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Two transformations for a binomial sum
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Abstract. By means of finite differences and partial fraction decomposition, we establish
two binomial transformations, that extend, with four free parameters, the recent results
due to Prodinger (2010) and Dahlberg-Ferdinands-Tefera (2010).
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1. Introduction and motivation

Let N and N0 be the sets of natural numbers and nonnegative integers, respectively.
For an indeterminate x, denote the Pochhammer symbol by

(x)0 = 1 and (x)n = x(x + 1) · · · (x + n− 1), with n ∈ N.

The following binomial sum has recently attracted much attention

n
∑

k=0

(

n

k

)

(−1/2)k

(m+ k)ε
, where m,n, ε ∈ N.

By utilizing the Gauss hypergeometric 2F1-series, Choi-Zörnig-Rathie [2] deduced
the following two closed formulae:

n
∑

k=0

(

n

k

)

k(−1/2)k

(n+ k)(n+ k + 1)
=

n!n!2n−1

(2n+ 1)!
−

1

2n+1
, (1)

n−2
∑

k=0

(

n− 2

k

)

k(−1/2)k

(n+ k)(n+ k + 1)
=

3n!n!2n

(n− 1)(2n)!
−

n+ 2

(n− 1)2n−1
. (2)

Prodinger [7] extended it slightly to the following binomial transformation

n
∑

k=0

(

n

k

)

(−1/2)k

m+ k
=

n!(m− 1)!

2n(n+m)!

n
∑

k=0

(

m+ n

k

)

, where m,n ∈ N. (3)
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Dahlberg-Ferdinands-Tefera [3] give a WZ-style proof and find further

n
∑

k=0

(

n

k

)

k(−1/2)k

(n+ k)m+1

=
m
∑

k=0

(−1)k+1

2n+1m!

(

m

k

)

(

2n+k
n

)

{

22n+k −
n+k−1
∑

j=n+1

(

2n+ k

j

)}

. (4)

Different approaches and variants of these sums can be found in [5, 6, 7, 8, 9].
The purpose of this short paper is to examine the generalized binomial sum with

four free paramters given below

Ωn(λ, µ; a, c, x) :=

n
∑

k=0

xk

(

n

k

)

(a+ k)λ
(c+ k)µ+1

, (5)

where n, λ, µ ∈ N0 and a, c ∈ C, the set of complex numbers. The following two
interesting transformation formulae will be shown.

Theorem 1. For λ, µ, n ∈ N0 with λ ≤ µ, the following binomial transformation

holds

Ωn(λ, µ; a, c, x) =
(−1)λn!λ!

(c)n+µ+1

n
∑

k=0

(c)k
k!

(1 + x)k

×

λ
∑

i=0

(

−c− k

i

)(

c− a

λ− i

)(

n+ µ− k − i

µ− i

)

.

Theorem 2. For λ, µ, n ∈ N0 with λ ≤ µ, the following binomial transformation

holds

Ωn(λ, µ; a, c, x) =
(−1)λn!λ!

(c)n+µ+1

(1 + x)n
n
∑

k=0

(

c+ n+ µ

n− k

)

{ −x

1 + x

}k

×

µ
∑

j=0

(

−c

j

)(

c− a+ j

λ

)(

c+ µ+ k

µ− j

)

.

As Prodinger [7] observed, equality (3) is implied by Pfaff’s reflection law (cf. Bai-
ley [1, §1.2] and Graham-Knuth-Patashnik [4, §5.6]). However, the two relations
obtained in this paper cannot be deduced directly in this manner. By combining the
finite differences with partial fraction decomposition, we shall prove these two trans-
formations in the next section. Then the paper will end up with a discussion about
how the binomial identities due to Prodinger [7] and Dahlberg-Ferdinands-Tefera [3]
can be recovered from Theorems 1 and 2.

