SELECTING THE BASIC LEAN TOOLS FOR DEVELOPMENT OF CROATIAN MODEL OF INNOVATIVE SMART ENTERPRISE

Ivica Veza, Marko Mladineo, Nikola Gjeldum

The research within project Innovative Smart Enterprise (INSENT) was conducted in order to improve scientific understanding of the current state of Croatian manufacturing industry by promoting empirical, enterprise-level research on technological and non-technological processes and organizational innovation. The aim was to understand how manufacturing enterprises in Croatia acquire new manufacturing technologies, ICT integration within processes, new organizational concepts in production such as group work or relocation of production, new products that emerge from process and organizational innovation such as production-related services, and other demands related to Industry 4.0. In order to develop Croatian model of Innovative Smart Enterprise (HR-ISE model), analysis of global and local enterprises, based on literature review and questionnaires, has been made. A selection of six basic Lean tools is made, and foundations of generic configuration of HR-ISE model are defined. In further research, interviews with CEOs of leading Croatian manufacturing enterprises should help creating completely defined HR-ISE model.

Keywords: Industry 4.0; Lean Management; Toyota Production System

Izbor osnovnih Lean alata za razvoj Hrvatskog modela Inovativnog pametnog poduzeća

Cilj istraživanja u sklopu projekta Inovativno pametno poduzeće (INSENT) bio je unaprijediti znanstvenu spoznaju o trenutnom stanju hrvatske prerađivačke industrije kroz empirijska istraživanja, na razini poduzeća, o tehnološkim i ne-tehnološkim procesima i organizacijskoj inovaciji. Cilj je bio razumjeti na koji način prerađivačka poduzeća u Hrvatskoj usvajaju nove proizvodne tehnologije, integriraju ICT tehnologiju unutar svojih procesa, usvajaju nove organizacijske koncepte u proizvodnji kao što je rad u skupinama ili relokacija proizvodnje, kako razvijaju nove proizvode proizvode iz procesa i inovativnosti organizacije kao što su proizvodno orijentirane usluge, te ostale zahtjeve Industrije 4.0. U svrhu razvoja hrvatskog modela inovativnog pametnog poduzeća (HR-ISE model), napravljena je analiza globalnih i lokalnih poduzeća utemeljena na istraživanju literature i upitnicima. Napravljen je odabir šest osnovnih alata, te su postavljeni temeljni generičke konfiguracije HR-ISE modela. U daljnjem istraživanju, intervjui s menadžerima vodećih hrvatskih proizvodnih poduzeća pomoći će bolje definirati HR-ISE model.

Ključne riječi: Industrija 4.0; Lean Management; Toyota Production System

1 Introduction

The process of globalization, liberalization of international trade and the global economic crisis in 2007 showed that classical vision of the enterprise and its business activities cannot survive in today’s turbulent economy. Globalization has created new enormous challenges for today’s enterprises: fierce competition, short windows of market opportunity, frequent product introductions and rapid changes in product demand. Many manufacturing enterprises have moved away from a mass production orientation to more agile production approaches. The challenge is to succeed in a turbulent business environment where all competitors have similar opportunities, and where customer wants personalized product [1].

1.1 Smart Enterprise

The first three industrial revolutions came about as a result of mechanization, electricity and IT. Now, the introduction of the Internet of Things and Services into the manufacturing environment is leading towards the fourth industrial revolution: Industry 4.0 [2]:

- 1st Industrial revolution – introduction of water-powered and steam-powered mechanical manufacturing facilities.
- 2nd Industrial revolution – introduction of electrically-powered mass production based on the division of labor.
- 3rd Industrial revolution – introduction of electronics and IT to achieve automation of manufacturing.
- 4th Industrial revolution – introduction of Internet of Things and Cyber-Physical Systems into the manufacturing environment.

This new type of industry is based on Smart Factory model. The embedded manufacturing systems are vertically networked with business processes within enterprises and horizontally connected to the dispersed value networks that can be managed in real time. Smart Factories allow individual customer requirements to be met and mean that even one-off items can be manufactured profitably. In Industry 4.0, dynamic services and engineering processes enable last-minute changes to production and generate the ability to respond more flexibly to disruptions and failures on behalf of suppliers.

