the symmetry with respect either to a face axis or
to a vertex axis. The paper treats analytical represen-
tations of these motions. Furthermore it is proved that
both motions can blend into two-parametric motions
which do not preserve any symmetry.

MSC 1994: 53A17, 51M20

1 Introduction

of a regular pentagondodecahedron D one can build

five cubes Cy,...,Cs. It was EUCLID’s strategy
(cf. [3], p. 69) for constructing a dodecahedron by adding
'roofs’ to each face of a cube (see Fig. 2). The edges of
such an inscribed cube C; are diagonals of the faces of D.
With respect to D we can distinguish between right and left
vertices of C; depending on whether the edges through any
vertex A are the right or the left diagonals of D in the faces
through A, if seen from outside (see Fig. 1). For each edge
of C; the two endpoints A, B are of different type. So, the

S ince ancient times it is known that with the vertices

right vertices of C; form a right tetrahedron R;, the left ver-
tices a left tetrahedron L;. And of course both L; and R; are
inscribed in C; and therefore in D.

Fig. I: Dodecahedron D with one inscribed cube C.
Points A and E are right vertices, B is a left ver-
texof C.

Another way to identify two vertices AE of D as endpoints
of an edge of any inscribed tetrahedron is as follows: There
must be a path from A to E along three edges of D — via
the ’roof” displayed in Fig. 2. If at the first crossing point
you take the right edge and at the second vertex the left one,
then AE belongs to a right tetrahedron. The left choice at
the first vertex and the right one afterwards results in an
edge of a left tetrahedron.

Fig. 2: Constructing a dodecahedron D by adding roofs on
acube C.

Each vertex of D is a left vertex of any inscribed cube C;,
therefore vertex of L; and at the same time vertex of any
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right tetrahedron R;. We have i # j as L; and R; are com-
plementary tetrahedra of the cube C;. In the sequel we de-
note each vertex of D by the ordered pair ij of different
indices of the left and the right tetrahedron meeting there.

Suppose the tetrahedra are solids. Then the union of the
right tetrahedra as well as the union of the left ones are well
known stellated icosahedra (see [2], note cover page of [8]).
They are mirror images from each other which surprisingly
share all vertices and all oriented planes spanned by their
faces (see [7]). Also the union of all ten tetrahedra is a stel-
lated icosahedron.

Let us now focus on wire-frame models of the tetrahedra:
The ten tetrahedra can be seen as the links of a kinematic
chain. Each link L; (R;) is connected with four R; (L;),
i # J, by a spherical joint at the common vertex ij. Due
to [4] this structure is called GRUNBAUM framework. Sur-
prisingly it is finitely movable, though the structure formula
gives —6 as the degree of mobility. We start with represent-
ing the well known one-parameter motions of types I and II
of GRUNBAUM’s framework.

2 Motions of type I

Theorem 1 (R. CONNELLY et al.,, 1991): For each
face axis f of the regular dodecahedron D there is a one-
parameter motion of GRUNBAUM’s framework preserving
the five-fold symmetry about f.

&\ 23

%54

Fig. 3: Motion of type I: The vertices 12, ...,15 of L
move in the planes €, ...,€s of symmetry.

According to R. CONNELLY et al. [1] (compare also [6])
the motion of one tetrahedron, say L, is defined as fol-
lows: Let €1,...,€&s be the five planes of symmetry through
the face axis f (see view in direction of f in Fig. 3). Then
the vertices 12, 13, 14, 15 of L; move within €;,€3,&4, €5,
respectively. The trivial translation in direction of f can
be ruled out by the additional condition that the center of

L, remains in a plane orthogonal to f. The resulting one-
parameter motion of L; turns out to split into two rational
motions of order 4. By iterated 72°-rotations about f these
motions of L; are transformed into those of L,,...,Ls,
resp., provided the notation is specified according to Fig. 3.
The motions of Ry,...,Rs are obtained by reflecting those
of L} in €y,...,€s, respectively.