2. Proofs of the main results

In order to prove the theorem, let us recall finite differences and their properties.
For any given function f(τ), denote by ∆ the usual difference operator with the unit
increment ∆f(τ) = f(τ + 1)− f(τ). Then the Newton-Gregory formula reads

∆nf(τ) =

n
∑

k=0

(−1)n−k

(

n

k

)

f(τ + k), where n ∈ N0.
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In particular, we shall briefly write ∆n
0f(τ) := ∆nf(τ)

τ=0
. The higher differences

also satisfy the following useful Leibniz rule

∆n
{

f(τ)g(τ)
}

=

n
∑

k=0

(

n

k

)

∆kf(τ)∆n−kg(τ + k), where n ∈ N0.

For λ ≤ µ, we first expand the rational function R(k) into partial fractions

R(k) :=
(a+ k)λ
(c+ k)µ+1

=

µ
∑

i=0

wi

c+ k + i
,

where the coefficients {w0.w1, · · · , wµ} are independent of the variable k and can be
determined by the following limiting process

wi = lim
k→−c−i

(c+ k + i)R(k) =
(a− c− i)λ
(µ− i)!(−i)i

= (−1)i
(

µ

i

)

(a− c− i)λ
µ!

.

We have therefore established the following identity

(a+ k)λ
(c+ k)µ+1

=

µ
∑

i=0

(−1)i

µ!

(

µ

i

)

(a− c− i)λ
c+ k + i

.

Substituting the last relation into (5) and then interchanging the summation order,
we get the following double sum expressions

Ωn(λ, µ; a, c) =

n
∑

k=0

xk

(

n

k

) µ
∑

i=0

(−1)i

µ!

(

µ

i

)

(a− c− i)λ
c+ k + i

=

µ
∑

i=0

(−1)i

µ!

(

µ

i

)

(a− c− i)λ

n
∑

k=0

(

n

k

)

xk

c+ k + i
.

Writing the inner sum in terms of finite differences and then invoking the Leibniz
rule, we have

n
∑

k=0

(

n

k

)

xk

c+ k + i
= (−1)n∆n

0

(−x)τ

c+ τ + i

= (−1)n
n
∑

k=0

(

n

k

)

∆k
0(−x)τ∆n−k

0

1

c+ τ + k + i
.

Observe that

∆k
0(−x)τ =

k
∑

j=0

(−1)k−j

(

k

j

)

(−x)j = (−1− x)k

and

∆n−k
0

1

c+ τ + k + i
=

n−k
∑

j=0

(

n− k

j

)

(−1)n−k−j

c+ k + i+ j
=

(−1)n−k(n− k)!

(c+ k + i)n−k+1

,
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which have been justified by the binomial theorem and the induction principle,
respectively. We find consequently another double sum expression

Ωn(λ, µ; a, c) =

µ
∑

i=0

(−1)i

µ!

(

µ

i

)

(a− c− i)λ

n
∑

k=0

(

n

k

)

(n− k)!(1 + x)k

(c+ k + i)n−k+1

=
n!

µ!

n
∑

k=0

(1 + x)k

k!

µ
∑

i=0

(−1)i
(

µ

i

)

(a− c− i)λ
(c+ k + i)n−k+1

.

The last sum with respect to i can again be stated as finite differences

λ!

µ
∑

i=0

(−1)λ−i

(

µ

i

)

(

c−a+i

λ

)

(c+ k + i)n−k+1

= (−1)λ+µλ!∆µ
0

(

c−a+τ
λ

)

(c+ k + τ)n−k+1

= (−1)λ+µλ!

µ
∑

i=0

(

µ

i

)

∆i
0

(

c− a+ τ

λ

)

∆µ−i
0

1

(c+ k + τ + i)n−k+1

.

By means of the induction principle, we can compute both finite differences

∆i
0

(

c− a+ τ

λ

)

=

(

c− a

λ− i

)

and

∆µ−i
0

1

(c+ k + τ + i)n−k+1

=
(−1)µ−i(n− k + 1)µ−i

(c+ k + i)n+µ−k−i+1

.