Hence, the main features of Smart Enterprise can be summarized into the following:

- Smart personalized product – Requires flexibility and high level of ICT integration into manufacturing system to produce a product which fits the customer’s exact needs and which is uniquely identifiable, may be located at all times and knows its own history, current status and alternative routes to achieving customer. It can be realized through Reconfigurable Manufacturing System [3] or Industry 4.0 Smart Factory [2].
- Product and service provider – Ability to offer extended products: product and service integrated
into single product for delivering value in use to the
customer during the whole life cycle of a product; or
to offer manufacturing as a service and become
manufacturing service provider [4]. It can be realized
through specialized Internet portals and Cloud
computing [5].

- **High level of collaboration** – Also requires high level
 of ICT integration to support collaborative product
development, collaborative manufacturing and all
 other value adding processes [6]. It can be achieved
 through vertical integration called Production
 Networks [7], or through horizontal integration called
 Manufacturing Networks.

Every global manufacturer has its unique
manufacturing system (Toyota, Daimler, Bosch, etc.), and
some countries are developing their own unique
enterprise model (like Germany – Industry 4.0). Model is
aligned with their vision, strategy, values and culture.
Croatia has not developed its own model of enterprise yet.
Model developed in this project should be original and
unique for Croatian enterprises. Therefore, it could be
implemented in the economy, particularly in small and
medium-sized enterprises.

**1.2 Application of Lean tools in Croatian manufacturing
industry**

Since focus of this research was Croatian
manufacturing industry, it is important to give a brief
overview of researches about application of Lean tools.
Researchers like Cajner et al. [8] and Stefanic et al. [9,
10] have made general research on application of Lean
management in Croatian industrial enterprises. Other
researches put focus on different type of industries like:
beverage industry (Veza et al. [11]), automotive industry
(Pipunic and Grubisic [12]), telecommunication industry
(BosiljVuksic and Ivancan [13]), etc.

General conclusion is that Lean management
philosophy is not implemented in Croatian industrial
enterprises, but some Lean tools are used. For instance, in
automotive industry most of the enterprises are using 2-3
Lean tools [12], and those with higher number of
customers have tendency to use higher number of Lean
tools like 5 or more [12]. Enterprise dealing with
production of power lines is trying to improve its
production process using Value Stream Mapping [10].
Many enterprises use Kaizen to decrease change-over
times [9], which are non-value adding activities, and 5S
for workplace management [11]. Furthermore, it is
suggested by Cajner et al. [8] that Croatian enterprises are
lacking in measurement of Lean management indicators.
In telecommunication industry Lean is even extended
with Six Sigma methodology [13].

From the literature overview, it is clear that some
Lean tools, like Kaizen, Value Stream Mapping, 5S –
Workplace management, are used in Croatian
manufacturing tools. Therefore, this research has put
focus on application of Lean tools in order to select basic
Lean tools that every enterprise should implement. It is
mandatory if enterprise wants to move toward Industry
4.0. Because, without Lean, it is most-likely that
enterprise is lacking knowledge about its processes and
their key indicators.

**1.3 Development of Lean framework for Production
Systems**

Many researches about Lean management have
tendency to develop some Lean model or framework that
could be implemented in many enterprises. Generally,
some researchers are focused on development of Lean
framework for whole enterprise (Cookand Graser [14],
Karlssonand Ahlstrom [15]) and some are focused on
development of Lean framework for manufacturing
system only (Höökkand Stehn [16], James-Mooreand
Gibbons [17], Sanchez and Perez [18]).

Eventually, all these Lean frameworks are some kind
of organizational model based on Lean tools. Usually,
they are visualized as house with pillars [19, 20], like the
original Toyota Production System [21]. In this research,
the same idea is proposed and selection of basic lean tools
for development of Croatian model of Innovative Smart
Enterprise is made.

2 Project Innovative Smart Enterprise (INSENT)

Last year's developments are a turning point for the
whole European industry, characterized by dramatic drop
in customer demand leading to working hours decrease,
layoffs and idle factories. As a consequence, in the future
the overriding objectives in Croatian enterprise should be:
flexibility, agility and scalability, in order to survive
shocks caused by global market turbulences.

The main objective of this project is to develop
Croatian model of Innovative Smart Enterprise (HR-ISE
model). The aim is to perform the model’s regional fit, i.e.
to harmonize Innovative Smart Enterprise model with
specific regional way of thinking, manufacturing and
organizational tradition, specific education, and especially
to help Croatian enterprises in reducing the gap between
their competencies and EU enterprises’ competencies and
capabilities.

The following objectives are crucial to achieve main
objective of this project:

- **Objective 1:** It is important to perform profound
 research to describe current state of Croatian
 manufacturing enterprise. It will be done by
 questionnaires and interviews with CEOs and/or
technical directors of manufacturing enterprises in
 Croatia. The aim is to gather the data from as many
 enterprises as possible. After that, analysis will be
done to describe current state of Croatian
 manufacturing enterprise. It will be the answer to the
 question: “Where are we?”

