
Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 55

ISSN 1846-6168 (Print), ISSN 1848-5588 (Online)
ID: TG-20160212192336

 AN OVERVIEW OF THE GENETIC ALGORITHM AND ITS USE FOR FINDING
EXTREMA ─ WITH IMPLEMENTATIONS IN MATLAB

PRIKAZ GENETIČKOG ALGORITMA I NJEGOVA UPORABA ZA NALAŽENJE
EKSTREMA — S IMPLEMENTACIJAMA U MATLABU

Jurica Hižak, Robert Logožar

Original scientific paper
Abstract: The paper outlines the main concepts of the genetic algorithm (GA) in a combined, educational-scientific
style. Every step of the GA is first motivated by its biological paragon, then mathematically formalized and explained
on simple examples, and finally supported by implementations in MATLAB. Two programs that use GA for the illustra-
tive cases of finding functions’ extrema are shown. The authors conclude the paper by presenting the original use of GA
in the Stochastic Iterated Prisoner Dilemma, which gave a new insight into this problem.

Keywords: genetic algorithm, fitness function, function extrema, stochastic iterative prisoner dilemma.

Izvoran znanstveni rad
Sažetak: Ovaj rad predstavlja glavne koncepte genetičkog algoritma (GA) u kombiniranom, edukativno-znanstvenom
stilu. Svaki je korak GA isprva motiviran svojim biološkim uzorom, potom matematički formaliziran i objašnjen na
jednostavnim primjerima te konačno potkrijepljen primjerima u MATLABU. Predstavljena su dva programa koja koris-
te GA za ilustrativne slučajeve nalaženja ekstrema funkcija. Autori zaključuju članak prikazom izvorne uporabe GA u
stohastičkoj iterativnoj dilemi zatvorenika, što je dalo novi pogled na ovaj problem.

Ključne riječi: genetički algoritam, funkcija podobnosti, ekstremi funkcija, stohastička iterativna dilema zatvorenika.

1. INTRODUCTION

The concept of evolution is omnipresent not only in na-
ture and natural sciences, but can be also found in all
other human activities. A good general definition of this
notion, with explication in biology is found in [1]: “Evo-
lution is, in effect, a method of searching among an
enormous number of possibilities for ‘solutions’. In biol-
ogy, an enormous set of possibilities is the set of possible
genetic sequences, and the desired ‘solutions’ are highly
fit organisms—organisms which are capable of surviving
and reproducing in their environments.”

1.1. Genetics in computation
In computing (computer science), an evolutionary algo-
rithm investigates the space of feasible solutions of some
quantitative problem and—according to some prescribed
criteria—finds the best among the selected ones. This
process is then iterated until one of the obtained solutions
is “good enough.” Therefore, a computational procedure
in an evolutionary algorithm is a process analogous to
what is happening to live organisms in the natural evolu-
tion. The evolutionary algorithms are studied within the
field of evolutionary computing.

Nowadays the evolutionary computing comprehends
three big scientific fields: genetic algorithms, evolution-
ary strategies, and genetic programming. There are many
different evolutionary algorithms, as well as several
variations of each of them. However, the underlying idea

of all of them is the same: given a population of solu-
tions, high-quality solutions are more likely to be select-
ed during the process of selection and reproduction. [2]

Thus, the basic idea and even the terminology of evo-
lutionary algorithms follow the actions of the natural
evolution. Of course, one might expect that there are also
several technical differences between the two, which may
depend on the particular field of the evolutionary compu-
ting. Nevertheless, the fundamental functioning of all
evolutionary algorithms can be grasped through the fol-
lowing brief insight into the genetic algorithm.

For a given problem, the reduced set of potential so-
lutions is generated in a random fashion. Every solution,
or individual—also called (artificial) chromosome—
contains artificial genes. Unlike the real chromosomes,
which consists of the DNAs built of series of pairs of the
four nucleotide bases (A-T, C-G, T-A, G-C), the artificial
chromosomes are simple sequences of zeros and ones.1

1 Since the nature is the inspiration for this whole area of
computing, here we give a short explication of how the coding
is done in the DNA. It should be stressed that this coding is not
nearly as straightforward as for the artificial chromosomes.
Furthermore, it is highly adjusted to the concrete function it has
─ to store the information on how ribosomes will form proteins
from amino-acids. That information is translated by the mes-
senger RNA. The RNA is a copy of the DNA structure, with the
only difference that it has the T (Timine) base replaced with the
U (Uracil) base. Of the two helixes, only one—the coding
strand—is enough to define the information held in the RNA
(the other is determined by the pairwise complements, as in the

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

56 Technical Journal 10, 3-4(2016), 55-70

From every generation of chromosomes, the best ones
are chosen. And while the best individuals in biological
populations are selected by complex biological and envi-
ronmental mechanisms, the selection process in genetic
algorithms is governed by the evaluation of the observed
population by a fitness function. It assigns a fitness value
to every individual in the population. Then, the selection
of the best individuals (chromosomes) is done in a sto-
chastic process, in which the probability of selection of
an individual is proportional to its fitness value. So, alt-
hough better individuals have a greater chance of being
selected, their selection is not guaranteed. Even the worst
individuals have a slight chance for survival. [2]

The stochasticity of the procedure is further enhanced
by the processes of recombination and mutation. Their
action ensures the variability of solutions, and thus con-
tributes to the exploration of the whole search or state
space (the set of all possible solutions). This is essential
for avoiding the traps of local extrema, in which tradi-
tional algorithms get stuck quite often.

Altogether, the combined action of the variation and
selection operators results in a very efficient method for
improving every next generation of solutions and rela-
tively fast convergence to the desired optimal solution.
That is why the evolutionary algorithms are very popular
in solving a great variety of problems in both applied and
fundamental sciences, such as finding extrema of com-
plex functions, discovering the best game strategies,
solving transport problems and modeling complex shape
objects.2

 Among those are also the hardest computational
problems, which belong to the so-called NP complexity
class.3

 Despite some limitations and deficiencies, the
evolutionary algorithms tackle all these tough tasks very
successfully, thanks to their changed paradigm of opera-
tion and the loosened aim. That is, if the accurate solu-
tion is so hard-to-find, why not search for a solution that
is just “good enough.”

1.2. The purpose and the plan of the paper
In this paper, we shall focus our attention to the genetic
algorithm (GA). We shall describe the GA in comparison
to the corresponding biological processes and give the
formalization of its basic steps. Then we shall implement
these steps in the widely used mathematical and engi-
neering programming environment MATLAB®.4

 The

DNA). In the coding strand, the minimal complete biochemical
information is stored in the three-letter words called codons,
formed by the letters A, U, C, G. There are 43 = 64 such
words. The sequences of these words convey the information
necessary for the formation of proteins, which is the basis for
the existence and reproduction of all living organisms. [11]

2 The shape of NASA ST5 spacecraft antenna was modeled
by using GA to create the best radiation pattern. [12]

3 NP stands for nondeterministic, polynomial time, meaning
that the solution of the NP problem class can be found by the
nondeterministic Turing machine (NTM) in the polynomial
(favorable) time. The NTM is a theoretical machine that can
guess the answers of the hard problems in the polynomial time,
even though they require exponential time on normal, determin-
istic machines (algorithms). A simple comment and a connec-
tion of the NP problems to the GA can be found in [9].

4 MATLAB® is a trademark of the MathWorks Inc.

theoretical presentation is made in an educational, easy-
to-follow approach, but mathematically corroborated
where needed. For the readers who are already familiar
with the field of evolutionary computation on a general
level, a few illustrative examples written in MATLAB
can make this article interesting as a step further toward
the practical use of genetic algorithms — possibly also for
their own problems. On the other hand, for the huge
group of MATLAB users who are novices to the field,
this could be a motivation to learn the topic that was
mostly being connected to computer science. The final
aim of this endeavor was to show that the genetic algo-
rithm could be effectively programmed in MATLAB, and
to describe how this was done in another authors’ work,
within the field of the game theory.

