ORIGINAL SCIENTIFIC PAPER

Croat. Chem. Acta **2016**, 89(2), 197–202 Published online: September 26, 2016 DOI: 10.5562/cca2872

Can Crystal Symmetry and Packing Influence the Active Site Conformation of Homohexameric Purine Nucleoside Phosphorylases?

Marija Luić,[#] Zoran Štefanić*

Division of Physical Chemistry, Ruđer Bošković Institute, POB 180, HR-10002 Zagreb, Croatia

* Corresponding author's e-mail address: zoran.stefanic@irb.hr

Author's e-mail address: marija.luic@irb.hr

RECEIVED: March 22, 2016 * REVISED: June 17, 2016 * ACCEPTED: June 26, 2016

– THIS PAPER IS DEDICATED TO THE LOVING MEMORY OF IVANA WEYGAND- $ilde{ ext{P}}$ urašević (1952–2014) –

Abstract: It is generally believed that enzymes retain most of their functionality in the crystal form due to the large solvent content of protein crystals. This is facilitated by the fact that their natural environment in solution is not too far from the one found in the crystal form. Nevertheless, if the nature of the enzyme is such to require conformational changes, overcoming of the crystal packing constraints may prove to be too difficult. Such conformational change is present in one class of enzymes (purine nucleoside phosphorylases), that is the subject of our scientific interest for many years. The influence of crystal symmetry and crystal packing on the conformation of the active sites in the case of homohexameric purine nucleoside phosphorylases is presented and analysed.

Keywords: crystal symmetry, crystal packing, active site conformation, enzyme reaction, purine nucleoside phosphorylase.

INTRODUCTION

C ATALYTICAL mechanism of homohexameric purine nucleoside phosphorylases (PNPs), key enzymes in the purine salvage pathway, is the subject of our scientific interest for many years. PNPs catalyse the phosphorolytic cleavage of the glycosidic bond of purine (2'-deoxy)nucleosides, generating the corresponding free base and (2'-deoxy)ribose-1-phosphate. The biologically active form of this enzyme is a homohexamer (Figure 1) that can be described as a trimer of dimers.

Allosteric regulation and cooperativity of phosphate and nucleoside binding to PNPs is very complex and still poorly understood process. In *Escherichia coli* PNP phosphate binding induces a segmentation of the helix located at the active site pocket border, leading to a structural change in part of the active sites. In this way, the active site conformation changes from so called open to closed one^[1] (Figure 2).

In the open conformation, where the helix (H8) is continuous, the entry into the active site is widely open and

Figure 1. The hexameric structure of PNP with monomers denoted exhibits approximate 32 point group symmetry. Hexamers can be considered as trimers of dimers, denoted by ellipses. Therefore, chains A and D, B and E, and C and F form dimers.

Figure 2. Superimposed open and closed active site conformations in the structure of the *E. coli* purine nucleoside phosphorylase in ternary complex (PDB code 1K9S) with phosphate ion and formycin B (FMC).

the ligands are bound only loosely. By segmentation of the H8, the entry into the active site pocket partially closes and the ligands are bound more tightly. We suppose that from two substrates, phosphate binds first while the active site is in the open conformation. Phosphate binding stabilizes Arg24 (conserved in all hexameric PNPs) and favours breaking of H8 into two segments. Before the binding of the second substrate (nucleoside), catalytically important amino acid Asp204 has to be protonated (Figure 3a).

Catalytic action occurs while the active site is closed. As a consequence of the helix segmentation, two important protein-substrate contacts are established: the H-bond between Arg24 and a main-chain carbonyl oxygen of Arg217 and guanidinium group of Arg217 moves into hydrogen bond distance to Asp204 (Figure 3b). After proton transfer from Asp204 to N7 of purine base, a transition state is formed (Figure 3c).

The two possible conformations of the active sites revealed by X-ray crystallography are in line with solution studies of *E. coli* PNP which also observe strong and weak binding sites for phosphate and nucleoside inhibitor.

In the crystal structures of *E. coli* PNP complexed with its ligands^[1–14] the following distributions of the closed and open active sites can be found: 3 open + 3 closed,^[1] 4 open + 2 closed sites^[2–6] and all six open (see for example reference).^[6] It is interesting to stress out, that in the case with 3 open + 3 closed active site conformations they alternate regularly, while in the case of 4 open and 2 closed active sites, the closed sites are always next to each other and belong to two different dimers of one homohexamer.

Recently we focused our interest on PNP from pathogen bacteria *Helicobacter pylori* (HP). Although HP PNP

Figure 3. Possible catalytic mechanims of *E. coli* PNP. a) The active site is in the open conformation, helix H8 is continuos and Asp204 in protonated state. The neutral side-chain of Asp204 donates a hydrogen bond to the purine nitrogen N7. b) Phosphate binding stabilizes Arg24 and favors H8 segmentation – the closed conformation is formed. c) The conformational change brings the guanidinum group of Arg217 in contact with Asp204. This triggers proton transfer to the purine base and salt bridge between Arg217 and Asp204 is formed. The positively charged purine base leads to the ribooxocarbenium ion character, representing the transition state.

has 50 % identity and 70 % similarity with *E. coli* PNP, it seems that there are significant differences in their enzymatic activity. In some HP PNP ternary structures we have found unexpected distribution of 5 open and 1 closed active site conformation (data not published). To the best of our knowledge, this is the first such case among homohexameric PNP enzymes.

