ZAŠTITA KUKURUZA OD KOROVA

UVOD

Ispitivanja mogućnosti primjene kemijskih sredstava za suzbijanje korova (herbicida) u kukuruzu, započela su pojavom herbicida na bazi 2,4-D. (soli dichlorphenoxycetene kiseline), a natočno su suzbijanju širokolskih (dikotiledonih) korovskih biljaka u uskolskim (monokotiledonim) poljoprivrednim kulturama iz grupe trava (graminea), a to su strne žitarice (pišćeca, zob, ječam i raž), kukuća i kukuruza, koja kao biljka također spada u isto botaničku grupu.

Budući da su navedeni herbicidi sa sistemčkim djelovanjem u primjeni poslije nicanja korova (post-emergence), zadovoljili su u suzbijanju širokolskih korova u određenom razvojnomin stadijum (4–6 listova) u kulturi strnij žitarica (u visini biljaka cca 15–20 cm), pod određenim klimatskim uslovima (temperature iznad 15°C, i beskošnom periodu za vrijeme kao i izvjesno vrijeme poslije njihove primjene, potrebno da se nesmetano izvrši apсорpcija sredstva putem lišća korovskih biljaka, to su u istoj primjeni (post-emergence) u suzbijanju korova u kukuruzu, manje zadovoljili, obzirom na njihovo izvjesno djelovanje i na samu kulturu kukuruza.

Poznata je činjenica, da navedena sredstva djeluju jako fitotoksično na sve razvojne stadije kulturnih biljaka iz grupe dikotiledona, a također i na izvjesne stadije monokotiledonih biljaka (kljanje, nicanje, vlatanje i cvjetanje), dok je razvojni stadij po svršetku busanja, a prije početka vlatanja žitarica (u visini biljaka cca 15–20 cm), praktički neosjetljiv, odnosno najmanje osjetljiv na ova herbicidna sredstva.

Fiziološko djelovanje ovih sredstava na širokolske biljke (dikotiledone) zahvaća sve fiziološke procese metabolizma u biljci, budući da dikotiledone biljke apsorbiraju ova sredstva putem lišća i dalje ih prenose kroz cijeli biljni organizam (sistemčno), istim putem kao i biljne asimilate (putem floema), sve do korištenog sistema, gdje ovaj sredstva vrše stalni podražaj na razlaganje rezervnih hraniva (škroba i dr.), čija je posljedica naglo pojačana dioba stanica, koje bujanjem neorganizirano izbacuju čitave grupe nediferenciranog staniča na površinu cijelog biljnog organizma (kornjen, stabiljku, list i cvjet) u formi novoizraslih ili tumora, po obilu sličnih cvjetničkih. Dakako da, brzina ovog procesa ubijanja tretiranih biljaka zavisi o jačini primijenjene doze ovih sredstava.

U našim pokusima, provedenim na terenu i u laboratoriju, mogli smo zapaziti karakteristični sindrom (skupina simptoma), koji izazivaju ova kemijska sredstva na osjetljive biljne organizme, pri čemu su primijenjene subtelane doze sredstva izazvalo postepene ubijanje tretiranih biljaka, sa redovnom pojavom novoizraslih biljaka. U većini slučajeva to su biljke koja se međutim javlja na manjim, ali početnom simptomom, cvjetanje biljnih organa (listi i stabiljke), koji su na dodir i pritisk na tumore, šljunki ili ravna řešiva, a sve do ječmene sredstva za suzbijanje strnij žitarice (pišćeca, zob, ječam i raž).

Opća je poznata činjenica, da su sintetski kemijski spojevi (liječnika) u humanoj i veterinarskoj medicini, savjesno i precizno dozirani, te da samo propisane doze ovih spojeva djeluju kurativno, dok svaka pojačanja propisanih doza djeluje toksično na onaj ljudski ili životinjski organizam, koji se želi zaštititi od bolesti. Slični slučajevi postoje i kod raznih kemijskih sredstava u zaštiti biljaka