After the broader outline of the concepts used in evo-
lutionary computation and the genetic algorithm was
already given in this introduction, in section 2 we give
the basic ideas that underlie the GA more precisely.

In section 3 we deal with the creation of individuals
for the initial population. We spend some time to formal-
ize the problem mathematically in a precise and complete
manner. However, to keep the reading simple and inter-
esting for the broader audience, we provide several sim-
ple examples. And along with them, the formalized steps
are immediately implemented in MATLAB.

Section 4 formalizes and then exemplifies the process
of selection of individuals for the new population (gener-
ation) and discusses the fitness function. The roulette
wheel parent selection was illustrated on a simple exam-
ple and implemented in MATLAB. In section 5 we ex-
plain the recombination and mutation, and, as always,
cover the theoretical part with examples and the
MATLAB code. Then, in section 6 we discuss the behav-
ior of the GA in finding extrema for two illustrative func-
tions. The full MATLAB codes for these programs are
given in Appendix A.

In section 7, we discuss the use of GA in the iterated
prisoner dilemma problem and show how it can discover
unexpected aspects of such nontrivial systems. It should
be—as we see it—the main scientific novelty of this
work. Finally, section 8 concludes this paper.

2. OUTLINE OF THE GENETIC ALGORITHM

The genetic algorithm was invented by John Holland in
1975. [3] In order to find the function extrema, Holland
presented each potential solution (extremum) as a se-
quence of bits, called the artificial chromosome. The bits,
containing zeros and ones, or groups of several bits, can
be considered as artificial, binary genes (Figure 1, confer
also footnote number 1).

Figure 1. The population of artificial chromosomes, with

genes presented by bits.

Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 57

Obviously, an artificial chromosome can be any form
of data that properly describes the features of individuals
within some population. Some of the individuals, i.e.
chromosomes—as we shall simply call them in the fur-
ther text—would eventually appear as the solution of the
given problem.

2.1. Genetic algorithm
A pseudocode of a common version of the GA is given in
Algorithm 1. The input is clear from the previous text.
The optional input enables the calculation of the satisfy-
ing fitness value that can serve as one of the termination
criteria (discussed more in the next subsection).

In step 1, the initial population of solutions (or indi-
viduals, or chromosomes) is created by random selection
from the whole search space. This is elaborated in more
details in section 3. In step 2, the initial population is
evaluated by the fitness function, i.e. each chromosome
of the population is assigned its fitness value (more on
the fitness function is given in §4.1 and §4.2).

The iterative process that follows is presented by the
two nested while loops. The condition of the outer loop is
the negation of the termination criteria, which are ex-
plained in §2.2. For now, we assume that the criteria are
not met so that the algorithm enters the outer loop.

Within the outer loop, in step 3.1, the GA enters an-
other while-loop, which governs the selection of individ-
uals for the next population. Within the nested loop, in
step 3.1.1, a pair of chromosomes is selected randomly
from the previous population (generation). The probabil-
ity for this reselection is proportional to the relative fit-
ness values of the chromosomes (see §4.3), i.e. the more
probable chromosomes will be reselected more likely. In
general, some of them can be selected more than once,
and some of them will not survive the selection process
and will not appear in the next generation. In step 3.1.2,
the chromosomes from the selected parent pair are sub-
jected to the recombination operator, which first splits
them, and then mix the split parts in a specified way.
Normally, every pair of parents will produce two de-
scendants, so that every new generation of offspring
contains the same number of individuals as the previous
generation. In step 3.1.3, the two new children are enlist-
ed as the new chromosomes of the next population. The
process is iterated until the new population is filled with
the desired number of chromosomes. When this is done,
the while-loop 3.1 is completed.

In step 3.2, the descendant chromosomes are exposed
to mutation. Depending on the chosen mutation rate, the
mutation changes a certain number of genes in the popu-
lation’s gene pool (for further explanations see §5.4).

The processes of mutation and recombination are
usually described by the action of the recombination and
mutation operator, respectively, commonly known as the
variation operators (more about them in section 5).

In step 3.3, the old population is replaced with the
new one and the list of children is deleted. In step 3.4, the
new population is evaluated by the fitness function,
which is the same action as in step 2 (the duplication of
these steps is a sacrifice to achieve the structured, while
loop). Now the first iteration of the outer loop is finished,
and the termination criteria are checked again.

Algorithm 1. A version of the genetic algorithm (GA).

Input: original function, search space (the set of all indi-
vidual solutions, or chromosomes), fitness function.

Optional input: good enough solution, from which the
good enough fitness value is calculated.

1. Create initial population by randomly selecting a
certain number of chromosomes from the search space;

2. Evaluate the fitness of the current population by calcu-
lating every chromosome’s fitness value.

3. While the termination criteria are not met, do:
[Terminat. criteria: the best fitness value is good enough
or the specified number of iterations is done, or …]

3.1 While the new population is not completed, do:

3.1.1 Select two parent chromosomes by random
selection from the previous population;

3.1.2 Recombine the parent chromosomes to ob-
tain two children;

3.1.3 Enlist the two children in the new population;

3.2 Mutate the chromosomes in the new population;

3.3 Replace the previous population with the new one;

3.4 Evaluate the fitness of the current population (0.2).

Output: the best chromosome found (the one with the
highest fitness value).

2.2. Termination criteria
If the fitness value of at least one chromosome satisfies
some “prescribed criterion,” the algorithm is finished. If
not, the algorithm enters the next iteration.

A careful reader will probably note that finding and
specifying such a criterion pose a fundamental problem
not only for GA but also for all other evolutionary algo-
rithms. Namely, GA does not investigate the search space
thoroughly, methodologically, or in any “systematic”
way. So, there are no sure indicators of when the compu-
tation is over. For instance, if the GA is searching for the
unknown global extrema of some function, it cannot
possibly know how far it is from them. Also, if we didn’t
search the whole search space, we cannot be sure that
somewhere there isn’t a more extremal value.

Obviously, in the spirit of our unsystematic and sto-
chastically governed algorithm, we need a similar kind of
termination criteria, i.e. (i) something loose but practical,
or (ii) something heuristically based.

As for (i), sometimes we might be given a hint of
what would be a “desired” or “good enough” solution
(e.g. from the knowledge about the observed problem
gathered by other means, or by the specifications given
by a client or by a boss). By knowing it, the good enough
fitness value could be calculated (opt. input) and this
would be our first criterion. However, although our client
or boss could be satisfied, we as scientists may still won-
der how good our solution is and if it can be made better.
This will be discussed a bit more in a moment.

And if the good enough solution is not known, then
the “heuristic criterion” (ii) boils down to: “stop the itera-
tion after a certain number of iterations,” or “check the
trends of certain indicators and decide about the termina-
tion.” The indicator most used is the population average

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

58 Technical Journal 10, 3-4(2016), 55-70

fitness. By tracking it in each iteration, one can draw
some conclusions on how the GA is progressing. If the
indicator is stalling in its “extremal plateau” for several
iterations, the algorithm can be halted. However, this is
by no means a sure decision. Namely, although one can
expect that with every new iteration of the GA the popu-
lations “evolve,” i.e. that their average fitness values
improve and get closer to a desired extremum, this can-
not be taken for granted. The GA’s method of searching
is stochastic and it often results in unpredictable behavior
of the chosen indicators. For instance, the average fitness
value of the subsequent populations may stagnate for
many iterations, making us believe that it is stable and
without a chance for improvements. But after such inter-
vals of stability, GAs can suddenly show the solutions
that are worse than previous, or they can surprise us with
sudden improvements. This will be illustrated in §6.

