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Geometric fitting by two coaxial cylinders
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Abstract. Fitting two coaxial cylinders to data is a standard problem in computational
metrology and reverse engineering processes, which also arises in medical imaging. There
are many fitting criteria that can be used. One criterion that is widely used in metrology,
when the errors in data are thought to be normally distributed, for example, is that of
minimizing the sum of squared minimal distance. A similar numerical method is developed
to fit two coaxial cylinders in the general position to 3D data, and numerical examples are
given.
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1. Introduction

In geometric fitting, also known as best fitting, the error distances are defined as
the shortest distances from the given 2D or 3D points to the geometric feature to be
fitted. This quality is desirable in many fields of science and engineering, including
astronomy, biology, physics, quality control, and metrology [5, 6].

Furthermore, fitting a cylinder that minimizes the sum of the squares of the
distance of the points from the cylinder is a recognized problem in, for instance,
computational metrology [34](problem C5), computer vision [26], and engineering of
a geometric shape [23]. Different approaches have been made to solve this problem
resulting in different algorithms that use least squares methods. Fitting an implicit
cylinder to given data is considered in [12] and [23, 24]. Fitting a right circular
cylinder, a cylinder whose base is perpendicular to its sides. In addition, fitting a
special case right circular cylinder is determined in [7], and discussed in [35].

Cylindrical features are common in mechanical designs [25] and reverse engineer-
ing processes [10] and arises in medical imaging [9]. Furthermore, finding two coaxial
cylinders with minimum difference in their radii that contains all the relevant data
points between them is a standard problem in metrology [34] (problem C9). To clar-
ify the problem, assume that the available data, xi = (xi1, xi2, xi3)

T , i = 1 . . . ,m,
have errors. Moreover, to find two coaxial cylinders, the suitable criteria proposed
are to minimized, where each data point has to be simultaneously associated with
one of the cylinders.
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A widely used optimization method in cluster analysis is k-means. This method
needs only a data set and a pre-specified number of clusters, k, and minimizing
the within cluster square error. Consequently, the algorithm is applicable only if
the mean is defined, the k number of clusters has to be estimated. The use of this
criterion could be used for division, when the differences in size of geometry of the
clusters are big, see [21].

Let W1 and W2 be the two subsets of given points, with indexes j and k, as-
sociated, respectively, with a small cylinder ς1 and a large cylinder ς2. Moreover,
W1 ∩W2 = Φ,W1 ∪W2 = {1, . . . ,m}, and |W1| = n1 ≥ 8, |W2| = n2 ≥ 8. Further-
more, let r1 and r2 be the two coaxial cylinders’ radii, where r1 < r2. The common
centre will be denoted by c = (c1, c2, c3)

T , and the altitude will be h.
The parametric representations are dependent upon the location of real parame-

ters ti, i = 1, . . . ,m, which are independent of any coordinate system. The paramet-
ric representation is important for approximating data that have been measured in
an arbitrary coordinate system. In addition, it allows for two closed coaxial cylin-
ders. Further, any explicit surfaces can be specified in the parametric form in an
analogous way [35].

Then, a parametric representation of the small right circular coaxial cylinder ς1
can be written as

x(c, r1, θ, tj) =





c1
c2
c3



+R(θ)





r1 cos(tj)
r1 sin(tj)

hj



 , 0 < tj ≤ 2π. (1)

Replacing j by k and r1 by r2 in (1) gives the other coaxial cylinder ς2, k ∈ W2.
θ = (α, β, γ)T where α, β and γ denote, respectively, the common rotation angles in
the (x1, x2), (x1, x3) and (x2, x3) plane, known as Euler rotation angles. So, R(θ)
will be the unknown rotation matrix.

In addition, the matrix R(θ) ∈ R3×3 is orthogonal, so det(R(θ)) = 1. Moreover,
R can be written as a product of three elementary rotations

R(θ) = R1(α)R2(β)R3(γ)

=









Cα Sα 0

−Sα Cα 0

0 0 1

















Cβ 0 Sβ

0 1 0

−Sβ 0 Cβ

















1 0 0

0 Cγ Sγ

0 −Sγ Cγ









=









CβCα −SγSβCα + CγSα CαSβCγ + SαSγ

−CβSα SγSβSα + CγCα −SαSβCγ + CαSγ

−Sβ −SγCβ CβCγ









,

where the notations Cα and Sα are used for simplicity to denote cos(α) and sin(α),
respectively, and the other rotation angles are notated similarly.