- **Objective 2:** A synthesis of analysis of Croatian
 manufacturing enterprises through development of
 Croatian model of Innovative Smart Enterprise (HR-
 ISE model), will be done. HR-ISE model will be
 based not just on State-of-the-art theoretical models
 but also on State-of-the-art practical models like Lean
 Management philosophy. Special effort will be made
to bridge the cultural and mentality gaps between
State-of-the-art models and current Croatian model. It
Objective 3: A special learning environment will be established in one Laboratory. It will be a Learning Factory, i.e. simulation of a real factory through specialized equipment (virtual reality gadgets, specialized assembly tables, etc.). Laboratory will be organized to simulate factory based on HR-ISE model. Hence, Laboratory will be learning environment; not just for students but also for engineers from manufacturing enterprises. It will be a place in which the transfer of developed HR-ISE model to the economy subjects will be achieved. It will be the answer to the question: "How can we get there?"

2.1 Analysis of the current state of Croatian manufacturing industry with regard to Industry 4.0

Project INSENT tends to improve the scientific understanding of Croatian manufacturing enterprise by promoting empirical, enterprise-level research on technological and non-technological process and organizational innovation. Technological and non-technological process and organizational innovation includes the introduction of new production technologies, level of ICT integration with processes, new organizational concepts in production, but also in new products that emerge from process and organizational innovation, such as product-related services. After the data have been gathered, a profound analysis will be made in order to describe current state of Croatian manufacturing enterprise.

The questionnaire has been sent to more than 1980 industrial enterprises. Database “Biznet.hr” of Croatian Chamber of Economy was used. A sample of 8% of total, representing 161 enterprises, has been gathered. By taking the geographical coverage (Fig. 1) and the coverage of enterprises size (Tab. 1) into account, a sample should be considered as the representative one.

Beside basic questions about enterprise itself, a set of nine questions that represent most important aspects of manufacturing, was given as follows:
1) Product development,
2) Technology,
3) Work orders management in your production system,
4) Monitoring of production traceability,
5) Materials inventory management,
6) Finished products stocks management,
7) Quality Assurance,
8) Product Lifecycle Management,
9) Application of Toyota Production System TPS and Green and Lean Production GALP concept.

Each answer was converted to a score from 1 to 4 representing one of the four historical industrial generations. For instance, work order management based on oral communication between employees belongs to the first industrial generation and its score is 1.0. However, work order management based on communication man-to-machine belongs to third industrial generation and its score is 3.0. Using that approach, an average score has been calculated for each of nine aspects of manufacturing. Finally, overall average represents industrial maturity level of Croatian manufacturing industry (Fig. 2). Distribution of enterprises according to their industrial maturity level is presented in Fig. 3.

<table>
<thead>
<tr>
<th>Table 1 Structure of sample based on enterprise size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise size</td>
</tr>
<tr>
<td>Micro enterprise (5 ÷ 9 employees)</td>
</tr>
<tr>
<td>Small enterprise (10 ÷ 49 employees)</td>
</tr>
<tr>
<td>Medium enterprise (50 ÷ 249 employees)</td>
</tr>
<tr>
<td>Large enterprise (more than 250 employees)</td>
</tr>
</tbody>
</table>

![Figure 1 Geographical dispersion of sample (enterprises)](image)

![Figure 2 Average level of industrial maturity for specific segment of production and the average of all segments for entire Croatian industry](image)
In Fig. 2, it is shown that average score of industrial maturity level for Croatian manufacturing industry is 2.15 which represents 2nd industrial generation, i.e. middle of 20th century. Since most of the enterprises have a score between 1.50 and 2.49 (Fig. 3), they belong to 2nd industrial generation. Some of enterprises belong to 3rd industrial generation, and none of the enterprises is in 4th industrial generation, i.e. Industry 4.0. So, current state of Croatian manufacturing industry is not Industry 4.0, but Industry 2.15.

2.2 Application of Lean and Green in Croatian manufacturing industry

For further development of Croatian manufacturing industry two hypotheses must be taken into account:
1) Implementation of Lean is the foundation for all other activities that are to be undertaken in order to increase competitiveness of the enterprise;
2) The enterprise which did not finish its “homework” on the theme of Lean cannot progress toward Industry 4.0.