Further discussion of the possible indicators for the
termination of the GA and their behavior are beyond the
scope of this paper. We can simply say that the GA can
be run for several times with a different number of itera-
tions or, alternatively, started with different initial popu-
lations. Then the obtained results can be compared.

2.3. Use of genetic algorithms
As was already hinted at the end of §1.1, the power of
GA is in the great diversification of the intermediary
solutions, which ensure that the most of the search space
will be properly investigated. This is essential for the
functions with several extrema, the so-called multi-modal
functions, whose search space is multi-modal search
space. For such functions GA does excel. On the other
hand, the classical methods—based on the analytical
approach—will very often fail on them. They will tend to
go straight toward the nearest local extremum. Another
advantage is that the GA does not impose any restrictions
on the functions that they investigate. The functions need
not be continuous or analytic (derivable).

3. SEARCH SPACE AND INITIAL POPULATION

In the outline of the genetic algorithm in §2, we have
already discussed the notion of the artificial chromo-
some. From there, it is clear that the chromosomes are a
suitable representation of individual solutions within the
search space of some problem.

3.1. Search space and individual solutions —
their presentations and values

In order to illustrate the functioning of GA and the crea-
tion of its initial population, we define a common task of
this field:

Find the global extremum (minimum or maxi-
mum) of the function 𝑓(𝑥) of discrete equidistant
values 𝑥.

To formalize the problem a bit more, we specify that
𝑥 belongs to the discrete set 𝑋,

𝑥 ∈ 𝑋 = {𝑥𝑙 , 𝑥𝑙 + ∆𝑥, 𝑥𝑙 + 2∆𝑥, … , 𝑥ℎ} , (1)

where 𝑥𝑙 is the set’s low and 𝑥ℎ its high limit, and ∆𝑥 is
the measure of the set’s resolution, 𝑥𝑙 , 𝑥ℎ, ∆𝑥 ∈ ℝ . Ob-
viously, 𝑋 is the set of all possible solutions, i.e. the
search space of the problem. The extrema of 𝑓(𝑥) on this
discrete set must be achieved for one of its 𝑁𝑋 elements,
= 𝑥𝑒𝑒𝑒𝑒 , where:

𝑁𝑋 = card(𝑋) = 𝑥ℎ−𝑥𝑙
∆𝑥

+ 1 . (2)

Effectively, we have provided a discrete representation of
some closed real interval [𝑥𝑙 , 𝑥ℎ], as is always the case
when numerical methods are used on digital computers.
This is valid regardless of the details of the number
presentation, i.e. it does not matter if they are coded as
integers or floating point numbers.5 So, taking into ac-
count the eq. (2), we can choose the 𝑏-bit unsigned inte-
ger arithmetic without essential loss of generality. For it,
the (whole) numbers span from 0 to 2𝑏 − 1. Thus, the
achieved resolution ∆𝑥 is

∆𝑥 =
𝑥ℎ − 𝑥𝑙
2𝑏 − 1

 , (3a)

and an arbitrary 𝑥 from the search space 𝑋 can be pre-
sented as the 𝑏-bit number 𝑛:

𝑛 = 𝑛〈𝑏〉 = ∆𝑥−1(𝑥 − 𝑥𝑙) = 2𝑏−1
𝑥ℎ−𝑥𝑙

(𝑥 − 𝑥𝑙). (3b)

Vice-versa, the 𝑏-bit number 𝑛〈𝑏〉 = 𝑛 represents

𝑥 = 𝑥𝑙 + ∆𝑥 × 𝑛 = 𝑥𝑙 + ∆𝑥 𝑥ℎ−𝑥𝑙
2𝑏−1

𝑛 . (3c)

The binary presentation 𝑛〈𝑏〉 can be regarded as a
vector,6 which comes as a nice formal point in the further
treatment of chromosomes as individual solutions, and in
performing operations on them.

Now, having established the general transformation
between the individual solution (𝑥) and its presentation
𝑛〈𝑏〉 in some 𝑏-bit arithmetic, the elaboration can be
simplified even further. By taking ∆𝑥 = 1, the search
space becomes a subset of integers. Furthermore, by
taking 𝑥𝑙 = 0, the lowest individual coincides with the
low limit of the unsigned arithmetic and the highest indi-
vidual coincides with the maximal number of the un-
signed arithmetic, 𝑥ℎ = 2𝑏 − 1 , so that eq. (3c) gives

𝑥 = 𝑛 = 𝑛〈𝑏〉 . (3d)
In an undersized example (for the sake of keeping the

things simple), let us choose the 8-bit integer arithmetic.
It has the search space of 28 = 256 individuals 𝑥𝑖, in the
range 0 ≤ 𝑥𝑖 ≤ 255. These solutions can be indexed in
an appropriate manner. Instead of the programming-style
indexing, starting from 0, here we use the mathematical
indexation to comply with the notation in the rest of the
paper. So the indices 𝑖 are for 1 greater than values, and
the search space is 𝑋 = {𝑥1, 𝑥2, … , 𝑥256}. Further indexa-
tions of the individuals within the populations derived
from 𝑋 will be changed according to the total number of
the individuals in those populations (see §3.2).

5 For instance, let us suppose that the interval of positive
numbers [0, 1] is covered by the single precision floating point
numbers. The maximal resolution achieved by this arithmetic is
given by the minimal ∆𝑥 accurate across the whole interval. For
𝑥ℎ = 1, it is the relative precision of this data type, ∆𝑥 ≈
10−7. For the double precision arithmetic, ∆𝑥 ≈ 10−14.

6 The chromosomes 𝑥𝑖 = 𝑛𝑖〈𝑏〉 are vectors in the vector
space above the Galois filed GF(2𝑏).

Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 59

It turns out that the presentation of individuals 𝑥𝑖 in
the binary system is both illustrative and practical for
their further evaluation and manipulation in the form of
artificial chromosomes in GAs. In our example, the bina-
ry presentation of the 𝑖-th individual is given as:

𝑥𝑖 = 𝑛𝑖〈8〉 = 〈𝑑7𝑑6 …𝑑1𝑑0〉𝑖,𝑏𝑏𝑏 , (4a)
where 𝑑𝑗 are binary digits, 𝑗 = 0,1, … , 𝑏 − 1 = 7,
𝑑𝑗 ∈ {0,1}. The case of 𝑥 = 𝑥27 (where we use the
above, “shifted” indexation),

𝑥27 = 𝑛27〈8〉 = 00011010𝑏𝑏𝑏 ,
is shown in Figure 2 (the subscript 𝑏𝑏𝑏 will be omitted
further on where the use of binary numerals is obvious).

Since our simplified choice implies that 𝑥 = 𝑛〈𝑏〉
[confer eq. (3c)], we do not need to differentiate between
an individual solution (chromosome) and its binary
presentation. And of course, if the value 𝑉 is attributed to
every such binary presentation (vector), our simplified
case leads back to the initial value of the solution in the
search space:

𝑉(𝑛𝑖〈𝑏〉) = �𝑑𝑗 × 2𝑗
𝑏−1

𝑗=0

= 𝑥𝑖 . (5a)

This is so because the mapping between 𝑛𝑖〈𝑏〉 and
𝑉(𝑛𝑖〈𝑏〉) is a bijective function.

The (mathematical) indexation of individuals in the
8-bit search space chosen above, gives 𝑉(𝑛𝑖〈𝑏〉) = 𝑖 − 1.

Figure 2. Summary of the notation via an example: indi-

vidual solution, or chromosome 𝑥𝑖 = 𝑥, its binary
presentation 𝑛〈8〉 in 8 bits, and the value, 𝑉(𝑛〈8〉).