This surprisingly yields the following expression

µ
∑

i=0

(−1)i
(

µ

i

)

(a− c− i)λ
(c+ k + i)n−k+1

= λ!

λ
∑

i=0

(−1)λ−i

(

µ

i

)(

c− a

λ− i

)

(n− k + 1)µ−i

(c+ k + i)n+µ−k−i+1

=
(−1)λλ!µ!

(c+ k)n+µ−k+1

λ
∑

i=0

(

−c− k

i

)(

c− a

λ− i

)(

n+ µ− k − i

µ− i

)

.

Summing up, we have found the following transformation formula

Ωn(λ, µ; a, c) =

n
∑

k=0

(1 + x)k

k!

(−1)λλ!n!

(c+ k)n−k+µ+1

×
λ
∑

i=0

(

−c− k

i

)(

c− a

λ− i

)(

n+ µ− k − i

µ− i

)

,

which is clearly equivalent to that displayed in Theorem 1.
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Now we turn to prove Theorem 2. According to the Chu-Vandermonde convolu-
tion formula, we have the following equality

(

n+ µ− k − i

µ− i

)

=

µ
∑

j=i

(

−c− k − i

j − i

)(

c+ n+ µ

µ− j

)

.

Then we can reformulate the following binomial sum

λ
∑

i=0

(

−c− k

i

)(

c− a

λ− i

)(

n+ µ− k − i

µ− i

)

=

µ
∑

i=0

(

−c− k

i

)(

c− a

λ− i

) µ
∑

j=i

(

−c− k − i

j − i

)(

c+ n+ µ

µ− j

)

=

µ
∑

j=0

(

−c− k

j

)(

c+ n+ µ

µ− j

) j
∑

i=0

(

j

i

)(

c− a

λ− i

)

=

µ
∑

j=0

(

−c− k

j

)(

c− a+ j

λ

)(

c+ n+ µ

µ− j

)

,

where the last passage has been justified again by the Chu-Vandermonde convolution
formula. Therefore, we can express the double sum displayed in Theorem 1 as
follows:

n
∑

k=0

(c)k
k!

(1 + x)k
µ
∑

i=0

(

−c− k

i

)(

c− a

λ− i

)(

n+ µ− k − i

µ− i

)

=

µ
∑

j=0

(

c− a+ j

λ

)(

c+ n+ µ

µ− j

) n
∑

k=0

(

−c− k

j

)

(c)k
k!

(1 + x)k

=

µ
∑

j=0

(

−c

j

)(

c− a+ j

λ

)(

c+ n+ µ

µ− j

) n
∑

k=0

(

c+ k + j − 1

k

)

(1 + x)k.

Let [τn]f(τ) stand for the coefficient of τn in the formal power series f(τ). We can
further rewrite the last sum with respect to k as

n
∑

k=0

(

c+ k + j − 1

k

)

(1 + x)k =

n
∑

k=0

[τk]
{

1− τ(1 + x)
}

−c−j

= [τn]

{

1− τ(1 + x)
}

−c−j

1− τ

= [τn]

{

1− τ(1 + x)
}

−c−j

1− τ(1 + x) + τx

=

n
∑

k=0

[τn]
(−τx)k

{

1− τ(1 + x)
}c+k+j+1

= (1 + x)n
n
∑

k=0

(

c+ n+ j

n− k

)

{ −x

1 + x

}k

.
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This leads to the double sum transformation

n
∑

k=0

(c)k
k!