Let (x,y,z) be Cartesian coordinates in the moving frame
— attached to L; — and let (xo,y0,20) be coordinates in
the fixed frame. Then we can set up the motion of L; as

X0 u ayy ap apj ¥
Yo |=| Vv |+| a1 axn ax y (1)
20 w as)y asz ass Z

with an orthogonal matrix (a;;). For the representation of
(aij) we use quaternions: Each nontrivial homogeneous
quadruple (qo, - . . ,,q3) defines an orthogonal matrix accord-
ing to

1

B+ +d;+q3

(aik) =
2(q193 +9092)
2(q293 — q0q1)

B-a—B+43

R+ -B-43  20192-q093)
Aq92+9093) B-T+5—43
2193 —9092)  2(9293 +q091)

and vice versa.

With regard to the fixed frame, we specify the zo-axis on f
and the xp-axis in €. By the condition w = 0 the origin of
the moving frame remains in the xgyo-plane.

The vertices of the moving tetrahedron L with edge length
24/2 can be set up as

12 = (la—]a_l))

14:(_1a 11_1)’
13=(1, 1, 1), )

ol 1)

Now for j = 2,...,5 the vertex 1j is supposed to move in
the plane €; of symmetry. According to (1) this results
in four linear equations for the coordinates (u,v,0) of the
translation vector and the entries a;; of the orthogonal ma-
trix. Setting

s,-:=sin2’?n, c,-:=c032;—1t forsi=al.2 4)

we obtain

sa(u+ay —app—apn)+
+ca(v+az —axn—an) =0,
—si(u+an +app+apiz)+
+ci1(v+az +an+an)=0,
si(u—an +ap—an)+
+ci(v—az +axn—a3)=0,
—s2(u—ay —app+apn)+
+c2(v—ay —ap+ay)=0.

(&)
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We eliminate u,v by multiplying the equations in (5) either
with —s1, —$2, 52, 51 or with —¢y, ¢2, ¢3, —c}, resp., and
summing up. This gives two linear equations

4sicrapp +2c1az1 —az =0 ©6)
4sic1ay) +2s1a13 —an =0

when we pay attention to the identities

42 + 2107 / d¥st=}
spc2 + $2€1 = —$2, S|C2 — $2€1 = =S}, 7
52 = 2s1¢1, cie2=—14,

4c(4st—1)=(1-2¢c1)(2+2¢;) = 1.

Now we substitute in (6) the representation (2) of the a;;.
By setting k := 1 — 4s1c| we obtain

[201(1—231)qo—q2] [201(1+2s1)q1—q3]=0, (8)

[kqo — (251+2)42] [kqo — (251—2)q2] —

9
—[(251+2)q1 +kq3)[(251—2)q1 + kg3] =0. ©)

We start with the second factor in (8) and express in (9)
g3 in terms of g;. This results in a quadratic equation for

(90:91:92)

(kqo — (251 +2)q2] [kqo — (251 — 2)q2] +

10
+4(8c; — 451 + 16s1c; — 3)g% = 0. Sl

We introduce homogeneous motion parameters (G,T) €
R?\ {(0,0)} for this “conic” by setting

[kqo — (251 +2)q2] - ¢} (251 — 1)* = &7,

[kqo_ (251 _2)q2] = (11)
= 4(—8¢) +4s1 — 16511 +3)72,

C|(2S1 = l)ql = 0T,

and obtain after some simplifications due to (7) the repre-
sentation

go = — (251 — 1)6% +251(1 +4s101)7%,
q1= 2(2s;-1)ort,

g2 = —(2c1 + 1)0% + 251 (25 —-2),
q3 2(2¢; + 1)ot.

(12)

Il

From (2) we get the orthogonal matrix in (1). The transla-
tion vector (u,v,0) is given by

u=—ap+ci(a +axn)/si,
v=—an+si(an +az)/c

(13)

resulting from (5).

Due to the last equation in (7), the involutive projective
transformation

(q0:q1:92:93) ~ (q0: 4\ : 9> 43)

obeying
%=-9 H=q9,
q,l ="=02, q’3 =490

switches the two factors in (8) while (9) is preserved. On
the other hand the first two rows in the orthogonal matrix
(2) change signs. So a 180°-rotation about the zo-axis trans-
forms the one-parameter motion represented in (12) and
(13) into that stemming from the first factor in (8).