In the case of finding extrema of a function, the ap-
propriate choice of the fitness function would be either
the absolute value as defined above or some simple,
linear function of it (see §4).

To generalize the above deliberation, for the function
of two variables, 𝑓(𝑥,𝑦), the chromosome is defined by
the ordered pair �𝑥𝑖 ,𝑦𝑗�. In the binary presentation, it
would be written as:

 �𝑥𝑖 ,𝑦𝑗� = �〈𝑑𝑏−1 …𝑑1𝑑0〉𝑖 , 〈𝑑𝑏−1 …𝑑1𝑑0〉𝑗� . (6)

If the problem is of different nature, the search space
and its presentation should be changed appropriately.
E.g., if the task is to find the shortest path between the
given points in a plane or some higher order space, then
the chromosomes should be presented as sequences of
points in that space. For 𝑘 points 𝑇𝑙, 𝑙 = 1,2, … ,𝑘, and
the initial (final) point 𝑇𝑙𝑖𝑖𝑖𝑖 (𝑇𝑙𝑓𝑓𝑓), the search space X
would be the set of all sequences 𝑥𝑖 ,

𝑥𝑖 = 〈𝑇𝑙𝑖𝑖𝑖𝑖 ,𝑇𝑙1 ,𝑇𝑙2 , … ,𝑇𝑙𝑓𝑓𝑓〉 , (7)

such that the following obvious restrictions would imply:
(i) there are no repetitions of the same points in the se-
quence, (ii) the total number of points in the sequence is
≤ 𝑘.

We end this formal part with a few notes on the actu-
al sizes of the search spaces in the practical use of GAs.
E.g., if the space of 32-bit integers is used as the search
space, the total of 4Gi ≈ 4 × 109 individual solutions
(chromosomes) exist. For modern computers, searching
over such search space by the “brute force” would be no
problem at all. With the computer performance of the
order of 100 GIPS, and supposing that the function 𝑓 can
be calculated with about 102 instructions, it would be
done in the order of a second (here we assume that the
program code is written and compiled optimally, and is
running much faster than the MATLAB code). However,
for a two-variable function with the squared search space
[amounting to (232)2 = 16 Ei ≈ 2 × 1019], the situation
is drastically changed, and computing time would rise to
the order of 109s. This and similar examples clearly
show why the computer science ought to rely on efficient
algorithms and not on the sheer power of computers.

In practical applications, the GA can be used for the
very large, exponentially growing search spaces, for
which the exhaustive searches are inefficient. If the fit-
ness function is not too complex for evaluation, it is now
commonly accepted that the GA will produce satisfactory
results in acceptable time for most of such problems.

3.2. Creation of the initial population
From the defined search space 𝑋, the initial population
𝑋𝑙 = 𝑋0 is created by choosing a relatively small portion
of the possible solutions from the search space,

𝑋0 = �𝑥0,1, 𝑥0,2, … , 𝑥0,𝑁0� ∈ 𝑋 . (8a)
As we have concluded in the previous subsection, the

GA is in practice normally used on very large search
spaces. Then the cardinality of the initial population is
reduced from the cardinality of the whole search space
for many orders of magnitude, which we write as

card(𝑋0) = 𝑁0 ≪ card(𝑋) = 𝑁𝑋 . (8b)
It turns out that the efficiency of GA and the quality

of its results do not improve much with enlargement of
its population. A typical 𝑁0 for 1-D problems is of the
order of magnitude 101 to 102. For the 𝑏-bit chromo-
some presentations it is often suggested to take 𝑁0 = 𝑏
(for more details see [9]). Once chosen—as it was al-
ready stated in §2—the number 𝑁𝑙 = 𝑁0 of individuals is
normally kept throughout the iterations of the GA.

The selected number of 𝑁0 individuals of the initial
population will be chosen randomly from the total of 𝑁𝑋
possible solutions of the search space. One way how to
do it is described in the next subsection.

3.3. Definition of the search space and creation
of the initial population in MATLAB

Example 1. Let the first, simple task be to find the max-
imum of the function 𝑓(𝑥) = 36𝑥 − 𝑥2. For the sake of
making the example as simple as possible, we observe
the interval of integers from 0 up to and including 31,

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

60 Technical Journal 10, 3-4(2016), 55-70

Figure 3. Binary presentation of the set of integers from

0 to 31 — which form the search space of Example 1.

Code Listing 1. Creation of the population of eight (8)
5-bit chromosomes in the MATLAB command prompt.
The default orientation of binary numbers in MATLAB

is reversed, with the most significant bit to the right.

which implies that 𝑥𝑙 = 0, 𝑥ℎ = 31, ∆𝑥 = 1. The mini-
mal number of bits that will allow the coding of the cor-
responding chromosomes is 𝑏 = 5 (see Figure 3), leading
to the search space

𝑋 = {00000, 00001, … ,11110,11111} .

If we want to create the initial population of 𝑁0 = 8
chromosomes from 𝑋, this can be done very easily in
MATLAB. The simplest way is to create the 8 × 5 ma-
trix of random numbers in the range [0, 1) by using the
function rand, and then to round them to 0s and 1s with
the round function (Code Listing 1).

Getting back—from the binary numbers to their dec-
imal values—is done by the MATLAB function bi2de.
Thus, the binary presentation of the chromosome 𝑛〈𝑏〉 (=

n) is translated to its decimal value 𝑥 (= x) by the follow-
ing statement (see also Code Listing 2):

x = bi2de(n) (M1)

As a more general case, let us suppose that a search
space in the interval [0, 1] must be covered with a resolu-
tion of at least 0.05. From eq. (3a) it follows that

𝑏 ≥ log2 �
𝑥ℎ−𝑥𝑙
∆𝑥

+ 1� , (9)

leading to 𝑏 ≥ 4.392, and the minimal 𝑏 = 5. With 5
bits, a slightly better ∆𝑥 is achieved, ∆𝑥 = 1 31⁄ =
0.3226 . This is shown in Figure 4.

For this case, the scaling from eq. (3c) gives the fol-
lowing MATLAB statement for conversion of the binary
presentation of the chromosome 𝑛〈𝑏〉 (= n) to its decimal
value 𝑥 (= x),

x = xl + bi2de(n)*(xh-xl)/(2^nbts - 1) (M2)

Here the rest of the variables are: xl = 𝑥𝑙, xh = 𝑥ℎ,
nbts = 𝑏 .

Figure 4. Another example of the 5-bit search space,
organized in the real interval [0,1], with ∆𝑥 = 1 31⁄ .

Code Listing 2. Conversion of the binary presented
chromosomes to their decimal values in MATLAB.

The MATLAB works with matrices, so that it can find
the decimal value of the whole set of chromosomes by a
single command:
 popul_dec = xl + (M3)
 + bi2de(popul)*(xh-xl)/(2^nbts - 1)

4. SELECTION

After the creation of the initial population of solutions,
the individual solutions in it must be evaluated to get the
estimation of how fit they are for reproduction. As was
already mentioned in §1 and §2, the evaluation is done
by the fitness function, in literature also known as quali-
ty, capability, goodness, or objective function.

4.1. Choice of the fitness function

The fitness function 𝐹 maps the search space to the set of
real (rational) or integer nonnegative values, i.e. it as-
signs the nonnegative goodness or fitness value 𝐹(𝑥𝑖) to
each individual solution, or chromosome 𝑥𝑖,7

𝐹: 𝑋 → ℝ0
+ (ℤ0+), 𝐹: 𝑥𝑖 ↦ 𝐹(𝑥𝑖) ≥ 0 . (10)

The bigger is the value 𝐹(𝑥𝑖) the better will be the

𝑥𝑖’s chance for survival and crossbreeding.
In some cases, the fitness function can be the same as

the function whose extrema are being found. However,
this is so only if the fitness values are of the same, posi-
tive sign or zero for all the individual solutions. That is
the case of our first example, in §3.3, where the maxi-
mum of 𝑓(𝑥) = 36𝑥 − 𝑥2 is being sought. There, the
greater fitness value belongs to the chromosome that is
closer to the parabola maximum, so that one can put
simply (𝑥𝑖) = 𝑓(𝑥𝑖) .