Let a = (c, r1, r2, θ)
T ∈ R8, and define the orthogonal distance vector

vi(a, ti) =

{

xj − x(c, r1, θ, tj), j ∈ W1;
xk − x(c, r2, θ, tk), k ∈ W2.
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Let ti(a), i = 1, . . . ,m be such that for any a, ‖vi‖
2
2 is minimized with respect to ti.

Then, the problem of fitting two coaxial cylinders to data using orthogonal distance
regression is the minimization of the objective function

Ĝ(a, ti(a)) =

n1
∑

j

‖xj − x(a, tj(a))‖
2
2 +

n2
∑

k

‖xk − x(a, tk(a))‖
2
2. (2)

A Gauss-Newton type method is popular for solving orthogonal distances problems,
see [1, 2, 4, 7, 8, 13, 14, 18, 19, 35, 36, 38, 39, 40]. This method requires a nonsingular
Jacobian matrix. To be more precise, The Jacobian matrix must be a full rank, which
is in this case 8. The condition is not satisfied for fitting a parametric right circular
cylinder in general position and orthogonal distance regression. Furthermore, this
condition is not satisfied for fitting two coaxial cylinders, as a result of

Ĝ(c, r1, r2, α, β, γ) = Ĝ(c, r1, r2, α− π, π − β, γ − π). (3)

In fact, a direct analog of the trust region Levenberg-Marquardt algorithm can
be used for solving the orthogonal distance regression problem, (2), and a local
convergence for the solution can get it when Jacobian is rank deficient, in which
Gauss-Newton type method is not effective [11, 20]. This algorithm will be subjected
in future work.

This paper proposes geometric fitting by a general position of two parametric
coaxial cylinders. This type of algorithm has been proposed for the usual orthogonal
distance regression problem [27, 30, 31, 32, 33]. The problem will be described in
the next section. A corresponding algorithm and starting values are developed in
Section 3. Numerical examples are given in Section 4.

2. The problem

For simplicity, let R contain the row vectors λp, p = 1, . . . , 3 and the column vectors
µp, p = 1, . . . , 3. For instance, λ1 = [CβCα − SγSβCα + CγSα CαSβCγ + SαSγ ],

and µ1 = [CβCα − CβSα − Sβ ]
T . Further, define

νj =





r1 cos(tj)
r1 sin(tj)

hj



 , j ∈ W1, and νk =





r2 cos(tk)
r2 sin(tk)

hk



 , k ∈ W2.

Minimizing the sum of the squares of the distance between a data point and its
closest point on the coaxial cylinder in general position can be defined to minimize

ξ(W1,W2, a, ti(a)) =
∑

j

{(xj1 − c1 − λ1νj)
2 + (xj2 − c2 − λ2νj)

2

+(xj3 − c3 − λ3νj)
2}+

∑

k

{(xk1 − c1 − λ1νk)
2

+(xk2 − c2 − λ2νk)
2 + (xk3 − c3 − λ3νk)

2} (4)
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To calculate the value of ti, that corresponds to the orthogonal point on the two
coaxial cylinders, at each iteration for given a, we must solve the following necessary
condition

∂ξ

∂ti
= 0, i = 1, . . . ,m, i.e.,

∂ξ

∂tj
= 0 and

∂ξ

∂tk
= 0. (5)

In a nutshell, expanding vi(a, ti(a))
T∇ti(a)vi(a, ti(a)), where ∇ti(a) denotes the

partial derivative with respect to t, results in

∇ti(a)vi(a, ti(a)) =















−r1
[

µ1 µ2

]

[

−Stj

Ctj

]

,

−r2
[

µ1 µ2

]

[

−Stk

Ctk

]

where the notations Stj and Ctj denote sin(tj) and cos(tj), respectively, and similarly
for Stk and Ctk . Furthermore, using the trigonometric identities

sin(ti(a)) =
2ωi

1 + ω2
i

, cos(ti(a)) =
1− ω2

i

1 + ω2
i

, and tan(
ti(a)

2
) = ωi,

it follows that the necessary condition (5) requires the solution, for each i, of the
polynomial

Ai2(ω
2
i − 1)−Ai1ωi = 0,

with respect to ωi, where

Ai2 =

{

r1(xi − c)Tµ2, if i ∈ W1,
r2(xi − c)Tµ2, if i ∈ W2

and

Ai1 =

{

2r1(xi − c)Tµ1, if i ∈ W1,
2r2(xi − c)Tµ1, if i ∈ W2

.

