Dr Mihajlo Gikić,
Poljoprivredni fakultet Zagreb

UTJECAJ NEKIH KLIIMATSKIH FAKTORA
NA PRODUKTIVNOST SJEMENA CRVENE DJETELINE

UVOD

Za postizavanje visokih priroda sjemena crvene djeteline odlučujući klimatski faktori su relativna vlažnost zraka, trajanje sunčevog osvjetljenja, duljina dnevnog osvjetljenja (fotoperiodizam), vlažnost tla (staništa) i dr. Crvena djelina traži za vrijeme cvatnje nisku vlažnost zraka, dosta sunčevog osvjetljenja, povećani stupanj vlažnosti tla, a pojedine sorte crvene djeteline treba proizvoditi kod određene duljine dnevnog osvjetljenja.

Analizom klimatskih faktora na produktivnost sjemena crvene djeteline u Zagrebu (Maksimir) 1964—1966. godine, Osijeku i Đakovu 1966. godine, u mjestima gdje su pokusi postavljeni, zadatak je da se prikaže i optimalno djelovanje pojedinih klimatskih faktora u pojedinim fazama razvoja crvene djeteline, kako bi se usmjeravala proizvodnja sjemena u onim mjestima koja imaju najpozitivnije uvjete za ovu proizvodnju.

PREGLED LITERATURE

Na veliku važnost relativne vlažnosti zraka za vrijeme cvatnje na visinu priroda sjemena crvene djeteline ukazivali su S mar a g d o v a (22), Baur (1) i Schlecht (16). Ispitivanjima je Kising (11) utvrdio da je najpovoljnija vlažnost zraka za visoku proizvodnju nektda 40—60%, a prema Schieblich u (17) relativna vlažnost zraka neposredno prije cvatnje treba biti ispod 50%. Dok je Schlecht (16) dobio kod umjetnog opaštanja i 95% relativne vlažnosti zraka samo 9% zametanja sjemena, Baur (1) nije dobio nijedno sjeme crvene djeteline kod 85% relativne vlažnosti zraka i umjetne oplonđh.

Za vrijeme sazrijevanja sjemena u srpnju i kolovozu, prema Skird e- u (20) i Kising-u (11) niska relativna vlažnost zraka i relativno duge trajanje sunčevog osvjetljenja djeluju na ubrzano zametanje, brže sazrijevanje sjemena, kao i smanjenje specifične težine zrna, a da se kod toga ne podrazumijeva prisilna zrioba sjemena crvene djeteline. Osim toga dulje trajanje sunčevog osvjetljenja i visoke ljetne temperature uzroci su velikoj produkciji cvatova, kako navodi Cuming (2).

Svojim pokusima su Đusečkin (3), Ermi low (4), Schulze (18) i dr. dokazali da sorte crvene djeteline različitog ishodnog porijekla različito reagiraju na duljinu dnevnog osvjetljenja tj. na fotoperiodizam. Schulze (18) je kod danjeg osvjetljenja od 12 sati ustanovio da habitusi postaju zbijeni, s velikim tamnozelenim lišćem, jako se granaju i zaostaju u cvatnji. Kod kraćeg dana je veći broj cvjetnih grana, veći je sadržaj zelene mase i udio lišća, a niža je visina biljaka. Naprotiv kod 18-satnog osvjetljenja, biljke

537
crvene djeteline se razvijaju visoko, s manjim lišćem, i to svijetlozelene boje, a stabljike su tanje i slabije se granaju.

S k i r d e (21) navodi da stupanj vlažnosti staništa povećava produktivnost sjemena. Kod pravovremenog I-og otkosa koncem svibnja do početka lipnja ostane u tlu dovoljno vlage za intenzivno stvaranje vegetativnog dijela crvene djeteline i za stvaranje većeg broja cvata i cvjetića u cvatu. G u b i n (8) je u pokusima s loncima ustanovio da je najveći broj cvati kod 60% vlažnosti tla, a kod vlažnosti 75—90% postignuti su najveći prirodni zelene mase. Kod smanjene vlažnosti tla ispod 60% smanjuje se i broj cvata.