9 »Agronomski glasnik« 361
od raznih bolesti, štetnika ili korovskih biljaka (fungicida, insekticida i herbicida), budući da su i ta sredstva sintetski kemikaljski spojevi, više ili manje toksična i za ono bilje, koje se zaštićuje. Iz tog razloga su i doze ovih sredstava tačno propisane na temelju prethodnih preciznih ispitivanja njihovog djelovanja, kako na fiziološke procese onih organizama, koje se želi suzbiti ili uništiti, tako i na fiziološko odnosno fitotoksično djelovanje na one gajene poljoprivredne biljke, koje se želi zaštititi. Najčešće se propisane doze sredstava kreću u usko dopuštenim granicama, kojih se mora kod uspješne primjene, strogo i tačno pridržavati, budući da su u pitanju dva ili više živih organizama, jedini koje se želi uništiti, i drugi, koje se želi što bolje zaštititi od toksičnog djelovanja sredstva, štetog po zdravlje i dalji život biljke. Isti princip vrijede i kod primjene svih sredstava u suzbijanju korova u poljoprivrednim kulturama (herbicida). Tako smo mi u našim ranijim ispitivanjima u primjeni ovih herbicidnih sredstava poslije nicanja korova (post-emergence) u kulturi kukuruza (u visini biljaka cca 15 cm) utvrdili, da su ova sredstva izazvala smanjenu elastičnost u savijanju stabljike kukuruza, koje su tom prilikom lako pucale na mjestu koljenca. Ova se pojava nije očitovala na biljkama netretiranih parcela, što ukazuje na mogućnost prelamanja stabljika tretiranog kukuruza prilikom jačeg vjетra. Nešto su bolji rezultati postignuti u primjeni ovih sredstava poslije sjeta, a prije nicanja kukuruza (pre-emergence).

Medutim, pojavom novih herbicida na bazi aminotriazina (Simazine, Gesaprime), široka je praksa dobila dva herbicida, koji imaju širi spektar herbicidnog djelovanja na korove u kulturi kukuruza, zato ih je praksa brzo prihvatila, tako da se njihova primjena proširila na gotovo sva vlažna klimatska područja uzgoja

Sl. 1.
Kukuruz tretiran herbicidom na bazi aminotriazina

Tretirano Netretirano
Sl. 2 — Klipovi kukuruza dobiveni tretiranjem herbicidom na bazi aminotriazina

kukuruza. Uspješno je bio vrlo zadovoljavajući u suzbijanju korova u određenim klimatima, to više, jer su i biljke kukuruza na tretiranim parcelama bile bolje razvijene, višeg uzrasta i tambije zelene boje, dok su biljke kukuruza na netretiranim kontrolnim parcelama bile slabije, nižeg uzrasta i svijetlo zelene, gotovo hlorotične boje. (Sl. 1) što se redovno odražavalo i u prosječnom prinosu kukuruza (Sl. 2 i Tabela 1).

Zahvaljujući činjenici, da biljke kukuruza posjeduju određeni encim, koji biokemijskim procesom u biljci razlaže ova sredstva na bazi aminotriazina i stvara ih ne samo bezopasnim za biljke kukuruza, nego ih pretvara u spojeve, koji u izvjesnom smislu pomalo i stimuliraju rast i razvoj ove kulturne biljke; zato je i ovu prednost ovih sredstava praksa brzo prihvatila, to više jer je i njihovo herbicidno djelovanje dugotrajnije od ranije spomenutih herbicida na bazi regulatora rasta.

Međutim, prednost dugotrajnijeg djelovanja herbicida na korove može biti i nepoželjan faktor, budući da svojom dugotrajnošću djeluje fitotoksički na one osjetljive gašene kulture, koje u plodoredu slijede određeno vrijeme iza primjene ovih herbicida, a čije biljke ne posjeduju (kao kukuruza) određeni encim, sporo- ban za razlaganje ovih sredstava u biljci.

Normirane doze ovih sredstava u suzbijanju korova u kukuruzu (2—4 kg/ha), pod povoljnim klimatskim uslovima, razgrađe se u tlu u tolikoj mjeri do lešeni iste godine, da ostatak sredstva (rezidua) ne djeluje više štetno na kulturu ozimnih žitarica, sijanih u jesen. Pri tome se mora strogo voditi računa, da primje- njene doze sredstava odgovaraju: 1. tipu tla (lako, srednje, teško i teško tlo), 2. količini organskih tvari u tlu i 3. vlažnosti tla odnosno količini oborina za određeno klimatsko područje.