The important and mandatory transformation procedure can be described with two main activities:
1) Implement Lean principles into most important business/technological processes and support them with intelligent automatization;
2) Connect personnel and technology in order to achieve better competitiveness.

Therefore, in this research a special focus has been put on Lean (question no. 9 in above described analysis): "Select an answer that describes best the application of Toyota Production System TPS and Green and Lean Production GALP concept in your production system". The answers to this question are presented in Tab. 2.

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>No. of enterprises</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Do not use either TPS or GALP principles</td>
<td>120</td>
<td>74,5</td>
</tr>
<tr>
<td>2</td>
<td>Use some elements of TPS and GALP</td>
<td>37</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>TPS and GALP principles are introduced through the entire business process (Lean Management 2.0)</td>
<td>4</td>
<td>2,5</td>
</tr>
</tbody>
</table>

From Tab. 2 it is clear that 75 % of enterprises do not use any TPS or GALP principle. So, it represents the main obstacle in the journey of Croatian manufacturing toward Industry 4.0. Therefore, in this research additional analysis is made to find out what are the basic Lean tools that Croatian enterprises should acquire and use.

3 The analysis of application of Lean tools in Croatian enterprises in relation with global enterprises

Following step was to make an analysis of application of Lean tools, similar to Netland [20]. Tab. 3 presents the reference framework. It summarizes 34 principles from Ohno’s "Toyota Production System" [21], Womack and Jones’ "Lean Thinking" [22], Shah and Ward’s “Lean manufacturing: Context, bundles, and performance” [23], Liker’s "The Toyota Way" [24], and extended with principles that Kovacec collected in his Ph.D. Thesis [25] at the University of Zagreb, Croatia.

3.1 The analysis of application of Lean tools in Croatian enterprises

Kovacec in his Ph.D. thesis [25] searched for model for efficient management of production systems of Croatian enterprises. Therefore, he interviewed top managers from 176 Croatian enterprises. The structure of enterprise size based sample is presented in Tab. 4.
I. Veza i dr.

Table 3 Reference framework for Green and Lean principles based on key TPS and lean literature

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jidoka / automation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Value stream</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Performance measurement</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow orientation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Continuous improvement / Kaizen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Just-in-time (JIT)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total quality</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Leadership / Genchigenbutsu</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross functional training</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee involvement</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teamwork</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Flexibility</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heijunka / Levelled production</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Profit-making industrial engineering</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New and effective technology</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualisation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Quick change-over SMED</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Reduction of batch size</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardised work</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takt time</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maintenance (TPM)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pull system</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Customer focus</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitive benchmarking</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focused factory production</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order and material planning</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health, Safety and Environment (HSE)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean supply chain</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability and robustness</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision, culture and values</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workplace management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poka Yoke</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kovacec’s analysis ranked Green and Lean tools and 12 also selected tools as the most important ones (Tab. 5). However, his analysis is lacking in the aspect of personnel, for example employee involvement, teamwork, leadership and quality (total quality management).

In his analysis, Kovacec used three steps of Analytic Hierarchy Process (AHP) to rank Green and Lean tools, as presented in Tab. 5. Analysis showed that the most important tool for Croatian enterprises is Just-In-Time principle, followed by Kaizen, Flow orientation, Standardized work etc. It is important to have in mind that the majority of Croatian manufacturing enterprises are in lower part of supply chain, i.e. they are original equipment manufacturers, instead of final product producers. That is why Just-in-Time principle is most important to them, because they are usually conditioned by enterprises from top of the supply chain to deliver just-in-time.

Table 4 Structure of sample based on enterprise size

<table>
<thead>
<tr>
<th>Enterprise size</th>
<th>No. of enterprises</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro enterprise (5 – 9 employees)</td>
<td>62</td>
<td>35,2</td>
</tr>
<tr>
<td>Small enterprise (10 – 49 employees)</td>
<td>48</td>
<td>27,3</td>
</tr>
<tr>
<td>Medium enterprise (50 – 249 employees)</td>
<td>43</td>
<td>24,4</td>
</tr>
<tr>
<td>Large enterprise (more than 250 employees)</td>
<td>23</td>
<td>13,1</td>
</tr>
</tbody>
</table>

3.2 The analysis of application of Lean tools in global enterprises

The XPS or Any-Production System can be described as the improvement programme or continuous improvement Management System for the production system. Tab. 6 sums up the frequency and percentage of principles in the 30 analysed XPSs of 30 global (multinational) enterprises, made by Netland [20]. The bulk of XPS principles fit right into the reference framework (Tab. 3). However, the reference principles...
did not cover 14 "new" principles, with only five among them that had more than two occurrences (asterisks indicate the new principles).