In order to facilitate the analysis of the distribution of open and closed active site conformations in ever-growing number of PNP crystal structures available in the Protein data bank (PDB), and to insure that all available structures will be taken into account by such an analysis, a custom made Python script was written, which automated the task of recognizing active site conformations. In addition to that, the script extracts the information about crystal contacts between specified parts of the monomers, in particular those that are in proximity of the active site. In this way we tried to identify whether a correlation between the active site conformation on one side, and crystal symmetry and/or crystal packing factors on the other side exists.

Such an analysis would contribute to better understanding of the enzyme mechanism(s) of these complicated two-substrate two-product oligomeric proteins, by identifying a possible sequence of events in ligands binding to distinct subunits of the homohexameric enzyme. At the same time, such an analysis could help us to reveal if there are limitations imposed by crystal symmetry and/or crystal packing which could mask features of the enzyme function when analysed by X-ray crystallographic methods.

EXPERIMENTAL SECTION

The set of protein structures, which are similar in sequence to the referent strain of *H. pylori* (strain 26695) purine nucleoside phosphorylase (HP PNP), was extracted from PDB by sequence alignment. The parameters for sequence alignment were chosen to yield "Significant" entries which corresponded to E value of 0.01.^[15] This resulted in 172 structures out of which 149 were hexameric proteins and the rest were dimeric and were not included in further analysis.

The resulting 149 PDB structures were analysed with custom-made Python script (https://www.python.org/). The script uses excellent cctbx library^[16] to process a PDB file, and automatically identify whether monomers are in open or closed active site conformation. Due to the difference in numbering and different chain lengths in different PNPs, it was not possible to automate the process of detecting the open and closed conformations by for instance measuring some distances on certain amino acid numbers. Instead, the segmentation of the helix was followed by parsing a secondary structure record and extracting the information on the helix H8 (Figure 2). Namely, this helix is segmented in two helices in the case of closed active site conformation. If another α -helix was found not further than 5 amino acids away from the beginning of H8 helix than the conformation was assigned as closed.

In addition, this script was used to identify all the crystal contacts in the crystal structure. For the crystal

contacts, all distances between protein atoms (excluding waters) from different monomers shorter than 3.5 Å were counted. More specifically, the script could narrow down this list of contacts taking into account any protein region of interest. This was used to identify crystal contacts in the vicinity of the closing region of the helix H8. In order to see if there is any correlation between closed conformation of the active site and crystal contacts the following analysis was performed. For the 22 structures that contained at least one closed monomer, the number of crystal contacts of every monomer in that structure was calculated, taking into account only the region close to the part of H8 helix that closes. Due to differences in numbering of amino acids, this could not have been done by simply taking some amino acid range. To overcome this, the number of amino acids which marks the beginning of the helix H8 was identified from the secondary structure. Then the range of ten amino acids forward and five amino acids back from that amino acid was taken into account. Taking this amino acid region insured that part of the protein that undergoes conformational change was taken into account.

RESULTS AND DISCUSSION

The 149 structures retrieved from Protein data bank (PDB) by sequence alignment of HP PNP referent strain (26695) originated from 23 different bacteria. In 127 bacterial PNPs our custom made script identified no active sites in closed conformation (Supplementary materials, Table S1) while in 22 of them (from 7 different bacteria) the closed conformation of the active site was detected (Table 1).

The distribution of the open and closed active site conformations is as follows:

- a) The most common distribution between open and closed active site conformations is 4+2, respectively (Table 1) and it occurs in 13 cases. It is interesting to mention that in all of them two closed sites are located close to each other and that they belong to two different dimers forming the same homohexamer. This arrangement is realized in four different space groups (P6₁22, P2₁2₁2₁, P6₂ and P2₁) indicating that crystal packing probably does not influence such a distribution. Also, this arrangement is found almost exclusively in *E. coli* with only one exception the PNP structure from *T. vaginalis*.
- b) The next by number of occurances is 0+6 arrangement with all active sites closed (6 such cases from 3 different bacteria). Four of them come from a special case of purine nucleoside phosphorylases that are highly specific for 6-aminopurines and therefore called also adenosine phsophorylses. These four cases represent ternary complexes of this enzyme from *Bacillus cereus*

PDB code	Organism	Space group	Chains (closed marked with *)	Open+closed	In active site
1PK9	Escherichia coli	P6122(a)	A B C*	4+2	2FA ^(b) +PO4
1PR1	Escherichia coli	P6122	A B C*	4+2	FMB+PO4
1PR5	Escherichia coli	P6122	A B C*	4+2	TBN+PO4
2I4T	Trichomonas vaginalis	<i>P</i> 6 ₂	A B* C	4+2	UA2+PO4
1A69	Escherichia coli	<i>P</i> 6 ₁ 22	A* B C	4+2	FMB+SO4
3UT6	Escherichia coli	P6122	A* B C	4+2	FMC+2PO4
4TS9	Escherichia coli	<i>P</i> 6 ₁ 22	A* B C	4+2	FMC+PO4
300E	Escherichia coli	P212121	A* B C D E F*	4+2	PO4
4TS3	Escherichia coli	P212121	A* B C D E F*	4+2	FMC+PO4 in closed PO4 in open
4TTA	Escherichia coli	P212121	A* B C D E F*	4+2	SO4 in closed FMC+PO4 in 2 open PO4 in other 2 open
4TTI	Escherichia coli	P212121	A* B C D E F*	4+2	FMC+PO4 in closed FMC+PO4 in 2 open PO4 in other 2 open
4TTJ	Escherichia coli	P6122	A* B D	4+2	FMC+PO4
300H	Escherichia coli	P21	A* B C D* E F* G* H I J K L* M* N O P Q R*	(4+2)x3	PO4
3UAW	Bacillus cereus	<i>P</i> 6 ₃ 22	A*	0+6	ADN+SO4
3UAX	Bacillus cereus	<i>P</i> 6 ₃ 22	A*	0+6	NOS+SO4
3UAY	Bacillus cereus	<i>P</i> 6 ₃ 22	A*	0+6	ADN+SO4
3UAZ	Bacillus cereus	<i>P</i> 6 ₃ 22	A*	0+6	ADN+SO4
30CC	Yersinia pseudotuberculosis	P212121	A* B* C* D* E* F*	0+6	DIH+PO4
30F3	Vibrio cholerae	P212121	A* B* C* D* E* F* G* H* I* J* K* L*	(0+6)x2	DIH+PO4
4D98	Bacillus subtilis	R32	A B*	3+3	SO4
4M7W	Leptotrichia buccalis	P32	A B* C	(3+3)+(6+0)	PO4
1K9S	Escherichia coli	P41212	A* B* C* D E F	3+3	FM2+PO4