Fig. 4: The trajectories of the vertices of L; under the mo-
tion of type I as defined in Fig. 3 and represented
in (12) and (13).

Theorem 2: For a given face axis f of D the motion of type
I of any tetrahedron splits into two rational motions which
can be transformed into each other by a halfturn about f.
Both components are of order 4 and type a) according to
the classification given by O. ROSCHEL in [5].

Fig. 4 shows the trajectories of the vertices of L under the
motion with the quaternion representation (12). When the
motion parameters (o : T) are replaced by (=0 : 1), then
g1 and g3 change signs. The same effect appears when the
moving frame performs a halfturn about the y-axis (switch-
ing 12 with 15 and 13 with 14) while at the same time the
fixed frame rotates about the yo-axis through 180° exchang-
ing €, with €s and €3 with €. This is the reason why the
trajectories of the vertices 12 and 15 are congruent as well
as that of 13 and 14. The dotted curve in Fig. 4 shows the
trajectory of the center of L;.

A real GRUNBAUM framework will not perform the full
motion since one vertex can’t move “through” the other.
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But one can dissolve some joints and reassamble the struc-
ture in another position.! Then one will realize that during
the motion of type I the ten tetrahedra fall apart and form
aring with a diameter which approximately doubles that of
the initial position in the interior of the dodecahedron D.
Fig. 5 shows the extended position in comparison with D.

Fig.5: GRUNBAUM’s framework forming a ring during
the motion of type I. Note the size of D (dotted
lines) which encloses the initial position of the
framework.

3 Motions of type II

Theorem 3 (H. S., 1991): For each vertex axis v of the
regular dodecahedron there is a one-parameter motion of
GRUNBAUM’s framework preserving the three-fold sym-
metry about v.

Suppose v connects the vertices 45 and 54. Then v is a com-
mon axis of symmetry for L4, R4, Ls and Rs. When this
axis v is kept fixed, then the vertices 41, 42, 43, 51, 52,
53, 14, 15, 24, 25, 34 and 35 can only move on a cylinder
® of rotation with axis v (see view in Fig. 6 showing v as
a point). According to [6] we define the motion of L; by
the additional condition that 12 and 13 remain in the planes
@2, @3 of symmetry passing through v . After ruling out the
translations along v we again end up with a one-parameter
motion of L.

The movements of L, and L3 are obtained by iterated 120°-
rotations about v. Reflections in @;,@2,@3 transform the
motion of L, into those of Rj, Ry, R3, resp., provided the
notation is specified as in Fig. 6.

In order to represent the motion of type II analytically we
define the zo-axis on v and the xp-axis in @;. We specify the
moving frame (x,y,z) attached to L; by

12:( \/5,071)1 l4=(0’ \/iy_l)v

13=(-v2,0,1),  15=(0,—v2,-1). (14)

Fig. 6: Motion of type II: The vertices 12, 13 of L; move
in the planes @2, @3 of symmetry. 14 and 15 remain
on the cylinder ® of rotation.

Then the constraints defined above result in four equations

(u+aivz+aiz)V3— (v+azv2+a) =0,
(u—ayv2+a3)V3+ (v—az1v2+ax) =0,
(
(

15
utapvi—ap)? + (vtanvi-an)? =4, o
u—appvi-a;3)? + (v—anvi-an)t =4%.
From the two linear equations we obtain
u=azl\/g—ax3, v=a;V6—a. (16)

We substitute this in the difference and sum of the last two
equations in (15). So we end up with

Aajp+Bayp =0,
A?+B*+2a%,+2a3, =% for a7

o azl\/g—2a13, B= a“\/6—2a23.

Together with the orthogonality conditions

e oy T ek e e
aj tapt+apy=a; taptan =1,
ajjaz) +ajpaxn +apzaz =0

we have five equations for the six entries in the first two
rows of the matrix (a;). When in (17) the a;; are replaced
by qo,-..,q3 according to (2) we obtain two homogeneous
equations of degree 4.

However, explicit representations for the motions of type II
have not yet been found.

