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Dynamics of the total factor productivity in Lithuanian 
family farms with a statistical inference: the bootstrapped 
Malmquist indices and Multiple Correspondence Analysis

Tomas Baležentisa and Alvydas Baležentisb

aDivision of Farm and Enterprise Economics, Lithuanian institute of agrarian Economics, vilnius, Lithuania; 
binstitute of management, mykolas Romeris University, vilnius, Lithuania

ABSTRACT
The paper combines the bootstrapped Malmquist productivity index 
and the Multiple Correspondence Analysis to measure the changes in 
the total factor productivity. The bootstrapped Malmquist productivity 
index enables us to identify insignificant change in the total factor 
productivity, whereas the Multiple Correspondence Analysis relates 
the estimates to the environmental variables. A sample of Lithuanian 
family farms is utilised to test the proposed framework. Specifically, 
the research covers 200 family farms and the period of 2004–2009. The 
analysis showed that the total factor productivity decreased by some 
15–18% during 2004–2009 depending on the farming type. Multiple 
Correspondence Analysis suggested that all of the farming types 
exhibited change in the total factor productivity close to the average, 
although the crop farming was located in the more stochastic area.

1. Introduction

The Lithuanian agricultural sector is influenced by both economic and demographic 
transitions, which, indeed, are pertinent to many Central and East European countries 
(cf. Gorton & Davidova, 2004) due to de-collectivisation and European integration. 
Accession to the European Union (EU) in 2004 induced certain variations in support 
policies and trade policies. Therefore, it is important to ascertain whether Lithuanian 
farmers managed to exploit the new possibilities or, conversely, these changes resulted 
in the emergence of a more hostile business environment during the post-accession 
period. Indeed, this paper focuses on Lithuanian family farms, as opposed to corpo-
rate farms, which produced over 70% of the agricultural output in Lithuania during 
2004–2009. The post-accession period features structural changes in terms of farm size 
and specialisation. Specifically, an increase in the mean farm size due to the exits of 
small-scale farms has been observed alongside a switching to crop farming in lieu of 
animal farming (Baležentis, Kriščiukaitienė, & Baležentis, 2014). However, the average 
farm size is still below that in other countries with similar farming possibilities (e.g., 
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Denmark). This implies a need for identification of factors causing efficiency and 
productivity growth in Lithuanian agriculture.

Growth in productive efficiency constitutes the major driver of business profitability 
and sustainability. In its essence, the very term efficiency refers to the distance between an 
observed production plan and the production frontier (production possibility frontier). 
However, the production frontier can move inwards or outwards from the origin point 
depending on the technological development underlying the observed productive system. 
Thus, one needs to measure not only efficiency, but also the total factor productivity (TFP) 
change, which tackles both firm-specific catch-up and system-wide technical change. For 
the latter purpose, the productivity indices are usually employed (Caves, Christensen, & 
Diewert, 1982). These can be Malmquist, Luenberger, Hicks–Moorsteen, Färe–Primont etc. 
This study focuses on the Malmquist productivity index.

The Malmquist productivity index can be estimated by means of the distance functions 
based either on parametric (e.g., stochastic frontier analysis) or non-parametric (e.g., data 
envelopment analysis) estimates. The generic non-parametric methods do not account for 
the statistical noise. Therefore, the bootstrapping approach was offered by Simar and Wilson 
(1998b, 2000) for the data envelopment analysis (DEA) and the Malmquist productivity 
indices (Simar & Wilson, 1999). Wilson (2008) also developed the FEAR package to facil-
itate these computations.

The latter methodology has been widely employed for the productivity analyses. As for 
agriculture and fisheries, Hoff (2006) analysed the fishing activity by the means of the boot-
strapped Malmquist indices; Odeck (2009) applied the bootstrapped Malmquist indices to 
the Norwegian grain industry; Balcombe, Davidova, and Latruffe (2008) researched into the 
productivity of the Polish family farms, whereas Rezitis, Tsiboukas, and Tsoukalas (2009) 
focused on Greek livestock farms. The other sectors were also analysed by means of the 
bootstrapped Malmquist indices. For instance, Perelman and Serebrisky (2012) analysed 
the efficiency and productivity of Latin American airports. Jaraitė and Di Maria (2012) 
employed the bootstrapped Malmquist indices for analysis of power generation in the 
European Union. Horta, Camanho, Johnes, and Johnes (2013) analysed the performance 
of the construction industry. Arjomandi, Valadkhani, and Harvie (2011) utilised the boot-
strapped Malmquist indices for analysis of the Iranian banking sector. Zhou, Ang, and Han 
(2010) employed the bootstrapped Malmquist indices for the analysis of carbon emissions 
with weak disposability. Parteka and Wolszczak-Derlacz (2013) assessed productivity in 
higher education by the means of the bootstrapped Malmquist indices. Essid, Ouellette, 
and Vigeant (2014) applied the bootstrapped Malmquist along with quasi-fixed inputs to 
measure the educational productivity.

Given that the Lithuanian agricultural sector faces multiple transformations, the data 
regarding performance of farms might be perturbed in various ways. Therefore, one needs 
to employ statistical methods to identify significant changes in efficiency and productivity. 
The bootstrapped Malmquist index allows for such an analysis and thus can be considered 
as an appropriate tool for analysis of agricultural productivity change. This paper applies the 
bootstrapped Malmquist productivity index to a sample of the Lithuanian family farms in 
order to estimate the dynamics of the total factor productivity there. Furthermore, Multiple 
Correspondence Analysis (MCA) is employed to visualise the underlying patterns of the 
total factor productivity change. Indeed, the bootstrapped Malmquist indices have not been 
applied to the Lithuanian agricultural sector up to now. This paper, thus, aims at identifying 
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the sources and factors of growth in the total factor productivity in Lithuanian family 
farms. Whereas the techniques used, namely bootstrapped Malmquist index and MCA, are 
well-established ones, their combination is fairly new. Accordingly, the proposed approach 
might be relevant for further applied research.