Table 1. The structures of purine nucleoside phosphorylases from the Protein Data Bank that contain at least one active site in closed conformation. Structures can be classified in three groups: 4+2, 0+6 and 3+3

(a) In the space groups P6122, P62 and P32 one half of the hexamer is present in the asymmetric unit. In the space group R32 two monomers and in the P6322 one monomer is present in the asymmetric unit. The whole hexamer in these space groups is formed by applying crystallographic symmetry.

^(b) The abbreviations denote standard PDB ligand codes.

that, comparing with *E. coli* PNP, have more closed the critical part of the active site (residues 207–217). The remainig two structures (PDB codes 3OCC and 3OF3) are the result of Protein structure initiative and are not published yet.

c) In three crystal structures the distribution between closed and open active sites is 3+3. One is of the ternary complex of homohexameric PNP from *Echerichia coli* with formycin A derivatives and phosphate or sulphate ions.^[1] This is a very special case of PNP's ternary complex. 6-methyl formycin A is the best know inhibitor of *E. coli* PNP with $K_i = 0.3 \mu$ M at neutral pH. In aqueous solution this compound undergoes rearrangement to four different formycin derivatives. The main product of hydrolysis is N7-methlyformycin A. Detailed inspection of the active sites of the homohexamer present in the asymmetric unit revealed unambiguously that 6-methylformycin was located in three monomers (closed conformation) and in other three N7-methylformycin (open conformations). Open and closed conformations in the homohexamer alternate

open		close	d	open	1	close	d	оре	ən	clos	ed	оре	en	clos	ed
	3ooh				30	f3			300	е			300	е	
В	1	A	9			А	0	В	21	А	4	В	0	А	0
С	2	D	1			В	0	С	0	F	4	С	0	F	1
E	3	F	3			С	0	D	0			D	0		
н	1	G	0			D	1	E	0			E	0		
I	1	L	1			E	0		2i4	t			1pk	9	
J	0	М	0			F	1	A	1	В	5	Α	0	С	C
К	0	R	9			G	0	С	0			В	20		
N	4					Н	0		4tta	a 👘			1pr	1	
0	3					I	1	В	6	А	8	Α	0	С	C
Р	3					J	1	С	0	F	4	В	18		
Q	7					К	0	D	0				4d9	8	
	4tti					L	1	E	10			A	14	В	7
В	15	A	8		3u	t6		_	1k9	s			3ua	У	
С	0	F	3	В	0	Α	0	D	3	А	2			A	1
D	0			C	19			E	0	В	2		4ts)	
E	6				4t	tj		F	0	С	1	В	0	Α	0
	4ts3	_		В	0	Α	0		3ua	w		C	<mark>1</mark> 7		
В	7	A	5	D	14					A	1		1a6	9	
C	3	F	4	_	4m	7w			1pr	5		В	0	Α	0
D	0			А	2	В	0	А	0	С	4	C	1 6		
E	1			С	6			В	13						
	3uaz	_							3ua	x	_				
		A	8							А	3				

Figure 4. This figure displays the number of crystal contacts that particular monomers have in proximity of the active site in 22 PNP structures that have at least one active site in closed conformation. Each bordered cell in the table contains the data for one PDB code given in the top shaded area. Letters indicate the chain identifiers. In each bordered cell the two left columns represent results for the monomers (if any) in open and two right columns for the monomers in closed conformation. The red bars are graphical help to compare values accross the cells.

regularly. In all six active sites one phosphate or sulphate ion (it is not possible to distinguish between them in the electron density maps calculated at the given resolution) is bound. Such a distribution was in agreement with half-the-sites binding for 6-methylformycin determined in solution.^[1] The same alternating arrangement is found in the crystal structure of *Bacillus subtilis* (PDB id 4D98), the only structure with one dimer in the asymmetric unit.^[17] One other very interesting case in this group is the structure of PNP from *Leptotrichia buccalis* (PDB code 4M7W). Namely, in the crystal packing of this protein there is an equal number of hexamers with 3+3 and 6+0 arrangement.

There is a substantial variability of the space groups found among the members belonging to the same distribution of active sites (for example, 4+2 distribution is found in four different space groups, 0+6 distribution is found in two space groups and one of the space groups has two variations). Furthermore, the same space group alone does not impose similar packing and therefore similar crystal contacts. For this to be true unit cell axis need to be similar too. Therefore, the appearance of the same open and closed site distribution (such as 4+2) in different crystal symmetries implies, that this distribution is not influenced by crystal packing. Although the number of structures with closed active sites is arguably not high enough to make good statistics, this set of structures does not display any regularity which would indicate any correlation between open and closed active site conformations and crystal-lographic symmetry.

Very recently we have determined several crystal structures of PNP from the pathogen bacteria *H. pylori* (data not published). To our surprise, distribution with five open and one closed conformation was found, which is not present in any structure available in PDB.

