Ein Analogon des Czuberschen Satzes in der isotropen Ebene

Analogon Czuberovog teorema u izotropnoj ravnini

SAŽETAK

U radu se dokazuje da Czuberov teorem u izotropnoj ravnini vrijedi samo za 2-cirkularne kubike te potpuno cirkularne kubike tipa tridens.

Ključne riječi: geometrija, izotropna ravnina, cirkularna kubika, Czuberov teorem

The Analog of the Czuber’s theorem in the isotropic plane

ABSTRACT

The paper proves that in the isotropic plane Czuber’s theorem is valid only for the cubics of the second degree of circularity and for the completely circular cubics of the type tridens.

Key words: geometry, isotropic plane, circular cubic, Czuber’s theorem

MSC 1991: 51N25

Die zirkulären Kurven in der isotropen Ebene sind diejenigen die den absoluten Punkt \(F \) enthalten. Nach dem Zirkularitätsgrad werden die zirkulären Kurven 3. Ordnung in drei Typen eingeteilt:

1. erste Stufe des Zirkularitätsgrades. Diese Kurve läuft durch den absoluten Punkt und hat diesen Punkt als einfachen Punkt;
2. zweite Stufe des Zirkularitätsgrades. Diese Kurve berührt die absolute Gerade im absoluten Punkt, oder hat den absoluten Punkt als Doppelpunkt;
3. dritte Stufe des Zirkularitätsgrades. Diese Kurve berührt und schneidet die absolute Gerade im absoluten Punkt und wird vollständig zirkuläre Kurve genannt. Diese Kurven teilen sich in drei Typen ein [5]:

a) divergente Parabel. Diese besitzt die absolute Gerade \(f \) als Wendetangenten im absoluten Punkt \(F \).

b) kubische Parabel. Diese besitzt die Spitze 1. Art im absoluten Punkt \(F \), und die absolute Gerade \(f \) als die Tangente in dieser Spitze,

c) Tridens-kurve (Dreizahn). Diese besitzt einen Knoten im \(F \), wobei \(f \) die Tangente eines Zweiges im Knoten ist.

In der euklidischen Ebene gilt der Czubersche Satz:

Ein Büschel der parabolischen isotropen Kreise vom Radius \(\frac{1}{2A} \) in der isotropen Ebene besitzt die Gleichung

\[f \equiv x^2 - 2Ay + \tau = 0, \]

wobei \(\tau \) der Büschelparameter ist. Durch zwei Geraden

\[p_1 \equiv y - \bar{y} = 0, \]
\[p_2 \equiv x - \bar{x} = 0 \]

ist ein Geradenbüschel \(\mathcal{V} \) mit einem eigentlichen Grundpunkt \(V(\bar{x}, \bar{y}) \) aufgespannt. Dieses besitzt die Darstellung

\[V' \equiv y - \bar{y} + \mu(x - \bar{x}) = 0, \]

bzw.

\[V' \equiv x - \bar{x} + \lambda(y - \bar{y}) = 0, \]

wobei \(\mu \) und \(\lambda = \frac{1}{\mu} \) die Büschelparameter sind.

Typ 1: Die Zuordnung zwischen den Büscheln (1) und (3) wird projektiv wenn z. B. \(\tau = \mu \) gilt. Somit folgt

\[(x^2 - 2Ay)(x - \bar{x}) - y + \bar{y} = 0, \]
bzw.
\[x^3 - 2Axy - x\xi^2 + 2A\xi y - y + \eta = 0 \]
(5)
was offensichtlich eine vollständig zirkuläre Kurve 3. Ordnung darstellt. Mittels einer isotropen Bewegung kann sie die Form \(xy = x^3 + ax^2 + bx + c \) erreichen. Somit gehört sie der Klasse der Tridens-Kurven (Abb. 1).

Abb. 1

Der vierfache Brennpunkt stimmt mit dem Zentrum \(F \) des Kreisbüschels überein. Der Hauptpunkt \(H \) der erzeugten Kubik, als der Schnittpunkt der Kubik mit ihren isotropen Asymptote \(a, \) ist im derselben Punkt \(F \) [4].