The paper proceeds as follows: Section 2 treats the preliminaries for the bootstrapped 
Malmquist productivity index. Section 3 presents Multiple Correspondence Analysis. An 
empirical application of the bootstrapped Malmquist index and MCA is given in Section 
4. Finally, Section 5 draws the conclusions.

2. Productive technology and Malmquist index

This section presents the main concepts of efficiency and productivity. The first sub-section 
describes the very definition of efficiency, whereas the second one presents the Malmquist 
productivity index. The Malmquist productivity index enables one to quantify the changes 
in firm-specific efficiency as well as the global shift in the production frontier.

2.1. Measures of efficiency

In order to relate the Debreu–Farrell measures to the Koopmans definition of efficiency, 
and to relate both to the structure of production technology, it is useful to introduce some 
notation and terminology (Fried, Lovell, & Schmidt, 2008). Let producers use inputs 
x = (x1, x2,… , xm) ∈ ℜ

m
+ to produce outputs y = (y1, y2,… , yn) ∈ ℜ

n
+. Production tech-

nology then can be defined in terms of the production set:
 

Thus, Koopmans efficiency holds for an input–output bundle (x, y) ∈ T if, and only if, there 
is no ordered pair (x�, y�) ∈ T, such that x′ ≤ x and y′ ≥ y.
Technology set can also be represented by input requirement set, I(y), and output corre-
spondence set, O(x):
 

and
 

The isoquants or efficient boundaries of the sections of T can be defined in radial terms as 
follows (Farrell, 1957). Every y ∈ ℜ

n
+ has an input isoquant:

 

Similarly, every x ∈ ℜ
m
+ has an output isoquant:

 

In addition, decision-making units (DMUs) might be operating on the efficiency frontier 
defined by equations (4) and (5), albeit still using more inputs to produce the same output 
if compared with another efficient DMU. In this case, the former DMU experiences a slack 
in inputs. The following subsets of the boundaries I(y) and O(x) describe Pareto-Koopmans 
efficient firms:1

(1)T = {(x, y)|x can produce y}

(2)I(y) = {x|(x, y) ∈ T}

(3)O(x) = {y|(x, yt) ∈ T}

(4)isoI(y) = {x|x ∈ I(y), 𝜆x ∉ I(y), 𝜆 < 1}

(5)isoO(x) = {y|y ∈ O(x), 𝜆y ∉ O(x), 𝜆 > 1}
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Note that effO(x) ⊆ isoO(x) ⊆ O(x).
There are two distinctive types of efficiency measures, namely the Shepard distance 

function, and Farrell distance function. These functions yield the distance between an 
observation and the efficiency frontier. Shepard (1953) defined the following output dis-
tance function:
 

Similarly, the following equations hold for the Farrell output-oriented measure:
 

 

where TEO(x, y) ≥  1 for y ∊ O(x), and TEO(x, y) = 1 for y ∊ isoO(x).

2.2. The Malmquist productivity index

Measurement of the total factor productivity (TFP) of a certain DMU involves measures 
for both technological and firm-specific developments. As Bogetoft and Otto (2011) put 
it, firm behaviour changes over time should be explained in terms of special initiatives as 
well as technological progress. The benchmarking literature (Bogetoft & Otto, 2011; Coelli, 
Rao, O’Donnell, & Battese, 2005; Ramanathan, 2003) suggests the Malmquist productivity 
index is the most celebrated TFP measure. Hence, this section describes the preliminaries 
of Malmquist index.

Färe, Grosskopf, and Margaritis (2008) first describe productivity as the ratio of output y 
over input x. Thereafter, the productivity can be measured by employing the output distance 
function of Shepard (1953):

 

where Tt stands for the technology set (production possibility set) of the period t and s 
denotes the same or an adjacent time period, index ov denotes an output distance under 
variable returns to scale. In the case where s = t, equation (10) is called a contemporaneous 
distance function. This particular function is equal to unity if and only if certain input and 
output set belongs to production possibility frontier.
Let Pt be the convex cone (with vertex at the origin) spanned by T t; then T t ⊆ Pt (Simar & 
Wilson, 1998a). If a technology Tt exhibits constant returns to scale everywhere, then it implies 
a mapping x → y that is homogeneous of degree 1, i.e., (x, y) ∈ Tt

⇒ (𝜆x, 𝜆y) ∈ Tt ,∀𝜆 > 0. 
In this case, Tt = Pt. If Tt does not exhibit constant returns to scale everywhere, then Tt ⊂ Pt. 
The Shepard efficiency measure for the constant returns to scale, denoted by index oc, 
technology can thus be given as
 

(6)effO(x) = {y|y ∈ O(x), y� ∉ O(x),∀y� ≥ y, y� ≠ y}

(7)DO(x, y) = min

{
�
|||
(
x, y

/
�
)
∈ T

}

(8)TEO(x, y) = max

{
�
|||
(
x,�y

)
∈ T

}

(9)TEO(x, y) = 1
/
DO(x, y)