U našim pokusima, izvedenim sa ovim sredstvima na području NRH., u dozaciji ovih spojeva: 2 kg/ha za laka, pjeskovita tla, 3 kg/ha za srednje teška tla, i 4 kg/ha za teška tla sa većim sadržajem organske substanse u tlu i sa zado- voljavajućim raspadom i količinom oborina kroz vegetacijsku periodu, 800 do 1.400 mm godišnje, nismo imali štetno režidualno djelovanje na kulturi oziome pšenice (sorte Proglik), sijane u jesen iste godine, kao ni na kulturi heljde, sijane slijedeće godine iza žetve pšenice, odnosno '14 mjeseci nakon primjene navedenih doza. (Tabela II i III). Početni znaci oštećenja kulture odnosno smanjenja prinosa pšenice i heljde, javljali su se početno do doze sredstva 6 kg/ha, sa progressivnim jačim smanjivanjima prosječnih prinosa, u primjenjenim dozama od 8 i 10 kg sredstva na ha.
Osim navedenih faktora u primjeni ovih sredstava ističu se još i drugi, a to su: načini primjene i kvaliteta tehničkih rada. Tako npr. sredstvo na bazi aminotriazina (Simazine), daje uspješne rezultate samo u primjeni poslije sjetve, a prije nicanja kukuza, odnosno prije nicanja korova (pre-emergence) u vrlo vlažnim klimatskim područjima, budući da taj herbicid djeluje samo putem korišćenja, dok sredstvo na bazi atracina (Gesaprim), također iz grupe aminotriazina može se primijeniti poslije sjetve, a prije nicanja (pre-emergence), kao i poslije nicanja (post-emergence), budući da sredstvo djeluje putem korijena i putem lišća i u slabijski vlažnim klimatskim područjima, pošto je toplost ovih sredstava u vodi relativno vrlo slaba (Simazine do 5 ppm, i Gesaprim do 70 ppm.) što uvjetuje i potrebu vrlo vlažnih zemljišta, da se sredstva što bolje i u pravo vrijeme mogu aktivirati u svom herbicidnom djelovanju na korovske biljke.

Da produžimo vremenski raspon između primjene ovih sredstava u suzbijanju korova, u proširenoj (IV mj.) i sjetve ozimih žitarica u jesen (X mj.), postavili smo pokuse prskanja tla i prije sjetve kukuza (III mj. u pre-sowing primjeni), tako da smo vremenski razmak od 6 mjesece pomažli na 7 mjesece, sa ciljem, da se pruži duža mogućnost razgradnji sredstava u tlu, što bi moglo biti od većeg značaja za sušnu, a manje za vlažnu klimatsku područja. Dobiveni pozitivni rezultati pokazali su, da se može koristiti i tom mogućnošću, pri čemu se koristi i zimski vlagu tla.

Pored spomenutih važnih faktora, preciznog i tačnog pridržavanja svih propisa u primjeni ovih herbicida na terenu, konačni poljoprivredni efekt je kvalitetna tehnika primjene, pri čemu treba dobro paziti da određena količina sredstva (doza) na određen tip tla bude što jednoličnije raspoređena na jedinicu površine tla (ha), tako da se prskanja ne ponavljaju (na rubnom zahvatu prskalice) ili utrošujuju pri zaokretima prskalice, i zato ni u kojim slučaju rada uslijed kvara tla. Svi ovi propusti bit će kasnije jasno vidljivi u unutarnjim mjestima neiskorištenih biljaka žitarica, pošto će na tim mjestima dozama sredstava biti udvostručena odnosno utrošena, što znači, da će kod maksimalne doza sredstava od 4 kg/ha, dojava dobrinje biti 8 kg/ha, odnosno 12 kg/ha itd., a koje količine sredstava u tlu daju toksični utjecaji na žitarice i dulje od godine dana. Pošto mikroflora tla, koja je vrlo važan faktor u razgradnji ovih sredstava u tlu, ne može u kratkom vremenskom razdoblju razgraditi ovu veliku količinu sredstava u tlu, to treba naročito videće računa i o tim momentima, to više, da prenijetsa doza ovih sredstava djelomična smanjuje ukupnu mikrofloru tla (bakterije, aktnimicoce i gljive), a time i njihovu putnu aktivnost rada, kako smo nudi u našim ispitivanjima mogli utvrditi.

Uslijed položaja oštećenja, uzrokovanih primjenom ovih herbicida na ozimim žitaricama u širokoj praksi, postavili smo pokuse ispitivanja dugotrajnosti rezidualnog djelovanja ovih sredstava u raznim tipovima tla na području NRH.

Ispitivanja su vršena A) na terenu i B) u laboratoriju u tri pravca, tako da su provedene:

1. biološka ispitivanja pomoću bio-essay-a,
2. mikrobiološka analiza utvrđivanjem ukupne mikroflore tla,
3. kemijska analiza uzoraka tla po metodi Delleya.