I The author thanks Elisabeth ZACH for producing a model of
GRUNBAUM’s framework. This was the key for dedecting the
two-parametric mobility presented in Section 4.
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4 Two-parametric motions of GRUNBAUM’S
framework

During the motion of type I as defined in Fig. 3 the moving
tetrahedron L reaches positions which are symmetric with
respect to €3 (see Fig. 7): Since €3 bisects the angle between
€, and &4, we can choose 12 € €; and 14 € &4 in symmetric
position. This implies 13,15 € €3, hence 15 € f.

Fig. 7: Position of GRUNBAUM’s framework with pair-
wise coinciding tetrahedra and two-parametric mo-
bility.

In this particular position the reflection of L in €3 gives
R; =L,. The iterated 72°-rotations about f and the reflec-
tions in €, i = 2,...,5, reveal that all tetrahedra are pair-
wise concident: We have Ry =Ly, Rs=L3, Ry =L4, and
R; =Ls. All tetrahedra share the vertex S:=15=21=32=
43=54.

Fig. 8: GRUNBAUM framework seen as a flexing pyramid
with five triangular faces as bases for tetrahedra.

Because of 14=23,25=34,31=45,42=51,and 53=12
any two consecutive tetrahedra in the cycle (LjL;L3L4Ls)
have an edge through S in common.

So the whole structure can be seen as a five-sided pyramid
built of five regular triangles which are the bases for the
tetrahedra (Fig. 8). Such a pyramid with revolute joints at
its edges flexes with mobility 2 like a spherical pentagon
with hinges at its vertices.

During motions of type I the tetrahedron L also occupies
positions symmetric with respect to € (Fig. 9). This time
14 and 15 are mutual mirror images in € which implies
13 € f. Hence the ten tetrahedra are again pairwise coincid-
ing: Lj =R,, L,=R3, L3=Ry, L4 =Rs, and Ls =R;. The
five tetrahedra share one vertex (13=24=35=41=52);any
two consecutive tetrahedra in this closed kinematic chain
with five links Lj,...,Ls share an edge, passing through
14 =32, 25 =43, 31 =54, 42=15, and 53 =21, respec-
tively. This time the five-sided pyramid formed by the rev-
olute axes is two-times wound around f (see Fig. 9).

23 45
¥ LIERNA31=54 12
owls
42=153 ¥ I 5R,

25=43
13=24=35=41=52

Fig.9: Another position of GRUNBAUM’s framework
with pairwise coinciding tetrahedra and degree 2
of mobility.

After interchanging 12 with 15 and 13 with 14 we obtain
analogous cases where L occupies positions symmetric
with respect to €4 or €s, hence L =R4 or L; =Rs.

Also the motions of type II can blend into a two-parametric
mobility: When during the motion displayed in Fig. 6 the
vertex 12 crosses the axis v of symmetry, then because of
the given edge length of L; the vertices 14 and 15 are lo-
cated on the same circle of the cylinder ®. Hence 13 must
be located on ® too. This implies that in this position
L, is symmetric with respect to @1, ¢, and @3. We get
L, =L;=L3;=R; =R, =R3 (see Fig. 10). Even two of the
remaining tetrahedra, say L4 and Rs, coincide with L. The
two last coinciding tetrahedra Ls =Ry share a face with L.
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12=23=31=45

L,=L,=L3=L4=R,;=R;=R3=R;

Fig. 10: In this position of GRUNBAUM’s framework a
motion of type II can blend into two-parametric
flexibility.

The same collapsed position can be reached when the flex-
ing five-sided pyramid (Fig. 8) is folded such that three
faces coincide.

Theorem 4: The GRUNBAUM framework admits also two-
parametric motions: Here tetrahedra of different type are
coupled into pairs such that — in cyclic order — each two
consecutive tetrahedra share an edge, and all these edges
pass through a common vertex.

The motions of type I can blend into this two-parametric
flexes whenever one tetrahedron occupies a position sym-
metric with respect to any fixed plane €; of symmetry. Mo-
tions of type II can bifurcate into two-parametric mobility
when one vertex of L crosses the fixed axis v of symmetry.
Then even eight of the ten tetrahedra are coinciding.

It is still open whether these two-parametric motions com-
plete the list of nontrivial flexes of the GRUNBAUM frame-
work.
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