(10)Dt
ov(x

s
, ys) = min

{
�:(xs, ys∕�) ∈ Tt

}

(11)Dt
oc(x

s, ys) = min
{
�:(xs, ys∕�) ∈ Pt

}
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Generally, 0 < Dt
oc

(
xt , yt

)
≤ Dt

ov

(
xt , yt

)
≤ 1. In case a DMU is efficient under the assumed 

technology, Dt
ov(x

s, ys) or Dt
oc(x

s, ys) equals unity. In case s ≠ t, no upper bound exists.
The Malmquist productivity index (Malmquist, 1953) can be employed to estimate TFP 
changes of a single firm over two periods (or vice versa), across two production modes, 
strategies, locations etc. In this study we shall focus on output–oriented Malmquist pro-
ductivity index and apply it to measure period–wise changes in TFP. The output–oriented 
Malmquist productivity index due to Caves et al. (1982) is defined as
 

with indexes 0 and 1 representing respective periods and sub-index c denoting the constant 
returns to scale (CRS) assumption. The two terms in brackets follows the structure of Fisher’s 
index. Note that all the distances in equation (12) are based on the CRS technology, other-
wise the Malquist index would not feature its interpretation as a productivity index. There 
have been a number of ways to decompose the Malmquist index offered (Färe, Grosskopf, 
Lindgren, & Roos, 1992; Färe, Grosskopf, Norris, & Zhang, 1994; Ray & Desli, 1997; Simar 
& Wilson, 1998a; Wheelock & Wilson, 1999) with each of them allowing to account for 
different sources of TFP change. For instance, Färe et al. (1992) proposed decomposing 
TFP change in terms of efficiency change (EC or catching up) and technical change (TC 
or shifts in the frontier):
 

where
 

and
 

EC captures the movement relative to the frontier induced by changes in a production plan 
(i.e. catching up). Specifically, EC exceeds unity whenever a firm gets closer to the frontier 
as the time passes. TC represents the movement of the frontier within the neighbourhood 
of a firm (i.e. technical change). Under technological progress, the frontier moves further 
from the point of origin and TC exceeds unity. This situation implies that a greater amount 
of outputs can be produced by consuming fewer resources under the new technology. 
Consequently, the values of Malmquist index exceeding unity represent a positive TFP 
growth and those below unity represent a negative TFP growth for a particular observation.
Figure 1 presents a graphical interpretation of the input Malmquist productivity index. 
Here, the point A denotes an initial production plan in period t, whereas point B stands 
for another production plan during period t+1. Meanwhile, the two isoquants, isoOt and 
isoOt+1, represent the efficient technology during periods t and t+1, respectively. The two 
points A and B are projected onto efficiency frontiers at the points At and Bt or At+1 and Bt+1 
depending on the reference period. After achieving the full efficiency, a decision-making 
unit (DMU) would move from point A towards point At. The change in inputs, however, 

(12)Mo =
(
M0

o ⋅M
1

o

)1∕2
=

(
D0

oc(x
1
, y1)

D0

oc(x
0
, y0)

D1

oc(x
1
, y1)

D1

oc(x
0
, y0)

)1∕2

(13)Mo = EC ⋅ TC

(14)EC = D1

oc(x
1
, y1)

/
D0

oc(x
0
, y0)

(15)TC =

(
D0

oc(x
1, y1)

D1
oc(x

1, y1)

D0
oc(x

0, y0)

D1
oc(x

0, y0)

)1∕2
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makes the DMU move along the efficiency frontier towards point Bt. It is the technological 
innovation that makes the frontier shift and thus the point Bt+1 is achieved. Meanwhile, the 
DMU experiences certain technical inefficiency and remains operating in point Bt+1. The 
Malmquist productivity index quantifies both the frontier shift and inefficiency change.

Specifically, the two components of the Malmquist productivity index, EC and TC, can 
be explained in terms of Figure 1. The Malmquist productivity index can be obtained as 
follows (Färe et al., 2008):

 

Similarly, its components for efficiency change and technical change are given by:
 

 

As mentioned before, the Malmquist productivity index can be decomposed in a number 
of ways thus accounting for the different factors of changes in the total factor productivity. 
Färe et al. (1994), for instance, further decomposed the EC term, i.e. the global efficiency 
change, into the two components, namely pure technical efficiency change (PEC) and scale 
efficiency change (SEC):

 

(16)Mo =

(
0d∕0e

0a∕0b

0d∕0f

0a∕0c

)1∕2

(17)EC =
0d∕0f

0a∕0b

(18)
TC =

(
0d∕0e

0d∕0f

0a∕0b

0a∕0c

)1∕2

(19)Mo = EC ⋅ TC ≡ PEC ⋅ SEC ⋅ TC

Figure 1. a graphical interpretation of the output-oriented malmquist productivity index.source: designed 
by the authors.
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The latter two components measure the performance of a firm in terms of both variable 
returns to scale (VRS) and CRS technologies. Specifically, the PEC component is obtained 
by considering the change in pure technical efficiency (i.e. VRS efficiency), whereas the 
SEC component relies on distance from both CRS and VRS frontiers:

 

where PEC > 1 indicates catch-up of a certain DMU in terms of pure technical efficiency, 
PEC = 1 indicates no change, and PEC < 1 indicates a negative catch-up effect; SEC > 1 indi-
cates that a DMU gets closer to its optimal scale of operation, SEC = 1 indicates no change 
in scale efficiency, and SEC < 1 implies that a DMU moves further from the optimal scale. 
As one can note, the TC component in equation (20) is the same as that in equation (15).

In case a certain DMU keeps its efficiency at the same level throughout the two peri-
ods under consideration, the CRS frontier remains unchanged and the only change is the 
shift in the VRS frontier; the TC component will not identify these developments. As a 
remedy to this shortcoming, an additional decomposition of the Malmquist productivity 
index was offered by Simar and Wilson (1998a). Whereas the EC component was further 
decomposed by Färe et al. (1994), Simar and Wilson (1998a) introduced a decomposi-
tion of the TC term into the pure technology change (PTC) and changes in scale of the 
technology (STC). Therefore, the Malmquist productivity index can be decomposed into 
the four components:
 

The latter two terms refer to VRS and both VRS and CRS technologies, respectively. Indeed, 
these computations follow the spirit of the EC decomposition offered by Färe et al. (1994). 
The following computations then lead to estimation of the Malmquist productivity index 
(Simar & Wilson, 1998a):
 

(20)