Spezielle Fälle entstehen dann, wenn der Scheitelpunkt \(V \) des gegebenen Geradenbüschels mit dem absoluten Punkt \(F(0 : 0 : 1) \) zusammenfällt, wodurch \(V \) ein Büschel der isotropen Geraden dargestellt ist. Um die Gleichung eines solchen Geradenbüschels \(V \) zu bestimmen, wahlen wir die isotrope Geraden
\[p_1 \equiv x - \xi = 0, \]
\[p_2 \equiv x = 0. \]

Dieses besitzt die Darstellung
\[V' \equiv x - \xi + \eta x = 0 \]
(6)
mit \(\eta \) als Büschelsparameter.

Setzt man in (6) für den Büschelsparameter \(\nu = \frac{1}{\xi_1} \) erhält man
\[V' \equiv x + \nu(x - \xi) = 0. \]
(7)

Somit entstehen zwei Fälle:
Fall (1,1): Aus (1) und (6) für \(\eta = \tau \) folgt
\[x^3 - 2Axy - x\xi^2 + 2A\xi y = 0, \]
(8)
as die Gleichung eines Tridens (Abb. 2.). Die isotrope Asymptote \(a \) dieser Kurve stimmt mit der \(y \)-Achse überein. Man sieht leicht, daß der isotrope Kreis \(x^2 - 2A\xi y = 0 \) mit der Kubik (8) keinen eigentlichen gemeinsamen Punkt hat. Er wird so als asymptotischer Kreis der erzeugten Kurve bezeichnet. Der vierfache Brennpunkt, wie auch der Hauptpunkt der Kurve, fällt in den Punkt \(F = V = F \).

Abb. 2

Fall (1,2): Die Zuordnung zwischen (1) und (7) für \(\nu = \tau \) gibt
\[x^3 - 2Axy - x - \xi^2 + 2A\xi y = 0, \]
(9)
was wieder die Gleichung eines Tridens mit ähnlichen Eigenschaften, wie im Fall (1,1), darstellt (Abb. 3.).

Abb. 3

Die **konstruktive Erzeugung** für die beiden Fälle führt man auf einem Modell, wo die uneigentliche Gerade \(f \) mit dem absoluten Punkt \(F \in f \) als eigentliche betrachtet werden, auf die folgende Weise durch (dabei sind die parabolische Kreise diejenige Kegelschnitte die zueinander hyperoskulieren im Punkt \(F \)):

Die Tangenten aller isolierten Kreise des Hyperoskulationsbüschels \(F \) mit den Berührungspunkten auf einer isolierten Gerade in bilden ein Geradenbüschel \(F \) mit dem Scheitel \(I \in f \). Alle Kreise des Büschels \(F \) sind nämlich durch eine perspektive Kollineation ver bunden, wobei \(f \) die Achse und \(F \) das Zentrum dieser Kollineation sind. Mittels der Projektivität zwischen den zwei Geradenbüscheln \(F \) und \(V \) (\(V = F \)) wurde eine projektive Zuordnung zwischen den Geradenbüscheln \(V \) und der Kreisbüschel \(F \) dargestellt, sodaß dem Kreis \(k_1 \) die Gerade \(p_1 = f \), dem Kreis \(k_2 \) die Gerade \(p_2 = i \) und dem entarteten Kreis \(k_3 \), die isotrope Gerade \(p_3 \) zugeordnet ist. Die konstruktive Lösung ist in Abb. 4. ersichtlich.
Bei diesem Typ kann auch der Scheitelpunkt \(V \) ein unechter Punkt sein. Einfachheit wegen kann der mit dem Punkt \(M \) übereinstimmen. Das Geradenbüschel wird dann durch zwei Geraden
\[
g_1 \equiv y - \bar{y} = 0,
g_2 \equiv y = 0,
\]
aufgespannt, sodass zwei Fälle möglich sind. Seine Gleichung lautet
\[
\mathcal{M} \equiv y - \bar{y} + \delta y = 0, \quad (11)
\]
bzw.
\[
\mathcal{M} \equiv y + \alpha(y - \bar{y}) = 0 \quad (12)
\]
wobei \(\delta \) und \(\alpha = \frac{1}{\delta} \) die Büschelsparameter sind.