Kod ranih sorata crvene djeteline su P e d e r s e n (14), K i s i n g (11), S e i f e r t i S k i r d e (19) ustanovili kod drugog porasta kao normalan broj cvata od 800 po 1 m². Kod II-og stupnja vlažnosti tla, kada je djetelina u uspravnom stanju i rahla, broj cvata je bio 1250 tj. za 60% veći. Međutim, kod III-eg stupnja vlažnosti tla, kada je sjemenska djetelina bujna i skoro do početka glavne cvatnjje u uspravnom stanju, bilo je 1450 cvata po 1 m² tj. za 80% više.

I E w e r t (5), K i s i n g (11), S c h u e l (15), P a a t e l a i H e i n r i c h s (13) su dokazali da na vlažnim staništima III-eg stupnja je sadržaj nektara bio veći, ali nije postojala nikakva veza s prirodom sjemena.

Apsolutna težina zrna u pravilu manje koleba, ona ovisi u izrjesnoj mjeri o staništu i vremenskim prilikama u toku cvatnjje. Suho stanište i sušne godine daju niže težine 1000 zrna — G e r d e s (6) i N o h e (12).

KLIMATSKI FAKTORI U GODINAMA ISTRAŽIVANJA S DISKUSIJOM

Tabela 1 — Relativna vlažnost zraka nakon I-og otkosa do žetve crvene djeteline za sjeme u Zagrebu 1964. i 1966, u Osijeku i Đakovu 1964. godine

<table>
<thead>
<tr>
<th>Fenofaze</th>
<th>Zagreb</th>
<th>Osijek</th>
<th>Đakovo</th>
</tr>
</thead>
<tbody>
<tr>
<td>I dekada</td>
<td>72,2</td>
<td>64,7</td>
<td>79,1</td>
</tr>
<tr>
<td>II dekada</td>
<td>71,4</td>
<td>71,7</td>
<td>73,2</td>
</tr>
<tr>
<td>III dekada</td>
<td>69,1</td>
<td>77,7</td>
<td>68,1</td>
</tr>
<tr>
<td>8 dana prije cvatnjje</td>
<td>71,6</td>
<td>72,3</td>
<td>75,6</td>
</tr>
<tr>
<td>Cvatnjja</td>
<td>72,8</td>
<td>71,9</td>
<td>71,8</td>
</tr>
<tr>
<td>Zrioba — žetva</td>
<td>74,8</td>
<td>73,5</td>
<td>73,2</td>
</tr>
<tr>
<td>Prosjek</td>
<td>71,8</td>
<td>71,9</td>
<td>72,5</td>
</tr>
</tbody>
</table>

538
Najmanja prosječna relativna vlažnost zraka za višegodišnje proslave vegetacijskog razdoblja u vremenu skidanja I-og otkosa do sazrijevanja sjemenja u Đakovu 70,2% — veća je u Zagrebu, (71,8%) a najveća u Osijeku (73,1%).

U Zagrebu je u prvoj dekadi nakon I-og otkosa visoka vlažnost (višegodišnji prosjek — 72,2%), a to pogoduje djetelini, jer ima veću naklonost prema povećanoj vlažnosti zraka. Zatim pravilno opada do konca III-će dekade (69,1%), a za ovo vremensko razdoblje do početka cvatnjine Kising (11) nije utvrdio nikakovu korelaciju između vlažnosti zraka i priroda sjemena. Za vrijeme cvatnjine je povećana vlažnost zraka (72,8%), najveća je za vrijeme zriobe i žetve (74,8%), što nepovoljno utječe na prirode sjemena. Za vrijeme cvatnjine i sazrijevanja sjemena postoji vrlo jaka korelacija između vlažnosti zraka i priroda sjemena. Visoki prirodi sjemena se mogu očekivati ako za vrijeme cvatnjine i sazrijevanja sjemena traje niska vlažnost zraka.

Slična su kretanja relativne vlažnosti zraka u višegodišnjem prosjeku i u Đakovu, ali je ipak niža (70,2%). Međutim u Osijeku se vlažnost zraka povećava od I. — dekade (73,2%) prema III-oj dekadi (74,7%), ali je najniža za vrijeme cvatnjine (70,1%). Ova najniža vlažnost za vrijeme cvatnjine je od osobi tog značenja za visoku produkciju nektara, ubrzano zametanje sjemena kako navodi Skird na (21). Za vrijeme sazrijevanja u mjesecu kolovozu je opet povećana vlažnost zraka (73,0%), ali je ipak manja od relativne vlažnosti drugih stadija vegetativnog razvoja.