Mo =
D1

ov(x
1
, y1)

D0

ov(x
0
, y0)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
PEC

⋅

(
D1

oc(x
1
, y1)

/
D1

ov(x
1
, y1)

D0

oc(x
0
, y0)

/
D0

ov(x
0
, y0)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SEC

⋅

(
D0

oc(x
1
, y1)

D1

oc(x
1
, y1)

D0

oc(x
0
, y0)

D1

oc(x
0
, y0)

)1∕2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
TC

(21)Mo = EC ⋅ TC ≡ PEC ⋅ SEC ⋅ PTC ⋅ STC

(22)

Mo =
D1

ov(x
1
, y1)

D0

ov(x
0
, y0)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
PEC

⋅

(
D1

oc(x
1
, y1)

/
D1

ov(x
1
, y1)

D0

oc(x
0
, y0)

/
D0

ov(x
0
, y0)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SEC

⋅

(
D0

ov(x
1
, y1)

D1

ov(x
1
, y1)

D0

ov(x
0
, y0)

D1

ov(x
0
, y0)

)1∕2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PTC

⋅

(
D0

oc(x
1
, y1)

/
D0

ov(x
1
, y1)

D1

oc(x
1
, y1)

/
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1
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D0
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0
, y0)

/
D0

ov(x
0
, y0)

D1
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0
, y0)

/
D1

ov(x
0
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where PEC and SEC feature the same interpretations as in equation (20); PTC > 1 means 
that the VRS frontier moves outwards due to a technical progress, PTC = 1 implies no 
change, and PTC < 1 indicates an inward movement of the VRS frontier associated with 
a technological regress; STC > 1 suggests that the underlying technology increases its 
curvature and approaches VRS; STC = 1 means that the technology exhibits no change 
in its shape, and STC < 1 implies a flattening of the technology and a movement towards 
CRS.

2.3. Estimation and bootstrapping of the Malmquist index

As a non-parametric deterministic method, DEA defines the empirical production frontier 
(Titko, Stankevičienė, & Lāce, 2014), which, in turn, suffers from certain caveats. Basically, 
the production frontier is defined in terms of the observed data sample, which can lack the 
most productive DMUs peculiar for the original population. As a result, the production 
frontier might be biased inwards, thus affecting the efficiency estimates. Simar and Wilson 
(1998b, 1999, 2000), therefore, developed the bootstrapping methodology for DEA and 
Malmquist productivity indices as a remedy to the sampling bias. The bootstrap approach 
enables us to test the hypotheses about the population distributions of the estimates under 
analysis. Specifically, one can obtain a confidence interval for the Malmquist index in order 
to test whether it significantly differs from unity.

The key idea of bootstrapping is to stimulate the original case study for B times with 
recalculation of the parameters for each of the iterations (Hoff, 2006). These computa-
tions will lead to B estimates (realisations) of the parameters of interest, which, in turn, 
enable us to estimate the distributional properties thereof. Given the data sample cannot 
be taken from the population for B times, a re-sampling with replacement from the 
observed data sample is facilitated in order to mimic the underlying Data Generation 
Process (DGP).

The Malmquist productivity index is estimated with respect to distance function esti-
mates. The distance functions rely on the production frontiers defined by the data points 
in the observed data sample. These data points, thus, need to be adjusted in order to 
estimate the true production frontier. The observed input–output bundles for the kth 
DMU, (xtk, y

t
k), are generated by some unknown DGP (Hoff, 2006). In the case of the out-

put-oriented DEA model, a certain data point (xtk, y
t
k) might be located on the production 

frontier (isoquant) or somewhere along the ray connecting the initial observation and 
its projection on the frontier, (xtk,Y

t
k), where Yt

k is a linear combination of the observed 
output values in the sample defining an optimal point for the observed data point. The 
observation can thus be assumed to be generated conditionally on the input by the 
random factor �tk ∈ (0, 1] (cf. equation (7)), i.e. (xtk, y

t
k) = (xtk,Y

t
k�

t
k). The distance func-

tion given in equation (7) is bounded to the interval (0, 1], therefore Simar and Wilson 
(1999) employed the smoothed empirical density function and the reflection method 
for the efficiency scores. When dealing with the longitudinal data, a bivariate smoothing 
procedure must also be used to maintain the inter-temporal correlation between the 
efficiency scores of a certain DMU.

The bootstrap procedure offered by Simar and Wilson (1999) relies on re-sampling from 
the observed set of DEA efficiency scores, 

{(
�0k , �

1
k

)
k=1,2,…,K

}
, where K is the number of 
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DMUs. The procedure begins with estimation of the distance functions given in equations 
(10) and (11). The following linear programming problem is specified for the contempo-
raneous distance functions under the CRS technology (cf. equation (10)):

where indexes i = 1, 2, ..., m and j = 1, 2, ..., n denote certain inputs and outputs, respectively. 
Similarly, the inter-temporal distance functions under the CRS technology are estimated 
by employing the following linear programming model:

 

The respective VRS efficiency estimates (cf. equation (11)) are obtained by the virtue of the 
following linear programming problem:
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The distance functions needed for the Malmquist productivity index and its components 
(equation (22)) are now defined in equations (23)–(25). The DEA estimate of the Malmquist 
productivity index is then obtained for each DMU:

 

The CRS efficiency scores entailed by equation (23) are then used to project the observed 
data points on the production frontier so that the new values, (x̃tk, ỹ

t
k), are obtained by pro-

jecting the original values on the CRS frontier: (x̃tk, ỹ
t
k) = (xtk, y

t
k ⋅ �̂�

t
k) for each k. A pseudo 

sample of the sets of efficiency scores, 
{(
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, is obtained for each DMU by 

drawing with replacement from the DEA estimates of efficiency, 
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}
. The 

bivariate smoothed kernel is involved in the latter stage. The new pseudo sample is subse-
quently utilised to establish a new set of pseudo observations: (xtk,b, y

t
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t
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k), i.e. 