(1 + x)k
µ
∑

i=0

(

−c− k

i

)(

c− a

λ− i

)(

n+ µ− k − i

µ− i

)

=

µ
∑

j=0

(

−c

j

)(

c− a+ j

λ

)(

c+ n+ µ

µ− j

)

(1 + x)n
n
∑

k=0

(

c+ n+ j

n− k

)

{ −x

1 + x

}k

= (1 + x)n
n
∑

k=0

{ −x

1 + x

}k
µ
∑

j=0

(

−c

j

)(

c− a+ j

λ

)(

c+ n+ j

n− k

)(

c+ n+ µ

µ− j

)

.

According to Theorem 1, this equation confirms the transformation formula dis-
played in Theorem 2.

3. Further discussion

Now we are going to show that four identities (1), (2), (3) and (4) are very particular
cases of Theorems 1 and 2.

Firstly, it is not hard to check that (1) follows from Theorem 2.

Ωn(1, 1; 0, n,−
1

2
) =

n!

2n(n)n+2

n
∑

k=0

(

2n+ 1

n− k

)

{

n(n+ 1)− n(n+ k + 1)
}

=
n!n!

2n(2n+ 1)!

{

(n+ 1)

n
∑

k=0

(

2n+ 1

n− k

)

− (2n+ 1)

n
∑

k=0

(

2n

n− k

)}

=
n!n!

2n(2n+ 1)!

{

22n(n+ 1)− (2n+ 1)22n−1 −
2n+ 1

2

(

2n

n

)}

=
n!n!2n−1

(2n+ 1)!
−

1

2n+1
.

Analogously for (2), we can show it below.

Ωn−2(1, 1; 0, n,−
1

2
) =

(n− 2)!

2n−2(n)n

n−2
∑

k=0

(

2n− 1

n− k − 2

)

{

n(n+ 1)− n(n+ k + 1)
}

=
n!(n− 2)!

2n−2(2n−1)!

n−2
∑

k=0

{

(n+1)

(

2n− 1

n−k−2

)

− (2n−1)

(

2n− 2

n−k−2

)}

=
n!(n− 2)!

2n−2(2n− 1)!

{

3× 22n−3 −
n(n+ 2)

2

(

2n− 1

n

)}

=
3n!n!2n

(2n)!(n− 1)
−

n+ 2

2n−1(n− 1)
.

Instead, equation (3) is almost a trivial instance of Theorem 2:

Ωn(0, 0; a,m,− 1

2
) =

n!

2n(m)n+1

n
∑

k=0

(

m+ n

n− k

)

=
n!(m− 1)!

2n(m+ n)!

n
∑

k=0

(

m+ n

k

)

.
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Finally, for equation (4), we need to further manipulate the double sum displayed
in Theorem 2 as follows

Ωn(1,m; 0, n,− 1

2
) =

−n!

2n(n)m+n+1

n
∑

k=0

(

2n+m

n− k

) m
∑

j=0

(n+ j)

(

−n

j

)(

m+ n+ k

m− j

)

=

m
∑

j=0

n!(−1)j+1

2n(n+ 1)m+n

(

n+ j

j

)(

m+ 2n

m− j

) n
∑

k=0

(

2n+ j

n+ k + j

)

=

m
∑

j=0

(−1)j+1

2nm!

(

m
j

)

(

2n+j

n

)

n
∑

k=0

(

2n+ j

n+ k + j

)

.

This becomes the binomial sum on the right hand side of (4) thanks to the binomial
relation

2

n
∑

k=0

(

2n+ j

n+ k + j

)

= 22n+j −

n+j−1
∑

k=n+1

(

2n+ j

k

)

.

In addition, via WZ-method Dahlberg-Ferdinands-Tefera [3] also find the follow-
ing identity

n
∑

k=0

(−1)k
(

n

k

)

m+ k

m+ k + ν
=

−n!ν

(m+ ν)n+1

.

This can also be verified through Theorem 2. In fact, we have

Ωn(1, 0;m,m+ ν,−1) =
−n!ν

(m+ ν)n+1

,

because there is only one surviving term with the summation index k = n on the
right-hand side of the corresponding equation displayed in Theorem 2.
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