Relativna vlažnost zraka znatno varira u pojednim godinama u odnosu na relativnu vlažnost višegodišnjeg prosjeka. Ovom kolebanju se vjerovatno treba pripisati sekundarno značenje, jer s bogatim oborinama je usko povezana i visoka vlažnost zraka, Kising (11). Ovaj zaključak se poklapa s analizom podataka relat. vlažnosti u Osijeku. Za vrijeme cvatnjine 1964. godine u Osijeku je palo najmanje oborina, a i u tom periodu je bila i najniža relativna vlažnost zraka (73,3%).

TRAJANJE SUNČEVOG OSVJETLJENJA

Tabela 2 — Trajanje sunčevog osvjetljenja u satima u Zagrebu (Maksimir) za 1964. i 1966. u Osijeku za 1964. godinu

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I dekada</td>
<td>10,1</td>
<td>4,2</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>II dekada</td>
<td>8,5</td>
<td>7,9</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>III dekada</td>
<td>6,3</td>
<td>12,2</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>8 dana prije cvatnjine</td>
<td>9,3</td>
<td>8,5</td>
<td>6,1</td>
<td></td>
</tr>
<tr>
<td>Cvatnjina</td>
<td>10,7</td>
<td>11,0</td>
<td>10,6</td>
<td></td>
</tr>
<tr>
<td>Zrioba — žetva</td>
<td>8,0</td>
<td>9,2</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>Prosjek</td>
<td>8,8</td>
<td>8,9</td>
<td>8,7</td>
<td></td>
</tr>
</tbody>
</table>

539
Trajanje sunčevog osvjetljenja je ovisno o geografskom položaju pojedinog mjesta, a znatno oscilira u pojedim tim godinama, i u pojedinim fazama vegetacijskog razvoja. Prosjek trajanja sunčevog osvjetljenja u Zagrebu od 8,8 sati (1964) i 8,9 sati (1966), te u Osijeku 8,7 sati (1964) u potpunosti zadovoljava potrebe na svjetlu crvene djeteline za sjemensku proizvodnju.

U prvom dekadi nakon prvog otksa pokazuje se jasna negativna korelacija, ukoliko je u ovom periodu trajanje dnevnom sunčevog osvjetljenja 3—5 sati, uvijek je dobra prognoza za dobru žetu, te ako se ostali faktori nalaze ili se budu nalazili u optimumu. Međutim trajanje sunčevog osvjetljenja za vrijeme I dekade u Zagrebu (Maksimir) bilo je u 1964. godini — 10,1, a u 1966. godini — 4,2 sata, dok je u Osijeku bilo u 1966. godini — 8,9 sati.

U ostalim fazama vegetacijskog razvoja ima dovoljno sunčevog osvjetljenja, tako da je ovaj element za prirode sjemena crvene djeteline u potpunosti zadovoljen. Ipak je za vrijeme cvatnje bilo skoro najviše sunčevog osvjetljenja (osim u Zagrebu 1966. godine za vrijeme III—će dekade — 12,2 sata). Dovoljne količine sunčevog osvjetljenja u ovom najvažnijem vegetacijskom razvoju za produktivnost sjemena, intenzivira rad oprašivača (pčele i bumbari) na oplodnju crvene djeteline. Osim toga, relativno duže sunčevo osvjetljenje u mjesecu srpnju i kolovozu djeluje na ubrzano zametanje, te brže sazrijevanje sjemena, kao i na smanjivanje apsolutne težine zrna, a da se kod toga ne podrazumijeva prisilna zrioba sjemena, kako navodi Skrde.

Isto tako i u mjesecu kolovozu, za vrijeme sazrijevanja, ima dovoljno sunčevog osvjetljenja u Zagrebu i Osijeku, te povoljno utječe i na brže sazrijevanje.