The results of detailed analysis of crystal contacts in the crystal structures which contained at least one active site in closed conformation (Table 1) are summarized in Figure 4.

It turns out that active sites in closed conformation have, in most of the cases **less** crystal contacts than those in open conformation. There are quite a few open active sites that have from 15–21 crystal contacts in this region,

while the number of contacts in closed active sites is never higher than 9. This could perhaps be explained by the fact that in open active sites helix H8 is slightly more distant from the central region, and therefore more available for crystal contacts. In any case, it does not support our first hypothesis that closing of the active sites could be influenced by neighbouring homohexamers in the crystal packing (somehow pressing them and thereby forcing them to close).

Therefore, based on our analyses presented here, the straightforward influence of the crystal symmetry and/or crystal contacts on the conformation of the active sites in homohexameric purine nucleoside phosphorylases cannot be inferred.

Acknowledgment. This work has been fully supported by the Croatian Science Foundation under the project number 7423.

Supplementary Information. Supporting information to the paper is enclosed to the electronic version of the article at: http://dx.doi.org/10.5562/cca2872.

REFERENCES

- G. Koellner, A. Bzowska, B. Wielgus-Kutrowska, M. Luić, T. Steiner, W. Saenger, J. Stępiński, J. Mol. Biol. 2002, 315, 351.
- [2] G. Koellner, M. Luić, D. Shugar, W. Saenger, A. Bzowska, J. Mol. Biol. 1998, 280, 153.
- [3] E. M. Bennett, C. Li, P. W. Allan, W. B. Parker, S. E. Ea-lick, J. Biol. Chem. 2003, 278, 47110.
- [4] G. Mikleušević, Z. Štefanić, M. Narczyk, B. Wielgus-Kutrowska, A. Bzowska, M. Luić, *Biochimie* 2011, 93, 1610.

- [5] Z. Štefanić, M. Narczyk, G. Mikleušević, B. Wielgus-Kutrowska, A. Bzowska, M. Luić, FEBS Letters 2012, 586, 967.
- [6] Z. Štefanić, G. Mikleušević, M. Narczyk, B. Wielgus-Kutrowska, A. Bzowska, M. Luić, *Croat. Chem. Acta* 2013, *86*, 117.
- D. Paul, S. E. O'Leary, K. Rajashankar, W. Bu, A. Toms,
 E. C. Settembre., J. M. Sanders, T. P. Begle, S. E.
 Ealick, *Biochemistry* 2010, 49, 3499.
- [8] W. Bu, E. C. Settembre, M. H. el Kouni, S. E. Ealick, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2005, 61, 863.
- [9] T. T. Caradoc-Davies, S. M. Cutfield, I. L. Lamont, J. F. Cutfield, J. Mol. Biol. 2004, 337, 337.
- E. M. Bennett, R. Anand, P. W. Allan, A. E. Hassan, J.
 S. Hong, D. N. Levasseur, D. T. McPherson, W. B.
 Parker, J. A. Secrist, E. J. Sorscher, T. M. Townes, W.
 R. Waud, S. E. Ealick, *Chem. Biol.* 2003, *10*, 1173.
- [11] F. T. Burling, R. Kniewel, J. A. Buglino, T. Chadha, A. Beckwith, C. D. Lima, *Acta Crystallogr., Sect. D: Biol. Crystallogr.* 2003, *59*, 73.
- [12] C. Mao, W. J. Cook, M. Zhou, G. W. Koszalka, T. A. Krenitsky, S. E. Ealick, *Structure* **1997**, *5*, 1373.
- E. Y. Morgunova, A. M. Mikhailov, A. N. Popov, E. V. Blagova, E. A. Smirnova, B. K. Vainshtein, C. Mao, Sh. R. Armstrong, S. E. Ealick, A. A. Komissarov, *FEBS Lett.* **1995**, *367*, 183.
- [14] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J. Mol. Biol. 1990, 215, 403.
- [15] R. W. Grosse-Kunstleve, N. K. Sauter, N. W. Moriarty,
 P. D. Adams, J. Appl. Cryst. 2002, 35, 126.
- [16] P. O. de Giuseppe, N. H. Martins, A. N. Meza, C. R. Dos Santos, H. D. Pereira, M. T. Murakami, *Plos One* **2012**, *7*, e44282.