the observations are pushed away from the CRS frontier by the virtue of the pseudo score, 
𝜃tk. As a result, the bootstrap replicates of the DEA efficiency scores are obtained by solving 
the following linear programming problems:
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For inter-temporal CRS technology; and
 

for VRS technology. Note that the observed production plans, (xtk, y
t
k), are projected onto 

the bootstrap frontier defined by the bootstrap sample, (xtk,b, y
t
k,b). The bootstrap estimates 

of the Malmquist productivity index and its components are then given by:
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The described procedure is reiterated B times for each k = 1, 2, …, K and b = 1, 2, ..., B. 
As a result, the sets of bootstrap values are obtained for the Malmquist index and its com-
ponents: 

{
M̂∗k,b

o , �PEC
∗k,b

o , �SEC
∗k,b

o , �PTC
∗k,b

o , �STC
∗k,b

o |b = 1, 2, ...,B, k = 1, 2, ...,K
}

.
The bias-corrected estimate of M̂k

o can thus be estimated as follows:
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(Simar & Wilson, 1999). In case the latter condition is not fulfilled one should employ the 
original estimators.
Let Mk

o be the true estimate of the Malmquist productivity index, which is unobserved. The 
confidence intervals for the Malmquist indices are estimated by assuming that the unknown 
distribution of 
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where α is a small value of, for instance, 0.05 or 0.1, can be replaced by a∗� and b∗� such that
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which implies that a (1 – α)% confidence interval for Mk
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3. Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) is an ordination technique that aims to identify 
the relationships among multiple categorical and quantitative variables (Abdi & Valentin, 
2007). To illustrate the approach, assume there are K categorical (nominal) variables with 
JK levels associated with each of them; therefore, the total number of variables is defined 
as 

∑K

k=1 Jk = J. In addition, assume there are I observations. This setting renders an I ×  J 
indicator matrix, denoted as �. The elements of the latter matrix are binary values describing 
the relationships among observations and certain values of the categorical variables. MCA 
proceeds by projecting the observations onto factorial axes thus mimicking the principal 
component analysis. Denoting the overall sum of the elements of � by N, one can obtain the 
probability matrix, �, as follows: � = N−1�. Let � be a vector of ones, the dimension whereof 
is determined by the dimensions of � so that the row and column totals are, respectively, 
� = �� and � = ���. The resulting totals are rearranged into diagonal matrices, �� = diag(�) 
and �� = diag(�). The diagonal matrices are then exploited for singular value decomposition:
 

where singular values are arranged into diagonal matrix � and � = �2 is the matrix of 
eigenvalues. Subsequently, factor scores for rows and columns are computed via
 

and
 

The supplementary observations or variables can be included in the analysis. They differ 
from categorical variables mentioned above in that the former ones do not contribute to 
the overall inertia and thus are not considered when constructing the factors. However, 
they can be used as explanatory variables and projected onto the factors. Assuming that 
��sup and �sup are the supplementary rows and columns, the following procedure entails the 
associated coordinates, �sup and �sup:
 

and
 

4. Application of the bootstrapped Malmquist index to Lithuanian farms

The technical efficiency (TE) was assessed in terms of the input and output indicators com-
monly employed for agricultural efficiency and productivity analyses. More specifically, the 
utilised agricultural area (UAA) in hectares was chosen as the land input variable, and annual 
work units (AWU) as the labour input variable, intermediate consumption in Litas, and total 
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assets in Litas as a capital factor. On the other hand, the three output indicators represent 
crop, livestock, and other outputs in Litas, respectively. Indeed, the three output indicators 
enable us to tackle the heterogeneity of production technology across different farms.

The data for 200 farms selected from the Farm Accountancy Data Network sample 
cover the period of 2004–2009. Thus, a balanced panel of 1200 observations is employed 
for analysis. The analysed sample covers relatively large farms (mean UAA – 244 ha). As 
for labour force, the average was 3.6 AWU. The data were analysed in a cross–section way.

In order to quantify the change in productivity across different farming types, the farms 
were classified into the three groups in terms of their specialisation. Specifically, farms 
peculiar with crop output larger than 2/3 of the total output were considered as specialised 
crop farms, whereas those specific with livestock output larger than 2/3 of the total out-
put were classified as specialised livestock farms. The remaining farms fell into the mixed 
farming category.

The bootstrapped Malmquist index was employed to estimate the changes in the total 
factor productivity in 200 Lithuanian family farms during 2004–2009. As mentioned in 
the preceding section, the bootstrapped Malmquist enables us to identify the significant 
changes in the total factor productivity. The analysed sample, therefore, was classified into 
the three groups, which encompassed farms that featured a significant decrease, no change, 
or a significant increase in the Malmquist productivity indices. Given the bias-corrected 
estimates cannot be used unless variance of the bootstrap estimates is three times lower 
than the squared bias of the original estimate, the original estimates are usually reported. 
Consequently, the indices that did not differ from unity at α = 0.1 were equal to unities 
for the further analysis. Hereafter, these variables will be referred to as the adjusted ones.

Table 1 reports the numbers of farms that experienced total factor productivity changes 
(output-oriented Malmquist index), whether positive, negative, or insignificant. As one can 
note, half of the recorded changes in the TFP were negative ones, one third were positive 

Table 1. the numbers of farms that experienced changes in total factor productivity (malmquist index), 
2004–2009. 

source: designed by the authors.