DULJINA DNEVNOG OSVJETLJENJA (FOTOPERIODIZAM)

Tabela 3 — Višegodišnji prosjek dnevog osvjetljenja (dana)

<table>
<thead>
<tr>
<th>Mjeseci</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sati</td>
<td>9,2</td>
<td>10,4</td>
<td>11,9</td>
<td>13,5</td>
<td>14,9</td>
<td>15,6</td>
<td>15,2</td>
<td>14,1</td>
<td>12,6</td>
<td>11,0</td>
<td>9,6</td>
<td>8,9</td>
</tr>
</tbody>
</table>

Zagreb se nalazi na geografskoj širini 45°49‘, Osijek na 45°39‘, a Dakovo na 45°18‘. S obzirom da su ispitivanja vršena u mjestima s malom mješovitom razlikom u geografskoj širini, razlike duljine dana su neznatne, tako da ćemo se poslužiti podacima višegodišnjeg prosjeka duljine dana u Zagrebu za analizu ovog važnog faktora produktivnosti sjemena crvene djeteline.

Za vrijeme duljine vegetacije I otksa u godini, glavnog korištenja, prosječne duljine dana u travnju (13,5) i u svibnju (14,9), odgovaraju stvaranju bujne zelene mase, ukoliko su povoljne klimatske i zemljišne prilike. Lipanj mjesec ima najdulji prosječni dan (15,6) u usporedbi s ostalim mjesecima u toku godine i povoljno utječe na regeneraciju crvene djeteline, poslije skidanja I otksa, za stvaranje vegetativnog dijela, tj. većeg broja stabljika, lista, cvata, cvjetića, a to su osnovni elementi produktivnosti sjemena crvene djeteline. Za vrijeme cvatnje, oprašivanja, zametanja i sazrijevanja sjemena duljina dana se neznatno smanjuje, u srpnju 15,2 i kolovozu 14,1 sat, ali je ovaj
faktor u optimumu za rane, srednje rane i srednje kasne sorte crvene djeteline, ukoliko su ostali faktori (klimatski i zemljišne prilike, opravičavanje i dr.) povoljni za stvaranje visokih priroda sjemena crvene djeteline.

Područja ispitivanja (Zagreb, Osijek i Đakovo) imaju povoljne uvjete, obzirom na duljinu dana (fotoperiodizam) za sjemensku proizvodnju crvene djeteline za sorte koje su porijeklom iz Njemačke, Engleske i Holandijske, tj. iz područja srednje dugog dana. Međutim, tetraploidne forme djetelina «Weiteta 1» i «Weiteta 2», koje su porijeklom iz Švedske, iz područja razmnažavanja dugog dana, naša su područja manje povoljna.

ZAKLJUČAK

Analizom nekih klimatskih faktora (relativna vlažnost zraka, trajanje sunčevog osvjetljenja, duljina dnevniog dnevniog osvjetljenja — fotoperiodizam, vlažnost tla i dr.) na proizvodnju sjemena crvene djeteline u Zagrebu (Missim), Osijeku i Đakovu može se zaključiti slijedeće:

1. a) U Zagrebu je višegodišnja prosječna relativna vlažnost zraka vegetacijskog razdoblja u vremenu skidanja I-og otkosa u godini glavnog korištenja do sazrijevanja sjemena 71,8%. U I-oj dekadi nakon prvog otkosa visoka vlažnost (višegodišnji prosjek 72,2%) pogoduje regeneraciji i porastu crvene djeteline. Za vrijeme cvatnje je povećana vlažnost zraka (72,8%), a najveća je za vrijeme zriobe i žetve (74,8%), što nepovoljno utječe na postizanje visokih priroda sjemena crvene djeteline.