7 The reason for non-negativity will become clear soon.

Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 61

Otherwise, if the negative or both signs of the fitness
values appear when finding some function’s maximum, a
problem arises when the probabilities proportional to the
fitness values are to be assigned to the chromosomes. To
shift the fitness values to the positive side, a positive
constant should be added, so that in general 𝐹(𝑥𝑖) =
𝑓(𝑥𝑖) + 𝑐, 𝑐 ≥ 0 .

The similar problem arises when the minimum is be-
ing sought for predominantly positive values of the orig-
inal function 𝑓(𝑥𝑖). Now the chromosomes closer to the
minimal value of 𝑓(𝑥𝑖) should be favored, meaning that

𝐹(𝑥𝑖) must be proportional to −𝑓(𝑥𝑖) . Again, if −𝑓(𝑥𝑖)
produces some negative values, a constant must be add-
ed, so that 𝐹(𝑥𝑖) = −𝑓(𝑥𝑖) + 𝑐, 𝑐 ≥ 0 .

 Altogether, this leads to the following criterion for
the fitness function:

The fitness function must be such that its higher
values—to which the higher probabilities are to be
assigned—are given to the chromosomes closer to
the extremum that is being sought.

The general form of the fitness functions for finding
extrema can now be summarized as follows:

Finding max. of 𝑓(𝑥𝑖): 𝐹(𝑥𝑖) = 𝑓(𝑥𝑖) + 𝑐. (11a)
Finding min. of 𝑓(𝑥𝑖): 𝐹(𝑥𝑖) = −𝑓(𝑥𝑖) + 𝑐. (11b)
The choice of the constant 𝑐 will be discussed in the

next subsection.
For the travelling salesman problem, mentioned at the

end of the §3.1, the appropriate value attributed to the 𝑥𝑖
and its presentation 〈𝑇𝑙𝐼𝐼𝐼𝐼 ,𝑇𝑙1 ,𝑇𝑙2 , … ,𝑇𝑙𝐼𝐼𝐼𝐼〉 would be the
total length (𝜆) of the path defined by that presentation.
Then one seeks the solution 𝑥𝑖𝑚𝑚𝑚, for which 𝜆 is mini-
mal:

Finding min. of 𝜆(𝑥𝑖): 𝐹(𝑥𝑖) = −𝜆(𝑥𝑖) + 𝑐. (12)
Further comments and an example of the application

of GA to this problem can be found e.g. in [9, 10].
Generally, the fitness function should be picked ap-

propriately to the problem. Furthermore, if the system’s
quality is described by a very complex function, the use
of the GA could be questionable. In that case, the corre-
sponding fitness function could impose too high a burden
on the algorithm performance.

4.2. The choice of 𝒄 (the problem of negative
fitness values)

The role of the constant 𝑐 is to shift the original func-
tion 𝑓(𝑥𝑖) to the nonnegative values. In the case of find-
ing extrema of 𝑓(𝑥𝑖) that has negative values for some
𝑥𝑖, the ideal choice for 𝑐 would be:

Fnd. max. of 𝑓(𝑥𝑖): 𝑐 = |min{𝑓(𝑥𝑖)}|, 𝑓(𝑥𝑖) < 0 ; (13a)
Fnd. min. of 𝑓(𝑥𝑖): 𝑐 = |max{𝑓(𝑥𝑖)}|, 𝑓(𝑥𝑖) > 0 . (13b)

However, the min{𝑓(𝑥𝑖)} and max{𝑓(𝑥𝑖)} are gener-
ally not known. They pose the optimization problem that
is just the opposite of the given one.

Another possibility to dissolve the problem of nega-
tive fitness values would be to make 𝑐 so big that it sure-
ly lifts the 𝑓(𝑥𝑖) into the first quadrant for all 𝑥𝑖 ∈ 𝑋.
However, quite often this will cause another problem —

the loss of details in the original function. That is, a great

global shift up can make the chromosomes’ fitness val-
ues very large positive numbers, and cause a compres-
sion of their relative differences. This will in turn make
the assigned probabilities less distinct.

The solution is to stick to the first idea but to reduce
the pool from which the minimal or maximal value of
𝑓(𝑥𝑖) is being found. In the 𝑙-th iteration of the GA, the
natural choice is to find these values only among the
chromosomes of the previous population, which will be
shortly designated as 𝑙′, 𝑙′ = 𝑙 − 1, for 𝑙 = 1, 2, …
… ,𝑁𝑖𝑖𝑖, where 𝑁𝑖𝑖𝑖𝑖 is the total number of iterations.

Now, the eqs. (13) translate into the following practi-
cal formulas for 𝑐 :

Fnd. max. of 𝑓(𝑥𝑖): 𝑐 = �min�𝑓�𝑥𝑙′,𝑖���, 𝑓�𝑥𝑙′,𝑖� < 0 ; (14a)
Fnd. min. of 𝑓(𝑥𝑖): 𝑐 = �max�𝑓�𝑥𝑙′,𝑖���, 𝑓�𝑥𝑙′,𝑖� > 0 . (14b)

After the above deliberation, a careful reader proba-
bly noted that the constant 𝑐 could be applied even if for
finding maxima (minima) there are no negative (positive)
values of 𝑓(𝑥𝑖). In that case, 𝑐 would be negative, to shift
the fitness values closer to zero and thus expand the relative
differences among the chromosomes. To achieve that, the
absolute values around the minimum and maximum func-
tions and the following range limits should be simply re-
moved. With that, the formulas for 𝑐 ∈ ℝ (ℤ), now without
restrictions, are:

Fnd. max. of 𝑓(𝑥𝑖): 𝑐 = min�𝑓�𝑥𝑙′,𝑖�� ; (15a)
Fnd. min. of 𝑓(𝑥𝑖): 𝑐 = max�𝑓�𝑥𝑙′,𝑖�� . (15b)

Of course, if the achieved expanding of the fitness values
is not desirable, one should stick to the formulas (12).

Finally, the extra control over the expansion (com-
pression) of the fitness function can be achieved by in-
troduction of the parameter 𝛾 ∈ ℝ0

+, that would multiply
the 𝑓(𝑥𝑖) and shrink it for 0 < 𝛾 < 1 and expand it for
𝛾 > 1. With that factor, the formulas (11) become:

Finding max. of 𝑓(𝑥𝑖): 𝐹(𝑥𝑖) = 𝛾𝛾(𝑥𝑖) + 𝑐. (16a)
Finding min. of 𝑓(𝑥𝑖): 𝐹(𝑥𝑖) = −𝛾𝛾(𝑥𝑖) + 𝑐. (16b)

4.3. Population, average and relative fitness
values

In the 𝑙-th iteration of GA, we calculate the fitness values

𝐹�𝑥𝑙′,𝑖� of the individuals from the (𝑙 − 1) = 𝑙′-th popu-
lation, 𝑋𝑙′ , with generally 𝑁𝑙′ individuals.8

 From these,
the total fitness of the population 𝑙′ is defined,

𝐹(𝑋𝑙′) = �𝐹�𝑥𝑙′,𝑖�
𝑁𝑙′

𝑖=1

 , (17)

as well as the average fitness of a chromosome within the
population 𝑋𝑙′ :

𝐹�𝑥𝑙′,𝚤���������� = 𝐹𝑙′��� =
𝐹(𝑋𝑙′)
𝑁𝑋𝑙′

 . (18)

The ratio of the 𝑘-th chromosome fitness and the total
population fitness gives the relative fitness (goodness) of
the chromosome. This quantity will be chosen as the
probability for the crossbreeding of that chromosome,

8 The numbers of chromosomes, 𝑁𝑙, are kept population-
dependent for the sake of generality (see also the discussion at
the end of the subsection).