Thus,
ti(a) = 2 tan−1(ωi), (6)

and the parameter ti(a) should be chosen to minimize the ith term of the objective
function ξ(a, t(a)). More details can be found in [7].

Likewise, for each i, the value of hi must satisfy the necessary condition

∂ξ

∂hi

= 0, i = 1, . . . ,m. i.e.,
∂ξ

∂hj

= 0 and
∂ξ

∂hk

= 0.

Then,

hi =

{

−(xj − c)Tµ3,
−(xk − c)Tµ3.

(7)

The necessary conditions to minimize (4) with respect to the centre and radii are

∂ξ

∂c1
=

∂ξ

∂c2
=

∂ξ

∂c3
=

∂ξ

∂r1
=

∂ξ

∂r2
= 0,
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which give the following linear system













m 0 0
0 m 0 p1 p2

0 0 m
pT
1 n1 0

pT
2 0 n2

























c1
c2
c3
r1
r2













=





















∑

j(xj1 − µ13hj) +
∑

k(xk1 − µ13hk)
∑

j(xj2 − µ23hj) +
∑

k(xk2 − µ23hk)
∑

j(xj3 − µ33hj) +
∑

k(xk3 − µ33hk)
∑

j

(

xT
j

[

µ1 µ2

]

[

cos(tj)
sin(tj)

])

∑

k

(

xT
k

[

µ1 µ2

]

[

cos(tk)
sin(tk)

])

,





















(8)

where

p1 =
[

µ1 µ2

]

[∑

j cos(tj)
∑

j sin(tj)

]

and p2 =
[

µ1 µ2

]

[∑

k cos(tk)
∑

k sin(tk)

]

.

The determinant g of the coefficient matrix in (8) is

g = m3n1n2 +m[





∑

j

sin(tj)





2
(

∑

k

cos(tk)

)2

+

(

∑

k

sin(tk)

)2




∑

j

cos(tj)





2

]−m2n1[

(

∑

k

sin(tk)

)2(
∑

k

cos(tk)

)2

]

−m2n2[





∑

j

sin(tj)





2



∑

j

cos(tj)





2

] (9)

In fact, g ≥ 0, however, g = 0 only in uninteresting cases like ti = 0, i = 1, . . . ,m.
Thus, normally (8) has a unique solution [27, 30, 31, 32, 33].

Now, the remaining necessary conditions are

∂ξ

∂α
=

∂ξ

∂β
=

∂ξ

∂γ
= 0. (10)

These three equations for the unknowns α, β and γ are highly nonlinear. Neverthe-
less, the rotation angles can be found using direct minimization of ξ, see [28, 29].
The first condition, with respect to α, in (10) gives

∑

j

(xj − c)T
dR1

dα
R2R3νj +

∑

k

(xk − c)T
dR1

dα
R2R3νk

=
∑

j

νT
j R

T
3 R

T
2 R

T
1

dR1

dα
R2R3νj +

∑

k

νT
kR

T
3 R

T
2 R

T
1

dR1

dα
R2R3νk. (11)

Because

RT
1

dR1

dα
=





0 −1 0
1 0 0
0 0 0



 ,
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if we define vj = R2R3νj and vk = R2R3νk, then

m
∑

j

vT
j R

T
1

dR1

dα
vj =

m
∑

k

vT
k R

T
1

dR1

dα
vk = 0.

Consequently, the necessary condition (11) will be

∑

j

(xj − c)T
dR1

dα
R2R3νj +

∑

k

(xk − c)T
dR1

dα
R2R3νk = 0. (12)

Define v̂j = (xj−c)T and v̂k = (xk−c)T . Thus the solution for α can be determined
as

tan(α(β, γ)) =

∑

j(v̂j1vj2 − v̂j2vj1) +
∑

k(v̂k1vk2 − v̂k2vk1)
∑

j(v̂j1vj1 + v̂j2vj2) +
∑

k(v̂k1vk1 + v̂k2vk2)
. (13)

In the same way, the second and the third condition in (10) give

∑

j

(xj − c)TR1
dR2

dβ
R3νj +

∑

k

(xk − c)TR1
dR2

dβ
R3νk = 0,

∑

j

(xj − c)TR1R2
dR3

dγ
νj +

∑

k

(xk − c)TR1R2
dR3

dγ
νk = 0.