Relativna vlažnost zraka znatno varira u pojedinim godinama u odnosu na relativnu vlažnost višegodišnjeg prosjeka. Ovom kolebanju se treba pripisati sekundarno značenje, jer s bogatim oborinama je usko povezana i visoka vlažnost zraka. U godinama ispitivanja (1964. i 1966. god.) je relativna vlažnost zraka do početka cvatnje bila za 0,5—2,9% viša, za vrijeme cvatnje za 0,9—1,0%, dok je za vrijeme zriobe-žetve za 1,3—1,6% niža od višegodišnjeg prosjeka za ove faze razvoja.

b) Osijek ima višegodišnju relativnu vlažnost zraka u vremenu skidanja I-og otkosa do sazrijevanja sjemena 73,1%, ali je pravilnije raspoređena po pojedinim fenofazama sjemenske proizvodnje crvene djeteline, nego li u Zagrebu. Relativna vlažnost se pravilno povećava od I dekade (73,3%) prema III-oj dekadi (74,7%). Najniža je za vrijeme cvatnje (70,1%), što je od osobitog značenja za visoku produkciju nektera te ubrzano zametanje sjemena.

U 1964. godini je relativna vlažnost zraka bila za 3,2% viša od višegodišnjeg prosjeka, a za vrijeme cvatnje za 2,2%, a za vrijeme zriobe-žetve čak za 7,0% viša od višegodišnjeg prosjeka, što se negativno održalo na produktivnost sjemena crvene djeteline.

c) Đakovo ima relativnu vlažnost zraka 70,2% u vremenu skidanja I-og otkosa do sazrijevanja sjemena. Pravilno se povećava od I—III-čе dekade kao i u vremenu 8 dana prije početka cvatnje do zriobe-žetve sjemena.

U 1964. godini je relativna vlažnost zraka bila u prosjeku za 3,1% veća u odnosu na višegodišnji prosjek. Najniža je bila u I-oj dekadi nakon skidanja prvog otkosa (68,8%), zatim za vrijeme cvatnje (72,4%), dok je za vrijeme zriobe-žetve bila povišena vlažnost zraka (75,0%).

541
2. Za vrijeme cvatnje ima skoro najviše sunčevog osvjetljenja (osim u Zagrebu 1966. godine za vrijeme III-će dekade — 12,2 sata) koje intenzivira rad oprapaštiveča (pčele i bumbarı) na oplodnju, ubrzano zametanje, te brže sazrijevanje sjemena crvene djeteline.

3. Područja ispitivanja (Zagreb, Osijek i Đakovo) imaju povoljne uvjete, s obzirom na duljinu dana (fotoperiodizam) za sjemensku proizvodnju crvene djeteline. Za vrijeme cvatnje, oprapaštavanje, zametanja i sazrijevanja sjemena (srpanj 15,2 i kolovoz 14,1 sati) je ovaj faktor u optimumu za rane, srednje rane i srednje kasne sorte crvene djeteline, tj. za one sorte koje su porijeklom iz Njemačke, Francuske, Engleske i Holandije, iz područja srednje dugog dana. Međutim, za tetraploide forme djetelina »Weiteta«, koje su porijeklom iz Švedske, iz područja razmnažavanja dugog dana, naša su područja manje povoljna.

Dr. Mihajlo Gikić
Landwirtschaftliche Fakultät Zagreb

DER EINFLUSS EINIGER KLIMATISCHEN BEDINGUNGEN AUF DIE ERTRAGSFÄHIGKEIT ROTKLEESAATGuetes (TRIFOLIUM PRATENSE VAR. SATIVUM)

Zusammenfassung

Durch die Analyse einiger klimatischen Faktoren (relative Luftfeuchtigkeit, die Dauer der Sonnenbeleuchtung, die Dauer des Tageslichtes — Photoperiodismus, die Feuchtigkeit des Bodens u. a. (wie des Einflusses auf die Produktion des Rotkleeahtutes im Zagreb (Maksimir), Osijek und Đakovo, kann man folgendes beschliessen:

1. a) In Zagreb ist die mehrjährige durchschnittliche relative Luftfeuchtigkeit der Vegetationsperiode in der Zeit des 1. Schnittes im Jahre des Hauptnutzens bis der Saatgutreife 71,8%. In der erste Dekade nach dem ersten Schnitt, die hohe Feuchtigkeit (der mehrjährige Durchschnitt 72,2%) entspricht der Regeneration und dem Zuwachs des Rotklee. Während der Blüte ist die Luftfeuchtigkeit erhöht (72,8%) und die grösste Feuchtigkeit ist während der Reife und der Ernte (74,8%) was ungünstiger Einfluss auf die Erreichung der höher Erträge des Rotkleeahtutes hat.