Supplementary materials

PDB id	Organism	Space	Chains
		group	
3uav	Bacillus Cereus	P 63 2 2	A
3uaz	Bacillus Cereus	P 63 2 2	A
4da8	Bacillus Subtilis	P 63 2 2	А
4dab	Bacillus Subtilis	P 63 2 2	A
4dae	Bacillus Subtilis	P 63 2 2	A
4d8x	Bacillus Subtilis	P 63 2 2	A
4da6	Bacillus Subtilis	P 63 2 2	A
4da0	Bacillus Subtilis	P 63 2 2	A
4dar	Bacillus Subtilis	P 63 2 2	A
4da7	Bacillus Subtilis	P 63 2 2	A
1sq6	Plasmodium Falciparum	R 3 2 :H	A
2bsx	Plasmodium Falciparum	P321	A
2b94	Plasmodium Knowlesi	R 3 2 :H	A
3emv	Plasmodium Vivax	R 3 2 :H	A
4lkr	Shewanella Oneidensis	P 63 2 2	A
4tym	Streptococcus Agalactiae Lmg 15084	P 63 2 2	A
1z34	Trichomonas Vaginalis	P 41 3 2	A
1z39	Trichomonas Vaginalis	P 41 3 2	A
1z38	Trichomonas Vaginalis	P 41 3 2	A
1z37	Trichomonas Vaginalis	P 41 3 2	A
1z36	Trichomonas Vaginalis	P 41 3 2	A
1z33	Trichomonas Vaginalis	P 41 3 2	A
1z35	Trichomonas Vaginalis	P 41 3 2	A
4mci	Vibrio Fischeri	R 3 2 :H	A
4ldn	Vibrio Fischeri	R 3 2 :H	A
4mch	Vibrio Fischeri	R 3 2 :H	A
2ac7	Bacillus Cereus	P 63	АВ
4dan	Bacillus Subtilis	P321	АВ
4dao	Bacillus Subtilis	P321	АВ
4d9h	Bacillus Subtilis	P321	АВ
4d8v	Bacillus Subtilis	P321	АВ
1rxy	Escherichia Coli	R 3 :H	АВ
1tgy	Escherichia Coli	R 3 :H	AB
1lx7	Escherichia Coli	R 3 :H	АВ
1tgv	Escherichia Coli	R 3 :H	AB
1t0u	Escherichia Coli	R 3 :H	AB
3fow	Plasmodium Falciparum	14132	AB
2iq5	Salmonella Typhimurium	R 3 :H	AB
2hsw	Salmonella Typhimurium	R 3 :H	AB
3mb8	Toxoplasma Gondii	P 6	АВ
4ny1	Yersinia Pseudotuberculosis	R 3 :H	АВ
4of4	Yersinia Pseudotuberculosis	R 3 :H	АВ
1ovg	Escherichia Coli	P 61 2 2	ABC

Table S1. The structures of purine nucleoside phosphorylases that contain no closed chains in the Protein Data Bank.