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

62 Technical Journal 10, 3-4(2016), 55-70

and denoted the same way: 9

Pr�𝑥𝑙′,𝑘� =
𝐹�𝑥𝑙′,𝑘�
𝐹(𝑋𝑙′)

=
1

∑ 𝐹�𝑥𝑙′,𝑖�
𝑁𝑙′
𝑖=1

𝐹�𝑥𝑙′,𝑘� . (19)

Having defined the probabilities of the chromosomes
in the previous population, the set of 𝑁𝑙 chromosomes for
the next, (𝑙′ + 1) = 𝑙-th population is randomly selected
as described in the step 3.1 of Algorithm 1. It should be
noted that this could produce quite a different set of new
individuals. Some of the previous chromosomes (pre-
sumably the very probably ones) can appear more than
once, and some of them can disappear (presumably those
with small probabilities).

We end this subsection with a comment why it could
be useful to keep the number 𝑁𝑙 of chromosomes gen-
eral, despite it is standardly fixed to 𝑁𝑙 = 𝑁0 in all itera-
tions 𝑙 (as stated in §3.2). Namely, although it is known
that the GA’s efficiency and quality of results is not very
dependent on the population cardinality, one might resort
to changing it in some occasions. For instance, if the
indirect termination indicators stall for several iterations,
one may consider increasing 𝑁𝑙 to (re)check the stability
of obtained solutions. This idea could be implemented in
some enhanced versions of GA.

4.4. The example and the implementation of the
selection in MATLAB

We continue our example from §3.3, for finding the
maximum of 𝑓(𝑥) = 36𝑥 − 𝑥2. The initial population
(𝑋0) created there consists of 𝑁0 = 8 chromosomes.

Now we proceed to the next (first) iteration of the
GA. We calculate the fitness values of the previous popu-
lation by applying the fitness function 𝐹�𝑥0,𝑖� = 𝑓�𝑥0,𝑖�,
because 𝑓�𝑥0,𝑖� ≥ 0 for each 𝑥0,𝑖 , and also for all 𝑥𝑖 .
The results are shown in Table 1, with somewhat simpli-
fied notation: 𝑥0,𝑖 ↦ 𝑥𝑖, 𝐹�𝑥0,𝑖� = 𝐹(𝑥𝑖). E.g., for
𝑥1 = 01000, 𝐹(𝑥1) = 𝑓[𝑉(01000)] = 𝑓(8) = 224.

The total fitness of the initial population is 𝐹(𝑋0) =
1752 , so that the relative fitness, and in the same time
the probability for selection of the chromosome 𝑥1 , is

Pr(𝑥1) = 𝐹�𝑥0,𝑘�
𝐹(𝑋0)

== 𝐹�𝑥0,𝑘�

∑ 𝐹�𝑥0,𝑖�
𝑁0
𝑖=1

= 224
1752

≅ 0.128 .

On the basis of the chromosome probabilities
𝑃𝑃(𝑥𝑖), 𝑖 = 1,2, … ,8 , listed in Table 1, two new chromo-
somes will be selected to form a pair of parents (step
3.1.1 in Algorithm 1), and this will be—together with
other actions—iterated four times (within the while-loop
3.1 in Algorithm 1).

The standard procedure for random choice is roulette
wheel parent selection. It is illustrated in Figure 5 as a
roulette on which each chromosome has its own sector,
with the area percentage proportional to the chromo-
some’s probability. For the right simulation of the chro-
mosome sectors, the cumulative probabilities must be
calculated from the chromosomes’ probability distribu-
tion. In MATLAB, this is done by the cumsum function.

9 Of course, the relative fitness qualifies for a probability
function because 0 ≤ Pr�𝑥𝑙,𝑘� ≤ 1 and ∑ Pr�𝑥𝑙,𝑖�

𝑁𝑙
𝑖=1 = 1.

Table 1. Calculations prior the process of selection. For
the chromosomes from the previous population, 𝑥𝑙−1,𝑖 =
𝑥0,𝑖 = 𝑥𝑖 , the table shows: 𝑛𝑖〈5〉 = 5-bit binary presenta-

tion, 𝑉(𝑛𝑖) = value, 𝐹(𝑥𝑖) = fitness value, Pr(𝑥𝑖) =
probability of selection in the next population,

Pr�(𝑥𝑖) = cumulative probability.
𝑥𝑖 𝑛𝑖〈5〉 𝑉(𝑛𝑖) 𝐹(𝑥𝑖) Pr(𝑥𝑖) Pr�′(𝑥𝑖)

𝑥1 01000 8 224 0,128 12.8%
𝑥2 11110 30 180 0,103 23.1%
𝑥3 01010 10 260 0,148 37.9%
𝑥4 00001 1 35 0,020 39.9%
𝑥5 11010 26 260 0,148 54.7%
𝑥6 00101 5 155 0,088 63.5%
𝑥7 10001 17 323 0,185 82.0%
𝑥8 10101 21 315 0,180 100.0%

 𝛴: 1752 1.000

Figure 5. The roulette wheel parent selection for

Example 1. To each of the 8 chromosomes of the initial
population, a surface proportional to the chromosome

probability is attributed.

In our example, the probability distribution Pr is de-
fined in Table 1,
 Pr = [0.128, 0.103, 0.148, 0.020, (M3)
 0.148, 0.088, 0.185, 0.180]

from which the cumulative probabilities are obtained by
 CumPr = cumsum(Pr) (M4)

That gives the cumulative probability distribution:
 CumPr = [0.128, 0.231, 0.379, 0.399, (M5)
 0.547, 0.635, 0.820, 1.000]

Now, a random number from the interval [0, 1] is
generated; in MATLAB, by function rand. The value of
the random number determines the position and the sec-
tor on the imaginary roulette, and thus also the belonging
chromosome (the random number is compared with the
intervals defined by the CumPr, and translated accord-
ingly into the index of the corresponding chromosome).

The MATLAB function that does that (taken from
[10]) is shown in Code Listing 3. Given the probability
distribution P (= Pr), the function RandChoseN(P,N)
returns the indices of N selected chromosomes. At the
beginning of the function, the bin edges are defined from
P by the cumsum function, and the vector roulette is
zeroed. In the for-loop, the random number x is creat-
ed. Then the histogram of its incidences (only one!) in
the bins is made by function histc and stored in
Counts. The index of Counts with the one (and only)
hit is stored in roulette. The loop is repeated N times.

Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 63

Code Listing 3. The MATLAB function for the roulette
wheel parent selection. RandChooseN(P,N) gives the

indices of N randomly selected chromosomes.

4.5. A few comments on the selection process
The above depicted selection—implemented by the rou-
lette method—is called simple selection. Another type of
selection is elimination selection. While the simple selec-
tion deletes the old generation only after it is used for the
selection process of all pairs of children for the new
generation (before the step 3.3 in Algorithm 1), the elim-
ination selection first detects bad chromosomes and de-
letes them prior the crossover and mutation operations.
The shortage of chromosomes is then compensated by
the additional offspring from the good chromosomes. To
decrease or avoid the accumulation of duplicate chromo-
somes, some variants of this method check if the de-
scendants are identical to their parents. If they are, the
process of selection is repeated. This sort of selection is
called the elimination selection without duplicates.