Die relative Luftfeuchtigkeit variiert beträchtlich im einzelnen Jahren im Verhältnis zur relative Feuchtigkeit des mehrjährigen Durchschnittes. Diesem Schwanken muss man nur die sekundäre Bedeutung zuschreiben, weil die hohe Feuchtigkeit der Luft ist mit den reichlichen Niederschläge verbunden. In der Untersuchungsjahren (1964 und 1966) war die relative Luftfeuchtigkeit bis zur Anfang der Blüte für 0,5—2,9% höher, währen der Blüte 0,9—1,0%, weil während der Reife-Ernte war für 1,3—1,6% niedriger vom mehrjährigen Durchschnittes für diese Phase der Entwicklung.

b) Osijek hat die mehrjährige relative Luftfeuchtigkeit in der Periode des Abnehmens des ersten Schnittes bis zur Saatgutreife 73,1%, aber sie ist besser nach den einzelnen Phenophasen der Saatgutproduktion des Rotklee angeordnet als im Zagreb. Die relative Feuchtigkeit sich von der ersten Dekade (73,3%) zur dritten Dekade (74,7%) regelmässig vergrössert. Die niedrigste ist

542
während der Blüte selbst (70,1%), was von besonderen Bedeutung für die
höhe Nektarproduktion und die beschleunigte Keimbildung des Saat-
gutes ist.
Im Jahre 1964 war die relative Luftfeuchtigkeit für 3,2% von dem mehr-
jährigen Durchschnitt, während der Blüte für 2,2%, und während der Reife-
-Erne für 7,0% höher von dem mehrjährigen Durchschnitt, was sich negativ
auf die Produktion des Rotkleezaugutes rückgestrahlt ist.

c) Dakovo hat die relative Luftfeuchtigkeit 70,2% in der Zeit des Ab-
nehmes des ersten Schnittes bis zur Saagutreife. Vergrößert sich regelmäßig
von der ersten bis zur dritten Dekade, wie auch in der Zeit 8 Tage vor dem
Anfang der Blüte bis zur Reife-Erne von dem Saatgutes.
Im Jahre 1964 war die relative Luftfeuchtigkeite im Durchschnitt für
3,1% höher im Verhältnis zum mehrjährigen Durchschnitt. Am niedrigste
war in der ersten Dekade nach dem Abnehmen des ersten Schnittes (68,8%),
danach während der Blüte (72,4%), weil während der Reife-Erne war die
Luftfeuchtigkeit erhöht (75,0%).

2. Während der Blüte gibt es fast am meistens der Sonnenbelichtung
(ausser im Zagreb im Jahre 1966 während der dritten Dekade — 12,2 Stunden),
welche die Arbeit der Bestäuber (Bienen und Hummeln) auf die Befruchtung
der beschleunigte Samenansatz und schnellere Reife des Rotkleezaugutes
intensiviert.
3. Die Untersuchungsgebiete (Zagreb, Osijek und Dakovo) haben die
günstige Bedingungen, mit der Rücksicht auf die Länge des Tages (Photo-
periodismus), für die Saatproduktion des Rotklee. Während der Blüte, das
Bestäubung, der Samenansatz und der Saagutreife (Juli 15,2 und August
14,1 Stunden) ist dieser Faktor im Optimum für die frühen, mittelfrüh und
mittelspäten Rotklee, d. h. für die Sorten welche aus Deutschland, Frank-
reich, Englang und Holland stammen, d. h. aus dem Gebiete des mittellangen
Tages. Aber für die tetraploide Formen des Rotklee »Weitetrax«, die aus
Schweden stammen, aus dem Gebiete der Vermehrung des landen Tages,
unsere Gebiete sind weniger günstig.

LITERATURA

2. Cumming, B. G.: The control of growth and development in red clo-
3. Dušêðkin, V. J.: A multiple harvest of one — cut red clovers grown
4. Ermlow, G. B.: Der Einfluss von kurzen Tagen auf Wachstum und
5. Ewert, R.: Honigen und Samenansatz des Rotklee. Deutsche Im-
führer 10, 476—480. 1936.
des absoluten Gewichetes (TKG) bei Sorten der Wichtigsten kleeartigen