Farm type

number of farms Percentage

increase decrease no change Total increase decrease no change
Crop 246 397 103 746 33 53 14
2004–2005 27 100 31 158 17 63 20
2005–2006 27 102 17 146 18 70 12
2006–2007 125 10 7 142 88 7 5
2007–2008 55 65 33 153 36 42 22
2008–2009 12 120 15 147 8 82 10
Livestock 38 54 24 116 33 47 21
2004–2005 11 4 3 18 61 22 17
2005–2006 5 13 7 25 20 52 28
2006–2007 18 7 6 31 58 23 19
2007–2008 3 11 6 20 15 55 30
2008–2009 1 19 2 22 5 86 9
Mixed 44 67 27 138 32 49 20
2004–2005 8 8 8 24 33 33 33
2005–2006 2 21 6 29 7 72 21
2006–2007 23 1 3 27 85 4 11
2007–2008 10 12 5 27 37 44 19
2008–2009 1 25 5 31 3 81 16
Total 328 518 154 1000 33 52 15
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ones and some 15% were insignificant, i.e. the TFP change did not differ from unity. The 
largest share of observations associated with a decrease in the TFP was observed for the 
crop farms (53%). The two remaining farming types featured higher shares of observations 
associated with no productivity change.

The shares of farms experiencing respective changes in the TFP varied to different extents 
across different farming types and time periods. Table 2 presents the coefficients of variation 
as well as ranges for the period of 2004–2009. As one can note, it was the crop and mixed 
that experienced the highest variation in shares of farms featuring TFP change. As for the 
directions of the TFP change, the lowest variation was observed for the category associated 
with no change in the TFP.

The Herfindahl–Hirschman Index (HHI) was computed for each farming type in order to 
assess the degree of farm concentration in each direction of the TFP change. In this case, the 
maximal value, 10,000, implies that all of the observations feature the single direction of the 
TFP change, whereas the lower values are associated with higher variation across the direc-
tions. The average index values of 5,652, 4,872, and 5,382 were observed for crop, livestock, and 
mixed farms, respectively. Therefore, the livestock farms tended to be more heterogeneous in 
terms of the TFP change, whereas the crop farms were peculiar with the highest homogeneity.

The efficiency change (EC) component of the Malmquist productivity index measures 
whether a farm decreased its distance to the observed production frontier (catch-up effect). 
As Table 3 suggests, the positive efficiency change was prevailing amongst the mixed and 
crop farms to a higher extent (29% and 25%, respectively), if compared with the livestock 
farms. Indeed, the mixed farms usually featured no change in efficiency (73% of the respec-
tive observations). The crop farms exhibited the highest share of observations associated 
with a decrease in efficiency (40%), whereas the latter share was lower for both the mixed 
farms (29%) and the crop farms (25%).

The mixed farms exhibited the highest variation of directions of the efficiency change 
throughout 2004–2009 (Table 4). The highest variation of the share of farms exhibiting an 
increasing efficiency, though, was observed for the livestock farms. As in the case of the 
TFP change, the share of farms associated with insignificant efficiency change was peculiar 
with the lowest variation.

The values of the HHI induced that the livestock farms exhibited the highest homoge-
neity in terms of the direction of the efficiency change (HHI=6232). The mixed and crop 
farms were specific with HHI values of 4561 and 3852, respectively. Thus, the livestock 
farms might be considered as the most homogeneous ones in terms of efficiency change.

Table 2. Descriptive statistics for numbers of farms that experienced changes in total factor productivity 
(malmquist index), 2004–2009.

source: designed by the authors.

Farm type increase decrease no change

coefficient of variation

crop 0.97 0.55 0.50
Livestock 0.80 0.57 0.41
mixed 1.03 0.64 0.42

Range

crop 80 75 17
Livestock 57 64 21
mixed 82 77 22
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The technical change mostly affected crop and mixed farms (Table 5). Specifically, 26% 
of the crop farm observations were associated with an increase in technology, whereas 
36% of these with a decrease therein. Meanwhile, the mixed farms exhibited the values of 
17% and 31%, respectively. The livestock farms were the least dynamic ones in terms of the 
technical change, with 66% of respective observations being associated with insignificant 
technical change. Indeed, the largest share of the livestock farm observations describing the 
change in efficiency or technology featured the insignificant changes, whereas the shares 
of these farms associated with significant changes in the TFP were much greater (33% for 
an increase in the TFP and 47% for a decrease).

Although the largest share of the livestock farms were specific with no technical change, 
the numbers of these farms associated with either positive or negative technical change 
varied substantially (coefficients of variation, 1.5 and 1.6, were the highest two if compared 
with those specific for the remaining farming types) (see Table 6). The mixed farms exhibited 
the lowest variation in shares of farms associated with the expansion of the technology.

Table 3. the numbers of farms that experienced efficiency changes (component of the malmquist in-
dex), 2004–2009.

source: designed by the authors.

Farm type

number of farms Percentage

increase decrease no change Total increase decrease no change
Crop 190 298 258 746 25 40 35
2004–2005 36 51 71 158 23 32 45
2005–2006 13 89 44 146 9 61 30
2006–2007 72 26 44 142 51 18 31
2007–2008 35 69 49 153 23 45 32
2008–2009 34 63 50 147 23 43 34
Livestock 16 15 85 116 14 13 73
2004–2005 4 3 11 18 22 17 61
2005–2006 6 19 25 0 24 76
2006–2007 10 3 18 31 32 10 58
2007–2008 3 17 20 0 15 85
2008–2009 2 20 22 9 0 91
Mixed 40 40 58 138 29 29 42
2004–2005 11 4 9 24 46 17 38
2005–2006 19 10 29 0 66 34
2006–2007 17 3 7 27 63 11 26
2007–2008 4 11 12 27 15 41 44
2008–2009 8 3 20 31 26 10 65
Total 246 353 401 1000 25 35 40

Table 4.  Descriptive statistics for the farms that experienced efficiency changes (component of the 
malmquist index), 2004–2009.

source: designed by the authors.