3onvEscherichia ColiP 61 2 2A B C1otxEscherichia ColiP 61 2 2A B C1ov6Escherichia ColiP 61 2 2A B C1otyEscherichia ColiP 61 2 2A B C1ou4Escherichia ColiP 61 2 2A B C1pk7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr0Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr2Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkaMeiothermus RuberC 2 2 2 1A B C1pkaSulfolobus SolfataricusC 2 2 2 1A B C1je0Sulfolobus SolfataricusC 2 2 2 1A B C1jdtSulfolobus SolfataricusC 2 2 2 1A B C1jdzSulfolobus SolfataricusC 2 2 2 1A B C1jp7Sulfolobus SolfataricusC 2 2 2 1A B C <th>1oum</th> <th>Escherichia Coli</th> <th>P 61 2 2</th> <th>ABC</th>	1oum	Escherichia Coli	P 61 2 2	ABC
1otxEscherichia ColiP 61 2 2A B C1ov6Escherichia ColiP 61 2 2A B C1otyEscherichia ColiP 61 2 2A B C1ou4Escherichia ColiP 61 2 2A B C1pk7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr0Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeSulfolobus SolfataricusC 2 2 21A B C1jkdSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdz <th>3onv</th> <th>Escherichia Coli</th> <th>P 61 2 2</th> <th>ABC</th>	3onv	Escherichia Coli	P 61 2 2	ABC
10v6Escherichia ColiP 61 2 2A B C1otyEscherichia ColiP 61 2 2A B C1ou4Escherichia ColiP 61 2 2A B C1pk7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr0Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr2Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkSulfolobus SulfataricusC 2 2 21A B C1je0Sulfolobus SulfataricusC 2 2 21A B C1jdtSulfolobus SulfataricusC 2 2 21A B C <th>1otx</th> <th>Escherichia Coli</th> <th>P 61 2 2</th> <th>ABC</th>	1otx	Escherichia Coli	P 61 2 2	ABC
1otyEscherichia ColiP 61 2 2A B C1ou4Escherichia ColiP 61 2 2A B C1pk7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr0Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1je0Sulfolobus SolfataricusC 2 2 2 1A B C1jdtSulfolobus SolfataricusC 2 2 2 1A B C1jp7Sulfolobus Solfataricus </th <th>1ov6</th> <th>Escherichia Coli</th> <th>P 61 2 2</th> <th>ABC</th>	1ov6	Escherichia Coli	P 61 2 2	ABC
1ou4Escherichia ColiP 61 2 2A B C1pk7Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pr0Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pr2Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkaMeiothermus RuberC 2 2 21A B C1pkaSulfolobus SolfataricusC 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jp8Sulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jp8Salmonella Enteri	1oty	Escherichia Coli	P 61 2 2	ABC
1pk7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr0Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr2Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeSulfolobus SolfataricusC 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jd1Sulfolobus SolfataricusC 2 2 21A B C1jd2Sulfolobus SolfataricusC 2 2 21A B C1jd2Sulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A	1ou4	Escherichia Coli	P 61 2 2	ABC
1pw7Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr0Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr2Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C4marMeiothermus RuberC 2 2 21A B C4marMeiothermus RuberC 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F <tr< th=""><th>1pk7</th><th>Escherichia Coli, Escherichia Coli O157:H7</th><th>P 61 2 2</th><th>ABC</th></tr<>	1pk7	Escherichia Coli, Escherichia Coli O157:H7	P 61 2 2	ABC
1pr0Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr2Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C4marMeiothermus RuberC 2 2 21A B C4m3nMeiothermus Ruber Dsm 1279C 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jp8Sulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1gaSulfolobus SolfataricusC 2 2 21A B C D E F	1pw7	Escherichia Coli, Escherichia Coli O157:H7	P 61 2 2	ABC
1pr6Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr2Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli 0157:H7P 61 2 2A B C4marMeiothermus RuberC 2 2 21A B C4m3nMeiothermus Ruber Dsm 1279C 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jp8Sulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jp8Sulfolobus SolfataricusC 2 2 21A B C1jp9Sulfolobus SolfataricusC 2 2 21A B C1geSulfolobus SolfataricusC 2 2 21A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 21	1pr0	Escherichia Coli, Escherichia Coli O157:H7	P 61 2 2	ABC
1pr2Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pr4Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C4marMeiothermus RuberC 2 2 21A B C4m3nMeiothermus Ruber Dsm 1279C 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. EntericaP 61A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1pr6	Escherichia Coli, Escherichia Coli O157:H7	P 61 2 2	ABC
1pr4Escherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C4marMeiothermus RuberC 2 2 21A B C4m3nMeiothermus Ruber Dsm 1279C 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1geSulfolobus SolfataricusC 2 2 21A B C1geSulfolobus SolfataricusC 2 2 21A B C1geSulfolobus SolfataricusP 121 1A B C D E F4ogkSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella	1pr2	Escherichia Coli, Escherichia Coli O157:H7	P 61 2 2	ABC
1pkeEscherichia Coli, Escherichia Coli O157:H7P 61 2 2A B C4marMeiothermus RuberC 2 2 21A B C4m3nMeiothermus Ruber Dsm 1279C 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1pr4	Escherichia Coli, Escherichia Coli O157:H7	P 61 2 2	ABC
4marMeiothermus RuberC 2 2 21A B C4m3nMeiothermus Ruber Dsm 1279C 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1geSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1pke	Escherichia Coli, Escherichia Coli O157:H7	P 61 2 2	ABC
4m3nMeiothermus Ruber Dsm 1279C 2 2 21A B C1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1gvSulfolobus SolfataricusP 61A B C D E F4ogkSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	4mar	Meiothermus Ruber	C 2 2 21	ABC
1je0Sulfolobus SolfataricusC 2 2 21A B C1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	4m3n	Meiothermus Ruber Dsm 1279	C 2 2 21	ABC
1jdtSulfolobus SolfataricusC 2 2 21A B C1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1je0	Sulfolobus Solfataricus	C 2 2 21	ABC
1jduSulfolobus SolfataricusC 2 2 21A B C1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1jdt	Sulfolobus Solfataricus	C 2 2 21	ABC
1jdzSulfolobus SolfataricusC 2 2 21A B C1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1jdu	Sulfolobus Solfataricus	C 2 2 21	ABC
1jp7Sulfolobus SolfataricusC 2 2 21A B C1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F1i9Salmonella TyphimuriumP 21 21 21A B C D E F	1jdz	Sulfolobus Solfataricus	C 2 2 21	ABC
1jpvSulfolobus SolfataricusC 2 2 21A B C1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F1i2Salmonella TyphimuriumP 21 21 21A B C D E F	1jp7	Sulfolobus Solfataricus	C 2 2 21	ABC
1k3fEscherichia ColiP 1 21 1A B C D E F4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1jpv	Sulfolobus Solfataricus	C 2 2 21	ABC
4ogkSalmonella Enterica Subsp. Enterica Serovar TyphimuriumP 61A B C D E F2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F	1k3f	Escherichia Coli	P 1 21 1	ABCDEF
Serovar Typhimurium2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F1 20Salmonella Typhimurium	4ogk	Salmonella Enterica Subsp. Enterica	P 61	ABCDEF
2hrdSalmonella TyphimuriumP 21 21 21A B C D E F2i8aSalmonella TyphimuriumP 21 21 21A B C D E F1:2Salmonella TyphimuriumP 21 21 21A B C D E F		Serovar Typhimurium		
2i8a Salmonella Typhimurium P 21 21 21 A B C D E F	2hrd	Salmonella Typhimurium	P 21 21 21	ABCDEF
	2i8a	Salmonella Typhimurium	P 21 21 21	ABCDEF
15j9 Saimonella Typnimurium P61 ABCDEF	1sj9	Salmonella Typhimurium	P 61	ABCDEF
2rj3 Salmonella Typhimurium P 21 21 21 A B C D E F	2rj3	Salmonella Typhimurium	P 21 21 21	ABCDEF
4oeh Vibrio Cholerae O1 Biovar El Tor P 1 A B C D E F	4oeh	Vibrio Cholerae O1 Biovar El Tor	P 1	ABCDEF
4r31 Actinobacillus Succinogenes P 21 21 21 A B C D E F	4r31	Actinobacillus Succinogenes	P 21 21 21	ABCDEF
1xe3 Bacillus Anthracis P 21 21 21 A B C D E F	1xe3	Bacillus Anthracis	P 21 21 21	ABCDEF
4d8y Bacillus Subtilis P 21 21 21 A B C D E F 4 d8y Exclusive Culture D 24 24 24 A D C D E F	4d8y	Bacillus Subtilis	P 21 21 21	ABCDEF
Tulc Escherichia Coli P 21 21 21 A B C D E F	1010		P 21 21 21	ABCDEF
Tecp Escherichia Coli P1211 ABCDEF 1 45 Escherichia Coli P1211 ABCDEF	1ecp	Escherichia Coli	P1211	ABCDEF
Tult Escherichia Coli P 21 21 21 A B C D E F Auda Escherichia Coli P 21 21 21 A B C D E F	1011	Escherichia Coli	P 21 21 21	ABCDEF
Iule Escherichia Coli P 21 21 21 A B C D E F 21mi Fesherichia Coli D 22 A B C D E F	101e	Escherichia Coli	P 21 21 21	ABCDEF
SKVV Escherichia Coli P 32 A B C D E F Ari2 Escherichia Coli D 1 21 1 A D C D E F	3KVV	Escherichia Coli	P 32	
4rjz Escherichia Coli P1211 ABCDEF 1u1a Escherichia Coli D212121 ABCDEF	4rjz	Escherichia Coli	P I 2I I	
Iuig Escherichia Coli 1uig Escherichia Coli	101g	Escherichia Coli	P 21 21 21	
Iula Escrienchia coll P212121 ABCDEF	2005	Escherichid Coll	P 21 21 21	
Seliz Plasmodium Falciparum 1a1a Diasmodium Falciparum	1010	Plasmodium Falciparum	14122 D 21 21 21	
Iqig Plasmodium Falciparum P 21 21 21 A B C D E F	2phc	Plasmodium Falciparum	P 21 21 21	
Split Fill ABCDEF 1v1a Salmonella Typhimurium D 21 21 21 ABCDEF	1v1~	Salmonella Typhimurium	Г <u>Г</u> D 01 01 01	
Type Sumonella Typhimurium P 21 21 21 A B C D E F 2fun Salmonella Typhimurium P 21 21 21 A B C D E F	1914 2fwp	Salmonella Typhimurium	P 21 21 21 21	
Simp Summerical Typhimurium P 21 21 21 A B C D E F 200c Salmonella Typhimurium P 21 21 21 A B C D E F	2000	Salmonella Typhimurium	P 21 21 21 21	
Zocc Sumonena Typhimunani F ZI ZI ZI A D C D E E 2nga Salmonella Typhimurium D 21 21 21 A D C D E E	2000	Salmonella Typhimurium	D 21 21 21	
Image: Sumonella Typhimurium F 21 21 21 A B C D E F 17/2 Salmonella Typhimurium D 21 21 21 A B C D F F	2µ8a 17 2	Salmonella Typhimurium	P 21 21 21	
2hwu Salmonella Typhimurium P 21 21 21 AB C D F F	2hwii	Salmonella Typhimurium	P 21 21 21	ABCDEE
3ddo Salmonella Typhimurium P 21 21 21 A B C D F F	2.1.000		D 21 21 21 21	