Tretiranje tla izvršeno je u proljeće (IV mjesec 1961. god.) prskanjem tla poslije sjetve, a prije nicanja kukuza u pre-emergence primijen je herbicidom na bazi atracina u tri dozacija (2, 4, 6 kg sredstva u 1.000 litara vode/ha i četiri repeticije, na tri razna tipa tla (lako pjeskovito, srednje teško i teško tlo).

Uzimanje uzoraka tla sa terena sa svih eksperimentalnih parcela (tretiranih i netretiranih kontrolnih parcela), podešeno je vremenu sjetve u praksi, sa ciljem da se utvrdi stanje ostataka sredstva (rezidua) u tlu prije i poslije sjetve ozimih žitarica, odnosno 6 mjesece nakon primjene, i prije posteljne sjetve u godine, odnosno godinu dana nakon primjene ovog herbicida. Uzorci tla uzimani su dijagonalno od 7 raznih mjesta i tri razna sloja tla, dubine: 0–5 cm, 5–10 cm, i 10–15 cm, sa svake pojedine eksperimentalne (tretirane i netretirane) parcela (veličine 10 m²) sa ciljem da se dobije što bolji prosječni uzorak
tla sa raznih mjesta unutar pojedinih eksperimentalnih parcela. Za vađenje raznih slojeva tla koristen je bušać dužine 20 cm i promjera 5 cm, obilježen u dužinu svakih 5 cm, a u širinu svakih 2 cm, tako da se jedna pokusna parcela sastoji od svaki pojedini sloj tla, koji su slojevi na terenu odvojeno stavljeni u plastične vrećice i doneseni u laboratorij na ispitivanje.

Uzorci tla doneseni sa terena u laboratorij odmah su uzimani u postupak. Najprije su stavljeni na sušenje u otvorene posude, dok nisu postigli tzv. stanje suhoće sobne temperature. Na taj način osušena zemlja sitno je smrvljena i prošljana kroz sito, čij su otvori bili veličine 1 mm za lako tlo, i 2 mm za srednje teško i teško tlo. Iz ostataka materijala na situ, izdvojeno je kamenje od grubi organh sastojaka, a pošto organski materijal može još sadržati ostatke herbicida, to se on posebno usitnio i dodao prošljanoj zemlji.

Na ovaj način pripremljeni uzorci tla uzimani su u daljnji postupak: na određivanje ukupne mikroflore tla (bakterije, aktinomicete i gljive), zatim na utvrđivanje sadržaja vlage i organske supstance, i za kemijsku analizu. Nadalje, pošto je utvrđen sadržaj vlage u pojedinim uzorcima tla, odmah se pristupilo biološkom postavljanju pokusa pomoću bio-essaya, sa sjetnom test-biljakama, koje su vrlo osjetljive prema herbicidima na bazi aminotriazina. Test biljke helija — Fagopyrum aesculentum, i talijanski ljuž — Lolium itallicum, sijanje su (po 50 zrna) u posude sa standardiziranim količinom tla, koje je bilo tretirano sa poznatom koncentracijom ispitivanog herbicida, tako da se komparativnim ogledima sa uzorcima tla na terenu moglo upoređivati djelovanje rezidua u tlu. Količina suhe zemlje unutar pokusa bila je kod svih uzoraka jednaka i to po 200 g na svaku posudu, u koju je dodano po 40 ccm vode. Za vrijeme kljanja i ničanja biljaka dodavano se gubitak vlage i uvijek održavao na konstantnoj težini. Pokus je trajao 14 dana, kroz koje se vrijeme vršilo brojenje izniknutih biljaka i izračunavanje njihovih mjerjenja. A na kraju vršio mjerenje njihove toplotne reakcije. Upoređivanjem raznih brojeva dobivenih u seriji ispitivanih pokusa, moglo se priblizu zaključiti na količinu rezidua, zaostalih u uzorcima ispitivanog tla.