Farm type increase decrease no change

coefficient of variation

crop 0.60 0.40 0.18
Livestock 1.03 0.69 0.20
mixed 0.86 0.83 0.35

Range

crop 42 43 15
Livestock 32 24 33
mixed 63 56 39
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The HHI for the livestock farms was a quite high one (namely, 7098). Indeed, most of the 
livestock farms had been associated with insignificant technical change during 2004–2009. 
The crop and mixed farms were specific with HHI values of 6000 and 6493, respectively. The 
latter two farming types, therefore, exhibited more versatile patterns of the technical change.

The means of the adjusted Malmquist indices are given in Table 7. As one can note, 
the three farming types did not differ significantly in terms of the cumulative mean TFP 
change: these values fluctuated between 0.82 and 0.85 across the farming types. This finding 
implies that the TFP had decreased by some 15–18% throughout 2004–2009. The negative 
TFP changes were observed for crop farms during all of the analysed periods save that of 
2006–2007. Both the livestock and the mixed farms exhibited positive changes in 2004–2005 
also. The steepest cumulative decrease in efficiency, represented by the EC component, 
was observed for the crop farms. Specifically, efficiency there decreased by some 21%. The 
inward movement of the production frontier, identified by the TC component, negatively 

Table 5. the numbers of farms that experienced technical changes (component of the malmquist in-
dex), 2004–2009.

source: designed by the authors.

Farm type

number of farms Percentage

increase decrease no change Total increase decrease no change
Crop 193 266 287 746 26 36 38
2004–2005 2 98 58 158 1 62 37
2005–2006 36 36 74 146 25 25 51
2006–2007 120 22 142 85 0 15
2007–2008 35 5 113 153 23 3 74
2008–2009 127 20 147 0 86 14
Livestock 13 26 77 116 11 22 66
2004–2005 6 1 11 18 33 6 61
2005–2006 7 4 14 25 28 16 56
2006–2007 2 29 31 0 6 94
2007–2008 20 20 0 0 100
2008–2009 19 3 22 0 86 14
Mixed 23 43 72 138 17 31 52
2004–2005 9 15 24 0 38 63
2005–2006 10 3 16 29 34 10 55
2006–2007 8 19 27 30 0 70
2007–2008 5 22 27 19 0 81
2008–2009 31 31 0 100 0
Total 229 335 436 1000 23 34 44

Table 6.  Descriptive statistics for the farms that experienced technical changes (component of the 
malmquist index), 2004–2009.

source: designed by the authors.

Farm type increase decrease no change

coefficient of variation

crop 1.33 1.06 0.66
Livestock 1.51 1.60 0.52
mixed 0.97 1.36 0.61

Range

crop 85 86 60
Livestock 33 86 86
mixed 34 100 81
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affected the mixed farms: the TFP decreased by 21% due to the negative technical change. 
The livestock farms also experienced the same decrease in technology, which amounted 
to some 18%.

The two terms, EC and TC, can be further decomposed to analyse the sources of changes 
in efficiency and technology itself. The decomposition of the efficiency change term, EC, into 
the two components revealed that the scale efficiency change, SEC, did not play an important 
role for either of the farming types. It can thus be concluded that the underlying technol-
ogy was CRS. The mixed farms though, exhibited some features of a VRS technology. The 
highest decrease in pure efficiency (PEC) was observed for the crop farms (23%), whereas 
livestock and mixed farms experienced much lower decreases of 7–8%. Decomposition of 
the TC component induced that the pure technical change, PTC, decreased the productivity 
of the crop and mixed farms by 27% and 44%, respectively, whereas the crop farms did not 
suffer from a decrease in technology. However, the negative effect on the mixed farms was 
alleviated by increasing convexity of the technology: the STC component indicated a 50% 
increase in productivity. Therefore, the mixed farms diverged in their scale, particularly in 
the period of 2004–2005.

The multivariate analysis was carried out in order to reveal the underlying patterns of 
the productivity change across farming types and time periods. Specifically, the multiple 
correspondence analysis (MCA) was applied to identify the relations between farming types, 
years, and TFP changes. The package FactoMineR (Husson, Lê, & Pages, 2010) was utilised 
to implement MCA. The MCA enables us to explore the relations between the categorical 
variables by the means of the χ2 distance.

In our case we distinguished the three categories for estimates of the bootstrapped 
Malmquist productivity index and its components, namely (i) increase, (ii) no change, and 
(iii) decrease in TFP. Therefore, the seven variables, M̂k

o , ÊC
k

o, T̂C
k

o, P̂EC
k

o, ŜEC
k

o, P̂TC
k

o, ŜTC
k

o, 
were classified into the three groups by means of the bootstrap confidence intervals. The two 
supplementary variables, year and farm type, were also considered in order to better describe 

Table 7. the malmquist productivity index and its decomposition across farming types, 2004–2009.

notes: the geometric means of the adjusted estimates are presented; the annual data represent productivity changes, 
whereas farming type-specific heading rows exhibit the cumulative changes for 2004–2009.

source: designed by the authors.

Farm type M eC TC PeC SeC PTC STC
Crop 0.82 0.79 0.95 0.77 0.96 0.95 1.00
2004–2005 0.89 0.97 0.92 0.93 1.03 0.93 0.99
2005–2006 0.79 0.83 0.95 0.87 0.96 0.92 1.03
2006–2007 1.66 1.13 1.39 1.06 1.02 1.38 0.99
2007–2008 0.96 0.92 1.02 0.92 0.99 1.04 0.97
2008–2009 0.73 0.94 0.78 0.97 0.97 0.77 1.01
Livestock 0.82 0.97 0.82 0.93 0.99 0.73 1.09
2004–2005 1.19 1.02 1.12 1.02 1.00 1.02 1.11
2005–2006 0.88 0.93 0.96 0.95 0.99 0.91 1.03
2006–2007 1.13 1.06 0.99 1.01 1.01 1.03 0.98
2007–2008 0.92 0.95 1.00 0.96 0.99 0.97 1.01
2008–2009 0.76 1.02 0.77 0.99 1.00 0.79 0.97
Mixed 0.85 0.94 0.79 0.92 0.90 0.56 1.50
2004–2005 1.01 1.05 0.96 1.05 0.99 0.70 1.40
2005–2006 0.84 0.82 1.01 0.87 0.97 0.98 1.04
2006–2007 1.28 1.12 1.07 1.01 1.03 1.10 0.98
2007–2008 0.98 0.95 1.01 1.00 0.93 0.99 1.03
2008–2009 0.80 1.03 0.75 1.01 0.99 0.75 1.02
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the productivity change patterns. The resulting MCA plot is depicted in Figure 2. The first 
two components explain some 35% of the total inertia.