The main conclusion of the XPSs content comparative analysis from the 30 multinational enterprises was that "XPSs represent an own-best-way approach to the one-best-way paradigm" [20]. This means two things. First, multinational enterprises largely choose the same principles (the one-best-way); and second - the systems, however, contain enterprise-specific elements (the own-best-way) which makes the XPS more tailored to the enterprise than generic improvement philosophies [20].

The top-ten principles are represented in 50 ÷ 93 % of the XPSs. Lean principles either highly influence or actually form the basis of the majority of the XPSs. This, however, does not represent a radical finding, because most enterprises explicitly state that TPS and lean thinking heavily influenced their XPS development [20].

However, if generic model is to be made, like "TPS house" model, few main principles should be identified. According to Netland’s research "generic house" model for enterprise "X" should look like the one presented in Fig. 4.

4.2 Selection of basic Lean tools for HR-ISE model

The main aim of this research was to establish certain phases and steps for process and structural reorganization of average Croatian enterprise based on Green and Lean principles. It is a kind of Green and Lean concept’s regional fit. It represents foundation for development of Croatian model of Innovative Smart Enterprise: HR-ISE model. Thus, HR-ISE model should be aligned with regional vision, strategy values and culture. However, first step is to select basic Lean tools that should be acquired and implemented.

Synthesis of Green application analysis and Lean tools in Croatian enterprises [25] and application of Lean tools in 30 global (multinational) enterprises [20] is the cognition that there are six most important Lean tools that any Croatian enterprise should acquire and implement. These tools, ranked according to research in Croatia, are:
1) Just-in-Time
2) Continuous improvement – Kaizen
3) Flow orientation
4) Standardized work
5) Value Stream Management
6) Pull system.

These six Lean tools represent basic tools for HR-ISE model of production system. Therefore, they represent irreplaceable part of HR-ISE house model (Fig. 5).

4 Results and discussion
4.1 Relating the XPS to the TPS and Green and Lean principles

According to Netland [20], XPS principles largely resemble the principles of the TPS and Green Lean. It becomes clear from the comparison that the overall resemblance of principles from the TPS and Lean production paradigm should be considered high.

The top-ten principles are represented in 50 ÷ 93 % of the XPSs. Lean principles either highly influence or actually form the basis of the majority of the XPSs. This, however, does not represent a radical finding, because most enterprises explicitly state that TPS and lean thinking heavily influenced their XPS development [20].

However, if generic model is to be made, like "TPS house" model, few main principles should be identified. According to Netland’s research "generic house" XPS model for enterprise "X" should look like the one presented in Fig. 4.

4.2 Selection of basic Lean tools for HR-ISE model

The main aim of this research was to establish certain phases and steps for process and structural reorganization of average Croatian enterprise based on Green and Lean principles. It is a kind of Green and Lean concept’s regional fit. It represents foundation for development of Croatian model of Innovative Smart Enterprise: HR-ISE model. Thus, HR-ISE model should be aligned with regional vision, strategy values and culture. However, first step is to select basic Lean tools that should be acquired and implemented.

Synthesis of Green application analysis and Lean tools in Croatian enterprises [25] and application of Lean tools in 30 global (multinational) enterprises [20] is the cognition that there are six most important Lean tools that any Croatian enterprise should acquire and implement. These tools, ranked according to research in Croatia, are:
1) Just-in-Time
2) Continuous improvement – Kaizen
3) Flow orientation
4) Standardized work
5) Value Stream Management
6) Pull system.

These six Lean tools represent basic tools for HR-ISE model of production system. Therefore, they represent irreplaceable part of HR-ISE house model (Fig. 5).

4 Results and discussion
4.1 Relating the XPS to the TPS and Green and Lean principles

According to Netland [20], XPS principles largely resemble the principles of the TPS and Green Lean. It becomes clear from the comparison that the overall resemblance of principles from the TPS and Lean production paradigm should be considered high.

The top-ten principles are represented in 50% ÷ 93% of the XPSs. Lean principles either highly influence or actually form the basis of the majority of the XPSs. This, however, does not represent a radical finding, because most enterprises explicitly state that TPS and lean thinking heavily influenced their XPS development [20].

However, if generic model is to be made, like "TPS house" model, few main principles should be identified. According to Netland’s research "generic house" XPS model for enterprise "X" should look like the one presented in Fig. 4.