Given

RT
2

dR2

dβ
=





0 0 −1
0 0 0
1 0 0



 , RT
3

dR3

dγ
=





0 0 0
0 0 −1
0 1 0



 ,

and the orthogonality of D, define further v̂j = (xj − c)TR1, v̂k = (xk − c)TR1,
vj = R3νj , and vk = R3νj . Then,

tan(β(α, γ)) =

∑

j(v̂j1vj3 − v̂j3vj1) +
∑

k(v̂k1vk3 − v̂k3vk1)
∑

j(v̂j1vj1 + v̂j3vj3) +
∑

k(v̂k1vk1 + v̂k3vk3)
. (14)

Now define v̂j = (xj − c)TR1R2 and v̂k = (xk − c)TR1R2. Then

tan(γ(α, β)) =

∑

j(v̂j2uj3 − v̂j3uj2) +
∑

k(v̂k2uk3 − v̂k3uk2)
∑

j(v̂j2uj2 + v̂j3uj3) +
∑

k(v̂k2uk2 + v̂k3uk3)
. (15)

If one of the denominators (dj , j = 1, . . . , 3, for example) of the angles α, β and γ in
(13), (14) or (15), respectively, becomes zero, then π

2 is the value of the corresponding
jth rotation angle. Moreover, θj , j = 1, . . . , 3 will be replaced by θj = θj + π if
nj cos(θj) + dj sin(θj) < 0, j = 1, . . . , 3, where nj denotes the nominator of the jth
angle of θ [29]. Due to equality (3), minima or global minima are not unique, but
because ξ is continuous and bounded below, this is not a problem [28]. In addition,
the rotation angles θ = (α, β, γ)T can be easily done by using NAG subroutine FMIN
[28] or by using the MATLAB command FMINSEARCH, with starting intervals
[0, 2π]. For the algorithm, see [22].

Naturally, the subsets W1 and W2 can be determined by calculating ‖xj −
x(c, r1, θ, tj)‖

2 and ‖xk − x(c, rk , θ, tk)‖
2, for each i. If ‖xj − x(c, r1, θ, tj)‖

2 <
‖xk − x(c, r2, θ, tk)‖

2, then i ∈ W1, otherwise i is in W2.
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3. An algorithm and starting values

Fitting two coaxial parametric cylinders to given data xi, i = 1, . . . ,m can be sum-
marized in the following steps.

STEP 0. Input: a(0) = (c(0), r
(0)
1 , r

(0)
2 , θ(0))T , and a tolerance (Tol). Set ξ(0) = ∞,

l = 1.

STEP 1. Determine the following:

• t
(l)
j and t

(l)
k .

• h
(l)
j and h

(l)
k .

• c(l) , r
(l)
1 and r

(l)
2 by solving the linear system (8).

• The objective function ξ(l) and (4) .

STEP 2. Determine: θ(k) using (13),(14),(15).

STEP 3. If |ξ(l) − ξ(l−1)| < Tol , then STOP.

STEP 4. Determine: W
(k)
1 and W

(k)
2 .

STEP 5. Set l = l + 1, then go to STEP 1.

The idea of the proposed algorithm is to fix all variables expect one or some
groups, to globally minimize problem (4) with respect to the rest, then to fix these
variables and globally minimize (4) with respect to some other variables and so on.

It is necessary to provide starting points for any iterative algorithm. The al-
gebraic fitting can be used to find initial Euler rotation angles θ(0) and an initial
centre c(0). The cylinder is represented by

xTAx+ bTx+ e = 0, (16)

where A is the symmetric positive definite matrix,

A =





a11 a12 a13
a12 a22 a23
a13 a23 a33



 ,b =





b1
b2
b3



 ,x =





x1

x2

x3



 ,

and e is a scalar. Equation (16) contains ten linear coefficients

v = (a11, a22, a33, a12, a13, a23, b1, b2, b3, e)
T ,

that can be found by minimizing

‖Zv‖2 subject to ‖v‖2 = 1,

where
Z =

[

x2
i1 x2

i2 x2
i3 2xi1xi2 2xi1xi3 2xi2xi3 xi1 xi2 xi3 1

]

,



234 I. A. Al-Subaihi

i = 1, . . . ,m. This problem is equivalent to finding the right singular vector associ-
ated with the smallest singular value of Z [4, 7, 15, 35, 37].