As one can note, the three groups of productivity change indices emerged. Indeed, they 
were associated with a positive (NE part of the plot), negative (NW), or insignificant (S) 
change in productivity, respectively. Clearly, the first component axis presented a gradi-
ent of productivity change, i.e. the TFP increased going along the latter axis. The second 
component axis discriminated the variables associated with a more stochastic TFP change 
pattern from those related to insignificant changes. Note that the positive STC was associated 
with negative changes in TFP. The latter finding implies that technological progress was 
related to CRS technology, whereas technological regress featured the increasing convexity 
of the production frontier (i.e. VRS technology). A cluster of negative efficiency change 
components (EC, SC, PEC) was located further away from the origin point, thus indicating 
that a decrease in efficiency occurred without decrease in other terms of the Malmquist 
productivity index.

The decrease in TFP was mainly associated with technical regress represented by TC 
and PTC components. Increasing convexity of the technology was stronger related to effi-
ciency change terms if opposed to technical change ones. This finding implies that negative 
efficiency change was mainly associated with production and productivity changes among 
highly specialised (in terms of input/output structure and scale) farms and inefficient farms.

However, positive TFP changes were mainly driven by efficiency change (EC) and 
scale of technology change (PST). This implies that CRS frontier shifts had less impact 
upon productivity growth if compared with flattening of the VRS frontier and efficiency 
change. Accordingly, it might be concluded that TFP growth most frequently occurred due 

Figure 2. the mca plot describing relationships between malmquist indices and supplementary variables.
source: designed by the authors.
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to efficiency change in the sub- or supra-optimal regions of VRS technology (i.e. among 
highly specialised farms).

All of the farming types exhibited change in the TFP close to the average, although the 
crop farming was located in the more stochastic area, whereas the livestock farms appeared 
to be the most stable in terms of the TFP change. Given all of the farming types exhibited 
a similar level of the TFP change, the livestock farms can be considered as those better 
performing. The MCA plot does also confirm that the period of 2006–2007 was that of 
an increase in the TFP, whereas the periods of 2005–2006 and 2008–2009 were associated 
with a decrease.

5. Conclusions

The Malmquist productivity index enables us to identify the efficiency and total factor pro-
ductivity gains and sources thereof. However, the estimates of the Malmquist productivity 
index obtained by the means of data envelopment analysis do not contain any information 
about the significance of the observed changes in the total factor productivity. Accordingly, 
stagnation in the total factor productivity can be mistakably considered as a sort of signif-
icant change. The bootstrapped Malmquist index constitutes a remedy to the latter issue. 
Anyway, the large datasets are hard to analyse without additional techniques. This paper, 
therefore, employed multiple correspondence analysis to identify the underlying patterns 
of the total factor productivity change. The proposed framework enables us to analyse the 
relations between the productivity change indices and supplementary (i.e. environmental) 
variables.

The current study presented an empirical application of the bootstrapped Malmquist 
index and multiple correspondence analysis for analysis of the Lithuanian family farm 
performance during 2004–2009. The analysis showed that the total factor productivity 
decreased by some 15–18% during 2004–2009 depending on the farming type (insignificant 
changes were eliminated). The crop farms exhibited the steepest decrease in efficiency (21%), 
whereas the mixed farms featured the negative technical change of the same margin. The 
multiple correspondence analysis suggested that all of the farming types exhibited change 
in the total factor productivity close to the average, although the crop farming was located 
in the more stochastic area, whereas the livestock farms appeared to be the most stable ones 
in terms of the total factor productivity change. Given all of the farming types exhibited 
similar levels of the total factor productivity change, the livestock farms can be considered 
as those better performing. Anyway, a negative technical change poses a need for further 
research on the possibilities to increase the productivity of the livestock farming.

Multiple Correspondence Analysis implied that zero productivity change was equally 
associated with all the terms of the Malmquist index. However, different patterns were 
evident for increase and decrease in productivity. Specifically, an increase in productiv-
ity was mainly associated with efficiency gains and flattening of the production frontier 
(under variable returns to scale). Therefore, an increase in productivity was mainly achieved 
due to farm-specific improvements. Decreasing productivity was mainly associated with 
technical regress and, especially for crop farms, these developments were not followed 
by increasing technical efficiency (relative to frontier movement). Wide-scale support 
measures (like income smoothing) might therefore be more appropriate to maintain 
the viability of Lithuanian family farms during a decline of productivity. As regards the 
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productivity-increasing farms, they appeared to remain below the production frontier even 
after improvement in their productivity. Accordingly, support measures are needed to ensure 
frontier-pushing innovations among family farms to a greater extent. These could support 
equipment with serious considerations of power and maintenance costs. It should be noted 
that, we might also observe a subdued productivity growth in the short run due to influence 
of adjustment costs even though support measures are appropriate.

Note

1.  Inequality in equation (6) has to be read element-wise, therefore we look at the elements of 
y′ which are greater or equal than the corresponding elements of y, yet at least one element 
must be strictly greater so that the two vectors were not identical.
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