2qdk	Salmonella Typhimurium	P 21 21 21	ABCDEF
3c74	Salmonella Typhimurium	P 21 21 21	ABCDEF
1y1r	Salmonella Typhimurium	P 21 21 21	ABCDEF
2hn9	Salmonella Typhimurium	P 21 21 21	ABCDEF
1y1s	Salmonella Typhimurium Lt2	P 21 21 21	ABCDEF
4r2x	Shewanella Oneidensis	P 1 21 1	ABCDEF
4yjk	Shewanella Oneidensis (Strain Mr-1)	P 1 21 1	ABCDEF
4r2w	Shewanella Oneidensis Mr-1	P 1 21 1	ABCDEF
1jds	Sulfolobus Solfataricus	P 1 21 1	ABCDEF
1je1	Sulfolobus Solfataricus	P 1 21 1	ABCDEF
1jdv	Sulfolobus Solfataricus	P 1 21 1	ABCDEF
2isc	Trichomonas Vaginalis	P 21 21 21	ABCDEF
4u2k	Vibrio Cholerae	P 31	ABCDEF
4h1t	Vibrio Cholerae	P 1	ABCDEF
4g8j	Vibrio Cholerae	P 1 21 1	ABCDEF
4k6o	Vibrio Cholerae	P 1 21 1	ABCDEF
4lzw	Vibrio Cholerae	P 1 21 1	ABCDEF
4ip0	Vibrio Cholerae	P 1	ABCDEF
1vhj	Vibrio Cholerae	P 1 21 1	ABCDEF
1vhw	Vibrio Cholerae	P 1 21 1	ABCDEF
4ogl	Vibrio Cholerae O1 Biovar El Tor	P 1 21 1	ABCDEF
4jp5	Yersinia Pestis	P 32	ABCDEF
4i2v	Yersinia Pseudotuberculosis	Р3	ABCDEF
4e1v	Salmonella Enterica Subsp. Enterica	C 1 2 1	ABCDEFGHI
	Serovar Typhimurium		
1rxc	Escherichia Coli	P 1 21 1	ABCDEFGHIJKL
Зору	Escherichia Coli	C 1 2 1	ABCDEFGHIJKL
1rxu	Escherichia Coli	P 1 21 1	ABCDEFGHIJKLMNOP
			QR
3qpb	Streptococcus Pyogenes Serotype M6	P 1	ABCDEFGHIJKLMNOP
			QR
1rxs	Escherichia Coli	P 1 21 1	ABCDEFGHIJKLMNOP
			QRabcdehijklmo
2oxf	Salmonella Typhimurium	R 3 :H	AF
3dps	Salmonella Typhimurium	R 3 :H	AF
1y1t	Salmonella Typhimurium Lt2	R 3 :H	AF
1odk	Thermus Thermophilus	P 43 21 2	A? B? C? D? E? F?
1odi	Thermus Thermophilus	P 43 21 2	A? B? C? D? E? F?
1odl	Thermus Thermophilus	P 43 21 2	A? B? C? D? E? F?
10dj	Thermus Thermophilus	P 43 21 2	A? B? C? D? E? F?