5. RECOMBINATION AND MUTATION

The recombination (crossover) and mutation in biological
systems are complex processes of exchange of genetic
material that are happening between the pairs of chromo-
somes (Figure 6). After the interphase, in which the
chromosomes are duplicated, they align to each other,
break in one or more places, and swap their fragments.
This mixing results in the enhanced variability of the
population.

Figure 6. Meiosis, or reduction division. It starts from a
somatic cell with a diploid number of chromosomes and
ends with four sex cells that have the haploid number of

chromosomes. The most important phase is prophase (P),
in which the recombination and generation of gametes

with completely different genetic material occurs.

5.1. Recombination in genetic algorithms
As it was already mentioned in §2.1, the process of re-
combination in evolutionary algorithms is mathematical-
ly abstracted to the action of the crossover operator. This
binary operator—in the sense that it acts on two oper-
ands—exchanges the genes (bits) of two artificial chro-
mosomes. As conceived by Holland in 1975, the cross-
breeding performed by the crossover operator is a three-
step process. [4] First, two individuals are taken from the
parent (previous) population. Second, a point or several
points of the chromosome splitting are chosen — the so-
called crossover points. These points define the segments
of genes (bits) between them. The contents of some of
those segments are being exchanged, resulting in the
generation of two new descendants with generally differ-
ent chromosome structure (Figure 7).

The simplest way of choosing the crossover points is
by random selection. Then some of the formed sections
of bits are exchanged and some are not.10

 This is the case
of the ordinary crossbreeding, which is governed by the
corresponding ordinary crossover operator.

In the simple example of Figure 7, the ordinary
crossbreeding with single crossover point is applied. It
defines the left and the right sections of the two chromo-
somes, of which the right sections are exchanged. Thus,
the probability that the descendant has its corresponding
(upper or lower) parent’s genes in the left section is one,
and in the right section is zero, meaning that the right
section has the genes from the other, “crossed” parent.

Figure 7. The recombination of chromosomes with one
breaking point. From the previous generation (𝑙′ = 𝑙 −
1), two parent chromosomes were selected. The crosso-
ver operator then splits them between the second and the
third bit and exchanges their right parts. Thus, a pair of

new chromosomes of the 𝑙-the generation is formed.

The above and all the other probability schemes can
be generalized by the crossover probability mask 𝐦𝐶 ,

𝐦𝐶 = �𝑃𝑃(𝑑0),𝑃𝑃(𝑑1), … ,𝑃𝑃(𝑑𝑏−1)� . (20a)

The mask consists of 𝑏-plets of probabilities 𝑃𝑃�𝑑𝑗�,
𝑗 = 0,1, … , 𝑏 − 1, each of which presents the probability
that the descendant has the gene—here the binary digit 𝑑𝑗

—inherited from its corresponding predecessor. If the
mask for the first chromosome in a pair (the upper one in
Figure 7) is 𝐦𝐶, the mask applied to its conjugal partner
(the lower one in Figure 7) must be 𝐦𝐶���� , with the com-
plementary probabilities, 𝑃𝑃�𝑑𝚥���������� = 1 − 𝑃𝑃�𝑑𝑗� :

𝐦𝐶���� = �𝑃𝑃(𝑑0)���������,𝑃𝑃(𝑑1)���������, … ,𝑃𝑃(𝑑𝑏−1)������������� . (20b)
With this notation, the probability masks for the ex-

ample of ordinary crossover in Figure 7 are:

10
 By exchanging all of them, the net result would be the two

starting chromosomes with swapped indices.

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

64 Technical Journal 10, 3-4(2016), 55-70

𝐦𝐶𝐶𝐶𝐶 = (1, 1, 0,0,0), 𝐦𝐶𝐶𝐶𝐶�������� = (0, 0, 1,1,1) .
As we have already pointed out, there can be more

than one breaking point. For 𝑏 bits there are maximally

𝑏 − 1 breaking points. The introduced notation enables
the specification of such and other cases, by forming the
adequate recombination probability masks.

The uniform crossover operator allows equal-chance
swapping of all bits, meaning that all the probabilities in
the mask are equal, 𝑃𝑃�𝑑𝑗� = 𝑃𝑃�𝑑𝚥���������� = 1 2⁄ , leading to

𝐦𝐶𝐶𝐶𝐶𝐶 = (0.5, 0.5, … , 0.5) . (21)
In other words, this mask states that all genes from the
first parent have the opportunity of 1 2⁄ to end up in the
corresponding (first) descendant chromosome, and that
the same is valid for the genes of the second parent and
the corresponding (second) descendant chromosome.

Finally, the fully general form of the mask in eq.
(20a) allows the fully variant recombination (sometimes
misleadingly called the 𝑝-uniform crossover). We shall
call it the variant crossover and denote it by CVar index.
To affirm the meaning of their masks, we give the fol-
lowing example:

𝐦𝐶𝐶𝐶𝐶 = (0.2, 0.3, 1.0, 1.0, 0.0) .
Here, the first child will inherit the first gene from her/his
first parent with probability 0.2, and the second gene
with probability 0.3 (meaning that the probabilities that
these genes will be inherited from the second parent are
0.8, and 0.7, respectively). The third and fourth genes
will be surely inherited from the parent one (i.e. they stay
as they were in the first parent), and the last gene will be
surely inherited from the second parent (i.e. it is surely
exchanged from what it was in the first parent).

The recombination does not have to be done on all
individuals within a population. The relative portion of
the chromosomes that participate in the recombination—
which can be also formulated as the rate of the activation
of the crossover operator—is called the crossover rate or
crossover probability. We shall denote is as 𝛾𝐶, 𝛾𝐶 ∈
[0, 1]. If in population (iteration) 𝑙 the 𝑁𝑙 chromosomes
were selected, only 𝑁𝑙,𝐶 of them will be selected for
crossbreeding,

𝑁𝑙,𝐶 = 𝛾𝐶 × 𝑁𝑙𝑛 . (22)
The values of 𝛾𝐶 that are reported to give the best be-

havior of GA are between 0.5 and 1.0. [5]

5.2. Implementation of recombination in MATLAB
A simple implementation of recombination in MATLAB
is shown in Code Listing 4. It selects one breaking point
by using the function randi(nbits-1), which ran-
domly picks an integer between 1 and 𝑏 − 1. Then the
part of the chromosome to the right of the breaking point
is exchanged. The exchange of these chromosome parts
is performed with the last two statements of the code.

5.3. Mutation in biology
As a motivation for the implementation of mutation

in GA, here we give a short reminder of the influence of
mutation on living organisms. Unlike the recombination,
the mutation in biology is a random change of genetic
material in a somatic or a sex cell. That change can be

Code Listing 4. Implementation of the recombination
with one randomly chosen crossover point in MATLAB.
Prior to this code, the vectors of indices for dad and mom
are to be defined. They denote the rows of the population

matrix that present the corresponding parents.

influenced or stimulated by outer factors, like radiation,
and sudden environmental changes. In natural conditions,
it is very rare. If it happens to a somatic cell, it can cause
its damage or death. It can occasionally trigger uncon-
trolled division and malign diseases. However, the con-
sequences of such mutations are not inherited by the
future generations. So, from the evolutionary point of
view, much more significant are mutations that happen in
the sex cells, because they are transferred to the next
generations. They are manifested in the changes of the
organisms’ phenotypes, i.e. as new inherent characteris-
tics of the descendants. This makes the mutation the
second important cause of the variability of biological
populations.

5.4. Mutation in genetic algorithms

In a genetic algorithm, the mutation will be performed by
a mutation operator. It acts on a single chromosome and
is therefore a unary operator. It changes one or more
randomly chosen genes (bits) of the artificial chromo-
some. For instance, the mutation operator can change a
chromosome 𝑥𝑖 = 11111 to its mutant 𝑥𝑖′ = 11101.