Fall (2,1): Die projektive Zuordnung zwischen den Büscheln (1) und (11) erzeugt die Kubik mit der Gleichung
\[
x^2 y - 2Ay^2 - y + \bar{y} = 0
\]
die vom Zirkularitätsgrad 2 ist (Abb. 6.).

Fall (2,2): Ist das Kreisbüschel (1) in der projektiven Zusammenhang mit den Geradenbüscheln (12), entsteht wieder eine Kubik vom Zirkularitätsgrad 2 (Abb. 7.). Die Gleichung dieser Kubik besitzt die Form
\[
x^2 y - \bar{y}^2 + 2A\bar{y}y - y = 0.
\]

In beiden Fällen sind die erzeugten Kurven vom Geschlecht 1. Sie besitzen denselben isotropen Schnittpunkt mit der Gleichung \(x^2 - 2y - 1 = 0 \), der die Kubik im absoluten Punkt \(F \) berührt und mit ihr keinen weiteren gemeinsamen Punkt hat. Der unechtige Punkt \(V \equiv M \) ist der Wendepunkt wie auch der Hauptpunkt der Kubik [2].

Aus dargestellten Betrachtungen kann man schließen:

Durch die projektive Zuordnung zwischen einen Büschel konzentrischen isotropen Kreise und einen Geradenbüschel entsteht immer eine zirkuläre Kurve dritter Ordnung vom Zirkularitätsgrad zwei oder drei, was nur von der gegebenen Projektivität und der Lage des Scheitelpunktes des Geradenbüschels abhängig ist. In den Punkt \(F \) fällt immer der vierfache Brennpunkt der Kubik. Im Fall die Kubik vom Zirkularitätsgrad zwei ist, fällt der Hauptpunkt immer in den Scheitelpunkt des Geradenbüschels. Für
die vollständig zirkuläre Kubik gilt dieses im allgemeinen nicht. Es gilt nur dann, wenn der Scheitelpunkt des Geradenbüschels mit dem absoluten Punkt F übereinstimmt.

Abb. 7

Bemerkung. Die kubische Parabel wie auch die divergente Parabel wurden hier nicht betrachtet, da keine solche Kurve mittels Hyperoskulationskreisbüschels erzeugt werden kann [9].

Auf Grund der obigen Betrachtungen kann man einen Analogon des Czuberschen Satzes in der isotropen Ebene auf die folgende Weise formulieren.

Satz.

Für jede beliebige Gerade $p_j \in \mathcal{V}$ existiert ein solcher Kreis k_j aus \mathcal{K}, der F als viermalszählenden Schnittpunkt mit Kubik hat. Alle solche Kreise k_j hyperoskulieren zu einander im F und bilden deswegen ein Hyperoskulationskreisbüschel \mathcal{F}, der im projektiven Zuzordnung mit \mathcal{V} steht und die gegebene Kubik erzeugt.

Sei jetzt eine vollständig zirkuläre Tridents-Kubik gegeben. Eine beliebige Gerade $p_1 \in \mathcal{V}$, $V = H = F$, schneidet die Kubik, außer im Doppelpunkt F, in noch einem Punkt Q. Mit diesem Punkt ist ein Kreisbüschel \mathcal{K} der kongruenten isotropen Kreise eindeutig bestimmt [10]. Jeder Kreis k_i aus \mathcal{K} schneidet die Kubik in zwei weiteren Punkten C_i und D_i. In \mathcal{K} existiert nur ein Kreis k_1 der mit der Kubik keinen weiteren Schnittpunkt außer F besitzt. Dieser Kreis hat F als den fünfmalszählenden Schnittpunkt mit gegebener Kubik.

Für jede Gerade $p_j \in \mathcal{V}$ existiert ein solcher Kreis k_j, der F als fünfmalszählender Schnittpunkt mit Kubik hat. Alle solche Kreisen k_j haben außer F keinen anderen Punkt gemeinsam und bilden deswegen ein Hyperoskulationskreisbüschel \mathcal{F} der im projektiven Zuzordnung mit \mathcal{V} steht und die gegebene Kubik erzeugt.

Literatur