Python script that was used in crystal contacts calculations

```
#!/bin/env cctbx.python dev-546
import sys
import pickle
import iotbx.pdb
import glob
from mmtbx.lattice import *
from scitbx.array family import flex
organisms = pickle.load(open('organisms.pkl','rb'))
def open or closed(f):
    inpdb = iotbx.pdb.input(f)
    h1 = inpdb.construct hierarchy()
    chains = [c.id for c in h1.chains()]
    res = ""
    for chain in sorted(set(chains)):
       res += chain open closed(inpdb,h1,chain) + " "
    return res
def open and closed chains(f):
    inpdb = iotbx.pdb.input(f)
    h1 = inpdb.construct_hierarchy()
    chains = [c.id for c in h1.chains()]
    opn, clsd= [],[]
    for chain in sorted(set(chains)):
       if '*' in chain open closed(inpdb,h1,chain):
           clsd.append(chain)
        else:
           opn.append(chain)
    return opn, clsd
def average chain length(f):
    from numpy import array
    inpdb = iotbx.pdb.input(f)
    h1 = inpdb.construct_hierarchy()
    chains = list(h1.chains())
    l = [len(chain.as_sequence()) for chain in chains]
    l = array(l)
    return int(l[1>5].mean())
def chain open closed(inpdb,h,chain):
    """This tries to extract the secondary structure and see if the helix is open or closed"""
    try:
       secstr = inpdb.extract_secondary_structure()
    except:
       return chain + '?'
    h8 = filter(lambda h: h.start_chain_id == chain, secstr.helices)[-1]
    h7 = filter(lambda h: h.start_chain_id == chain, secstr.helices)[-2]
    start h8 = h8.get start resseq as int()
    end_h7 = h7.get_end_resseq_as_int()
    if start h8 - end h7 < 5:
       oc = "*"
    else:
       oc = ""
    return chain+oc
def get_resseq(f,chain):
    """Calculates resseq around helix is open or closed"""
    return 210,225
    inpdb = iotbx.pdb.input(f)
    try:
       secstr = inpdb.extract secondary structure()
    except:
```

```
return 210,225
    h8 = filter(lambda h: h.start chain id == chain, secstr.helices)[-1]
    start_h8 = h8.get_start_resseq_as_int()
    return start h8 - 10, start h8 + 5
def crystal contacts from selection(pdb,selection="all",distance cutoff=3.5):
    inpdb = iotbx.pdb.input(pdb)
    h = inpdb.construct_hierarchy()
    x = inpdb.xray_structure_simple()
    #x.show summary()
    atoms = list(h.atoms with labels())
    sc = h.atom_selection_cache()
    selected = sc.iselection(selection)
    sites = x.sites_frac()
   unit cell = x.unit cell()
    pat = x.pair_asu_table(distance_cutoff)
    pst = pat.extract_pair_sym_table()
   contacts = []
    selected sites = list(selected)
    pairs = \{\}
    for i, psd in enumerate(pst):
        for j in psd.keys():
            pairs[(i,j)] = psd[j]
    selected pairs = sorted(filter(lambda p: p[0] in selected sites or p[1] in selected sites,
pairs.keys()))
    for pair in selected pairs: # (i seq, j seq)
        i_seq, j_seq = pair
        site_i = sites[i_seq]
        atom i = atoms[i seq]
        chain_i = atom_i.parent().parent().parent()
        res_i = atom_i.parent()
        site_j = sites[j_seq]
        atom j = atoms[j_seq]
        chain_j = atom_j.parent().parent().parent()
        res_j = atom_j.parent()
        sym op = pairs[pair][0]
        if res j.resname == "HOH" or res i.resname == "HOH" :
           continue
        if not sym op.is unit mx():
            site ji = sym op * site j
            distance = unit cell.distance(site i, site ji)
            contacts.append((i_seq, j_seq, sym_op, distance))
            #print "%s %s %-30s %8.4f" % (res i.id str(), res j.id str(), sym op, distance)
            #print "%s %s %-30s %8.4f" % (chain_i.id, chain_j.id, sym_op, distance)
    #print 'Number of contacts: %d' % len(contacts)
    return contacts
def get_chains(pdb):
    h = iotbx.pdb.input(pdb).construct hierarchy()
    return set(sorted([c.id for c in list(h.chains())]))
def get_xray_structures():
    pdbs = glob.glob('*.pdb')
    xray structures = {}
    for pdb in pdbs:
       xray structures[pdb] = iotbx.pdb.input(pdb).xray structure simple()
    return xray structures
```

```
def doit(f):
```

```
oc = open and closed chains(f)
    print f
    print 'Open'
    for c in oc[0]:
        start,stop = get resseq(f,c)
        ncont = crystal contacts from selection(f,'chain %s and resseq %d:%d' %(c,start,stop))
        print c, len(ncont)
    print 'Closed'
    for c in oc[1]:
       start,stop = get_resseq(f,c)
        ncont = crystal contacts from selection(f,'chain %s and resseq %d:%d' %(c,start,stop))
        print c, len(ncont)
    print '-'*80
def print table():
    xray_structures = get_xray_structures()
    def similars(x):
        res = []
        for k, v in xray_structures.items():
            if x.is_similar_symmetry(v):
               res.append(k)
        return res
    for k, v in xray_structures.items():
       #print '%s\t%-50s\t%-20s\t%-20s\t%20s%5s\t%s' %(k, v.unit cell(),
v.space group().info(),
v.space group().crystal system(),open or closed(k),average chain length(k),similars(v))
        #print '%s\t%-50s\t%-10s\t%30s\t%s' %(k[:4], organisms[k.upper()[:4]],
v.space_group().info(),open_or_closed(k),similars(v))
       print '%s\t%-50s\t%-10s\t%-30s\t%5.2f' %(k[:4], organisms[k.upper()[:4]],
v.space_group().info(),open_or_closed(k),len(crystal_contacts_from_selection(k))/len(get_chain
s(k)))
def run1():
   f = sys.argv[1]
    print f
   selection = sys.argv[2]
    contacts = crystal_contacts_from_selection(f, selection)
    if not contacts:
       print 'No contacts'
    print open_or_closed(f)
    print "-"*80
if __name__ == "__main__":
    run1()
    #print table()
```