Na temelju rezultata dobivenih u ispitivanju dugotrajnosti rezidualnog djelovanja herbicida na bazi atracina iz grupe aminotriazina, moglo se ustanoviti slijedeće:

1. Da doze ispitivanog sredstva propisane u suzbijanju korova u kukuruzu (2 kg/ha za laka pjeskovita tla, 3 kg/ha za srednje teška tla, i 4 kg/ha za teška tla), propisano primijenjene za određeni tip tla i klimatsko područje sa zadovoljavajućim rasporedom-oborom na svim ispitivanim mjestima u NRH, nisu izazvali oštećenja ni smanjenje u primoru pšenice sijane 5 mjeseci nakon njegove primjene, ni heljde sijane 14 mjeseci nakon primjene ovog herbicida;

2. Da se utjecaj ispitivanog sredstva odrazilo samo u jesenjim uzorcima tla (tipa srednje teškog tla sa 2—4% organske supstance) na neznatno smanjenje organske supstance u tlu (Tabela IV) dok je njegov utjecaj na smanjenje broja ukupne mikroflore tla (bakterije, aktinomicete i gljive) bio znatno veći. U gornjem sloju tla (dubine 0—5 cm) broj ukupne mikroflore tla bio je smanjen za 15% kod doza 2 i 4 kg/ha i 20% kod doze sredstva od 6 kg/ha, dok je u srednjem sloju tla (dubine 5—10 cm) utjecaj sredstva opadao, tako da su uzorci tla tretirani sa 2 kg sredstva/ha po broju ukupne mikroflore izražene u milijunima (po metodi ploče) imali nešto bolje rezultate od kontrolnih — netretiranih uzoraka tla. Ovdje je doza sredstva od 4 kg/ha smanjila broj ukupne mikroflore sa 12%, a doza od 6 kg/ha za 18%. U najdonjem sloju ispitivanih uzoraka tla (dubine 10—15 cm) nije se u jesenjim uzorcima mogla zapaziti signifikantna razlika, kako u sadržaju organske supstance u tlu, tako i u broju ukupne mikroflore tla. U proljetnim uzorcima tla nije se više zapažala signifikantna razlika ni u gornja dva ispitivana sloja, što ukazuje na brzu regeneraciju organske supstance u tlu (Tabela V).

Rezultati kemijske analize jesenjih uzoraka tla pokazali su da je sredstvo primijenjeno u maksimalnoj dozi (4 kg/ha na tipu srednje teškog tla) bilo razgrađeno za cca 8 puta (od 4 kg/ha na 0,5 kg/ha) u gornjem sloju tla (dubine 0—5 cm), dok je u srednjem sloju tla (dubine 5—10 cm), ostala još za 10 puta manja količina rezidua od gornjeg sloja (od 0,5 kg/ha na 0,05 kg/ha). Rezultati
bioloških pokusa pomoću bio-essay-a u utvrđivanju rezidua herbicida u tlu sa osjetljivim test-biljkama, uglavnom su se poklapali sa rezultatima kemijske analize u dva gornja sloja tla. Razlike u najdonjem sloju ispitivanog tla (dubine 10 do 15 cm) u jesenjim uzorcima između tretiranih i netretiranih parcela nisu bile više signifikantne u sva tri pravca ispitivanja (biološkom, mikrobiološkom i kemijom).

Rezimirajući sve dosada dobivene rezultate prosječnih prinosa kukuruza, pšenice i beljke sa svih eksperimentalnih parcela, kao i utvrđivanja ostataka (rezidua) ispitivanog sredstva u tlu 6 mjeseci nakon njegove primjene, može se konstatirati da su utvrđene količine rezidua u tlu bile tolerantne doze za ozimnu pšenicu, budući da nisu utjecale na smanjenje prosječnog prinosa. Prema tome može se donijeti slijedeći zaključak:

1. — Da se prilikom primjene svih sredstava namijenjenih suzbijanju korova (herbicida) u kukuruzu kao i u drugim kulturnama, mora uvijek tačno pridržavati svih propisa određenih za njihovu primjenu,

2. — da se tehnika primjene vrši kvalitetno i precizno po propisanim uslovima,

3. — da se uvijek vodi strogo računa o tome, da svako herbicidno sredstvo ima svoju određenu trajnost djelovanja u tlu, koje se može štetno održati na slijedeće kulture u plodorođu ako se primjena ne obavlja stručno na visini i tehnički kvalitetno.