Using the relations between parametric and implicit forms and the Hanson and
Norris procedure for finding Euler rotation angles [17], let A = QΛQT be the eigende-
composition of A [16] and suppose the eigenvalues matrix Λ has been approximated
as Λ = λI, where I is the identity matrix of order 3 and λ is the average of the
eigenvalues. Explicit expressions for the angles can be written as follows:

tan(γ) =
Q(2, 2)

Q(3, 2)
,

tan(β) =
CγQ(2, 2)

Q(1, 2) +Q(2, 2)
,

tan(α) =
SγQ(3, 1) + CγQ(2, 1)

CβQ(1, 1)− SγSβQ(2, 1) + SβCγQ(3, 1)
.

and the centre can be determined as

c = −
b

2λ
.

The data mean can be used as an initial centre. Further, the starting radius r
(0)
1 can

be set to the minimum distance between the initial centre and input data, and r
(0)
2

is set to the maximum. More details can be found in [3, 7].

4. Numerical experiments

This section presents two examples to illustrate the application of least squares
fitting of two coaxial parametric cylinders to data. The first subset W1 of size |W1|
data points is generated by selecting a particular cylinder. The second subset W2

is generated in the same way, with r2 > r1, where |W1| = |W2| = m/2 to make
the calculation much easier. Then, random perturbations are introduced for these
data on the interval [0.0, 1.0], and the MATLAB command ”rand” is used. The

initial subsets W
(0)
1 and W

(0)
2 are determined by taking a random permutation of

the integers from 1 to m using the MATLAB command ”randperm”. The algorithm
terminates when the tolerance is reduced to less than 10−6.

Example 1. As shown in the last section, the starting points

a(0) = (2.0710,−3.0982,−0.2680, 1.9714, 4.0816,−1.0613, 0.2023, 0.6275)T

are determined, to fit the data xi, i = 1, . . . , 24, starting with W
(0)
1 = {1, 3, 5, 7, 9−

12, 15, 20, 23, 24} and W
(0)
2 = {2, 4, 6, 8, 13,

14, 16− 19, 21, 22}. The objective value is reduced from ξ(0) = 33.706235 to ξ(38) =
0.953025. As expected, the method gives W1 = {1, . . . , 12} and W2 = {13, . . . , 24} in

the third iteration. The result is shown in Figure 1, with the final solution

a(38) = (2.0762,−3.1958,−0.2177, 2.0192, 3.2700,−1.4567, 0.5818, 0.0307)T .
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0
2

−5

−4
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−2

−1

0

1

2

3

4

Figure 1: Fitting two coaxial cylinders to 24 data points

Example 2. The starting points

a(0) = (−1.7221, 1.5614,−0.6577, 3.6485, 7.0902,−0.0926, 0.1675,−1.8094)T

are determined to fit m = 100 data points, starting with |W
(0)
1 | = |W

(0)
2 | = 50, where

W1 and W2 are randomly generated permutations of integers from 1 to 100 . The

objective value is reduced from ξ(0) = 381.179881 to ξ(28) = 11.435341. As expected,

the method gives W1 = {1, . . . , 50} and W2 = {51, . . . , 100} in the third iteration.

The result is shown in Figure 2, with the final solution

a(38) = (−1.5012, 1.5810, 0.6902, 4.1812, 6.1308,−0.0201, 0.1723, 4.7079)T .

−8 −6 −4 −2 0 2 4 6
−5

0

5

−8

−6

−4

−2

0

2

4

6

Figure 2: Fitting two coaxial cylinders to 100 data points
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Geometric fitting by two coaxial cylinders to the measured data in 3-space re-
quires an iterative solution to linear and non-linear subproblems and does not need
a derivative for Jacobian or Hessian matrices. Nevertheless, the algorithm is known
to be slow [5, 27, 28, 29, 30, 31, 32, 33]. Geometric fitting, like orthogonal distance
regression, is also sensitive to the effects of outliers.
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