4.2 Selection of basic Lean tools for HR-ISE model

The main aim of this research was to establish certain phases and steps for process and structural reorganization of average Croatian enterprise based on Green and Lean principles. It is a kind of Green and Lean concept’s regional fit. It represents foundation for development of Croatian model of Innovative Smart Enterprise: HR-ISE model. Thus, HR-ISE model should be aligned with regional vision, strategy values and culture. However, first step is to select basic Lean tools that should be acquired and implemented.

Synthesis of Green application analysis and Lean tools in Croatian enterprises [25] and application of Lean tools in 30 global (multinational) enterprises [20] is the cognition that there are six most important Lean tools that any Croatian enterprise should acquire and implement. These tools, ranked according to research in Croatia, are:
1) Just-in-Time
2) Continuous improvement – Kaizen
3) Flow orientation
4) Standardized work
5) Value Stream Management
6) Pull system.

These six Lean tools represent basic tools for HR-ISE model of production system. Therefore, they represent irreplaceable part of HR-ISE house model (Fig. 5).

4 Results and discussion
4.1 Relating the XPS to the TPS and Green and Lean principles

According to Netland [20], XPS principles largely resemble the principles of the TPS and Green Lean. It becomes clear from the comparison that the overall resemblance of principles from the TPS and Lean production paradigm should be considered high.

The top-ten principles are represented in 50% ÷ 93% of the XPSs. Lean principles either highly influence or actually form the basis of the majority of the XPSs. This, however, does not represent a radical finding, because most enterprises explicitly state that TPS and lean thinking heavily influenced their XPS development [20].

However, if generic model is to be made, like "TPS house" model, few main principles should be identified. According to Netland’s research "generic house" XPS model for enterprise "X" should look like the one presented in Fig. 4.

4.2 Selection of basic Lean tools for HR-ISE model

The main aim of this research was to establish certain phases and steps for process and structural reorganization of average Croatian enterprise based on Green and Lean principles. It is a kind of Green and Lean concept’s regional fit. It represents foundation for development of Croatian model of Innovative Smart Enterprise: HR-ISE model. Thus, HR-ISE model should be aligned with regional vision, strategy values and culture. However, first step is to select basic Lean tools that should be acquired and implemented.

Synthesis of Green application analysis and Lean tools in Croatian enterprises [25] and application of Lean tools in 30 global (multinational) enterprises [20] is the cognition that there are six most important Lean tools that any Croatian enterprise should acquire and implement. These tools, ranked according to research in Croatia, are:
1) Just-in-Time
2) Continuous improvement – Kaizen
3) Flow orientation
4) Standardized work
5) Value Stream Management
6) Pull system.

These six Lean tools represent basic tools for HR-ISE model of production system. Therefore, they represent irreplaceable part of HR-ISE house model (Fig. 5).
• Personnel (e.g. Human potential conviction, Collaboration, Trust, Communication, Relationship focus…)
• Priorities (e.g. Safety, Environment, Quality, Delivery, Cost, Teamwork, Customer…).

The comparison of the selected Lean tools importance, for Croatian and global enterprises is presented in Fig. 6. Note that for global enterprises, occurrence of some tool was converted into importance score.

![Comparison of importance, of selected Lean tools, for Croatian and global enterprises](image)

In Fig. 6, the only significant difference is importance of Just-in-Time principle, which is twice more important to Croatian enterprises than global enterprises. It is because of the reason (already mentioned above), that Croatian manufacturing enterprises are in the lower part of supply chain, i.e. they are original equipment manufacturers, instead of final product producers. That is why Just-in-Time principle is very important to them.

5 Conclusion

In this research, the analysis of the current state of Croatian manufacturing industry, with regard to Industry 4.0, was made. It has shown that Croatia is far away from Industry 4.0. An average industrial maturity level of Croatia was estimated to be at 2.15 which represents the Industry 4.0. An average industrial maturity level of Croatian manufacturers, instead of final product producers. That is why Just-in-Time principle is very important to them.

This work has been fully supported by Croatian Science Foundation under the project Innovative Smart Enterprise – INSENT (1353).

6 References

Authors’ addresses

Ivica Veža
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Rudera Boškovića 32, 21000 Split, Croatia
E-mail: iveza@fesb.hr

Marko Mladineo
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Rudera Boškovića 32, 21000 Split, Croatia
E-mail: marko.mladineo@fesb.hr

Nikola Gjeldum
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Rudera Boškovića 32, 21000 Split, Croatia
E-mail: ngjeldum@fesb.hr