PROSJEČNI PRINOS KUKURUZA

tretiranog IV mj. 1961. god. sa herbicidom na bazi atracina

(na srednje teškom tlu)

<table>
<thead>
<tr>
<th>Naziv eksperimentalne parceli i dozacija sredstava</th>
<th>Broj biljaka na ha</th>
<th>Broj klipova na ha</th>
<th>Težina u kg/ha (Berba 4. X. 1961.)</th>
<th>Vlaga u zrnu 13. X. 1961. godine</th>
</tr>
</thead>
<tbody>
<tr>
<td>D<sub>1</sub> = 2 kg/ha</td>
<td>38.200</td>
<td>36.500</td>
<td>4.222</td>
<td>3.775</td>
</tr>
<tr>
<td>D<sub>2</sub> = 4 kg/ha</td>
<td>37.700</td>
<td>35.700</td>
<td>4.692</td>
<td>3.138</td>
</tr>
<tr>
<td>D<sub>3</sub> = 6 kg/ha</td>
<td>37.200</td>
<td>33.200</td>
<td>5.860</td>
<td>4.053</td>
</tr>
<tr>
<td>T = Kontrola</td>
<td>38.500</td>
<td>28.000</td>
<td>1.543</td>
<td>1.048</td>
</tr>
</tbody>
</table>

BIOLOSKO ISPITIVANJE TLA

(Terensko — srednje teško tlo)

Prinos ozime pšenice u zrnu, slijeve u jesen 1961. godine nakon suzbijanja korova u kukuruzu, u proljeću 1961. godine

Test biljka: Ozima pšenica
Sorta — Prolifik

<table>
<thead>
<tr>
<th>Naziv eksperimentalne parceli i dozacija sredstava</th>
<th>Srednja vrijednost (od 4 repeticija)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Težina zrna u kg/ha</td>
<td>Hektolitarska težina</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>D<sub>1</sub> = 2 kg/ha</td>
<td>1.510,0</td>
</tr>
<tr>
<td>D<sub>2</sub> = 4 kg/ha</td>
<td>1.454,0</td>
</tr>
<tr>
<td>D<sub>3</sub> = 6 kg/ha</td>
<td>1.332,0</td>
</tr>
<tr>
<td>T = Kontrola</td>
<td>1.360,0</td>
</tr>
</tbody>
</table>
BIOLOSKO ISPITIVANJE TLĂ
(Terensko — srednje teško tlo)

Prinos heljde u zrnu, stijene iza pšenice u 1962. godini nakon suzbijanja korova u kukuruizu, u 1961. godini

Test biljka: Heljda
Fagopyrum aesculentum

Tabela III

<table>
<thead>
<tr>
<th>Naziv eksperimentalne parcele i dozacija sredstva</th>
<th>Srednja vrijednost (od 4 repeticije)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Težina zrna u kg/ha</td>
</tr>
<tr>
<td>$D_1 = 2$ kg/ha</td>
<td>348,0</td>
</tr>
<tr>
<td>$D_2 = 4$ kg/ha</td>
<td>287,0</td>
</tr>
<tr>
<td>$D_3 = 6$ kg/ha</td>
<td>246,0</td>
</tr>
<tr>
<td>$T = Kontrola</td>
<td>249,0</td>
</tr>
</tbody>
</table>

BIOLOSKO ISPITIVANJE TLĂ
(laboratorijsko — srednje teško tlo)

Test biljka: Heljda
Fagopyrum aesculentum

Tabela IV

<table>
<thead>
<tr>
<th>Naziv eksperimentalne parcele i dozacija sredstva</th>
<th>Dubina sloja zemlje (srednje teško tlo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0 - 5$ cm</td>
</tr>
<tr>
<td></td>
<td>% organske supstance</td>
</tr>
<tr>
<td>$D_1 = 2$ kg/ha</td>
<td>3,724</td>
</tr>
<tr>
<td>$D_2 = 4$ kg/ha</td>
<td>3,357</td>
</tr>
<tr>
<td>$D_3 = 6$ kg/ha</td>
<td>3,240</td>
</tr>
<tr>
<td>$T = Kontrola</td>
<td>3,942</td>
</tr>
</tbody>
</table>

BIOLOSKO ISPITIVANJE TLĂ
(laboratorijsko — srednje teško tlo)

Rezidue: III. mj. 1962. god.

Test biljka: Heljda
Fagopyrum aesculentum

Tabela V

<table>
<thead>
<tr>
<th>Naziv eksperimentalne parcele i dozacija sredstva</th>
<th>Dubina sloja zemlje (srednje teško tlo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0 - 5$ cm</td>
</tr>
<tr>
<td></td>
<td>% organske supstance</td>
</tr>
<tr>
<td>$D_1 = 2$ kg/ha</td>
<td>4,102</td>
</tr>
<tr>
<td>$D_2 = 4$ kg/ha</td>
<td>3,566</td>
</tr>
<tr>
<td>$D_3 = 6$ kg/ha</td>
<td>3,320</td>
</tr>
<tr>
<td>$T = Kontrola</td>
<td>3,413</td>
</tr>
</tbody>
</table>

367