We formalize the action of the mutation operator in a
way similar to the one used for the crossover operator.
First, we introduce the mutation rate 𝛾𝑀 ∈ [0,1], which
decides what percentage of the whole gene pool will be
influenced by mutation. That is, with 𝑁𝑙 chromosomes in
a population, of which each has 𝑛 genes, the gene pool
contains a total of 𝑁 ∙ 𝑛 genes. Then the number of muta-
tions performed in each iteration of the GA is

𝑁𝑙,𝑀 = 𝛾𝑀 × 𝑁𝑙𝑛 . (23)

Following the example of the natural mutation, 𝛾𝑀 in
GA is normally made quite small, typically between
0.001 and 0.01. E.g., with 𝛾𝑀 = 0.01 and a gene pool
with 20 5-bit chromosomes, only one gene (bit) and one
chromosome are expected to undergo the mutation.

To further generalize the action of the mutation oper-
ator, once can introduce the mutation probability mask,

𝐦𝑀, which is fully analogous to the crossover probabil-
ity mask, defined by eq. (20a).

Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 65

Figure 8. The action of inverting and mixing mutations
illustrated on the chromosome 1101101. The inverting

(flip) mutation inverts the zeros into ones and vice-versa.
The mixing mutation permutes (scrambles) the bits while

conserving their parity (the numbers of both zeros and
ones stay the same). The partial versions of the mutations

operate only on the selected fields of bits (shaded).

In a simple mutation, 𝑁𝑝,𝑀 randomly chosen genes
are mutated, meaning that its mask is the same as the
uniform crossover mask in eq. (21). Besides that, the
mixing and inverting mutations are used. The mixing
mutation permutes the genes within the 𝑁𝑝,𝑀 randomly
chosen chromosomes or within their parts specified by a

mutation mask. The parameters of the mutation mask can
also be generated randomly. In the inverting mutation,
the bits specified by the mutation mask are inverted. [6]
Both mutations are sketched in Figure 8.

6. EXAMPLES IN MATLAB

Two complete MATLAB programs for finding extrema
of the polynomial functions are given in Appendix A.
Relying on the provided comments, the readers acquaint-
ed with MATLAB basics should follow their code easily.

The Appendix A.1 contains the code for our simple
Example 1, introduced in §3.3. The performance of GA
for this case is shown by two diagrams of Figure 9. The
upper diagram shows that the average fitness value rises
to its upper plateau in only about 20 iterations, but keeps
oscillating. In fact, it looks like the GA is quite
struggling to get to the maximum of this simple 2nd order
function. A few iterations prior 30 and 40, it finds that

Figure 9. Diagrams of the average fitness (up) and the
fittest GA solution (down), for square function of Exmpl.
1. The population average fitness increases quickly, but
there is no sure indicator of the optimal solution. During
the generations 55-75, the fittest chromosome is 𝑥𝑖,max =

20. After 75 generations, GA finally finds the exact
solution, 𝑥𝑖,max = 18.

Figure 10. Diagrams of the 4th-degree polynomial (up)

and the fittest GA solution. As can be seen by inspecting
both diagrams, the algorithm successfully finds the glob-
al minimum and gives its accurate coordinates without
being trapped in the local minimum (around 𝑥 = 6.75).

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

66 Technical Journal 10, 3-4(2016), 55-70

the maximum is at 𝑥 = 20, but does not converge imme-
diately to it. Then, from 55th to 75th iteration it stabilizes
at that value. However, the average fitness value keeps
on oscillating and shows a few dips. The right answer,

𝑥 = 18 , is finally found after 75 iterations.
The Appendix A.2 gives the code for GA that finds

the global minimum of the 4th-degree polynomial. The 5-
bit chromosome representation is adjusted to the interval
[1, 8] by formula (3b). As can be seen in the upper dia-
gram of Figure 10, the polynomial has two minima (of
course, with a local maximum between them). The right
minimum is only local. On the lower diagram, one can
see how the GA hits the global minimum in less than 30
iterations. It is found for the chromosome 𝑛〈5〉 = 00100,
with the value 𝑉(𝑛〈5〉) = 𝑛 = 4, for which eq. (3c)
gives 𝑥 = 𝑥min = 1.9032. This abscise value is marked
on the polynomial curve as a small circle. It can be seen
that the result is very accurate.11 All in all, it looks like
the previous simple function wasn’t enough of a chal-
lenge for this mighty algorithm!

However, a careful reader will notice that not every-
thing is in a steady state. Slightly below 65 iterations
there is an instability, showing slightly higher value for
the 𝑥min. Such behavior is quite common for genetic
algorithms, due to the action of the variation operators.

7. USE OF THE GENETIC ALGORITHM IN THE
STOCHASTIC ITERATED PRISONER

DILEMMA

After showing the efficiency of the genetic algorithm for
finding global extrema of the single-variable functions,
here we elaborate on how it was used for a function that
depicts cooperation in the heterogeneous population of
selfish individuals in the problem known as Stochastic
Iterated Prisoner’s Dilemma (SIPD), which is a version
of the Iterated Prisoner’s Dilemma (IPD).12

11 The accuracy would be significantly diminished if the in-

terval [0, 8] was chosen. For it, Δ𝑥 = 0.25806, and the indi-
vidual closest to the minimum is 00111, with value 7, giving
𝑥 = 1.8065 (0.0967 lower than 𝑥min). The second best is
01000, with value 8, giving 𝑥 = 2.0645 (0,1613 greater than
𝑥min). The high dependence of the result on the choice of inter-
val is an obvious consequence of the low resolution of the
search space, i.e. of the low number of the chromosome bits.

12 The Prisoner’s Dilemma is a well-known game in which
two players can cooperate with or betray each other. The out-
come for each player varies according to the combined outcome
for them both. It is rational that each player defect (D), even
though they would both gain more if they cooperated (C). If
there is another encounter of the players, in another round of
the game, the cooperation may be really profitable. This kind of
game is called Iterated Prisoner's Dilemma (IPD). It is consid-
ered as the paradigm for the evolution of cooperation among
selfish individuals. [7] In the context of biology, the game
payoff (food, water, etc.) may be considered as fitness. To find
out which IPD strategy is the most effective, the mathemati-
cian, political scientist and game theorist Robert Axelrod orga-
nized a tournament in 1979, and invited the scientists to submit
their solutions. The simplest strategy, known as Tit for Tat
(TFT), won the tournament. This was a big surprise because it
was well known by then that the strategy of defecting on every

We shall expose the problem briefly at the expense of
accuracy (and hopefully not of the clarity). In the classic
form of the IPD, the population usually consists of play-
ers represented by deterministic strategies that always
follow their algorithms. For example, the ALLC strategy
plays cooperatively always, and the strategy ALT plays
cooperatively in every 2nd round. The TFT strategy11
simply copies the moves of the opponent player from the
previous round. However, in the real-life situations, both
animals and humans make mistakes. This invites for the
implementation of the uncertainty into the players’
moves. The IPD that includes that is the above men-
tioned Stochastic IPD. In SIPD, each player is represent-
ed by a pair of probability values (𝑝, 𝑞), whereby 𝑝
stands for the probability of cooperation after the oppo-
nent’s cooperation, and 𝑞 stands for the probability of
cooperation after the opponent’s defection.13 Now sup-
pose that we want to find the best strategy of the SIPD in
which the total payoff for a particular player equals to the
sum of payoffs gained in the duels with all other players.
The payoff as a function of (𝑝, 𝑞) depends on various
parameters, such as the total number of players, the strat-
egies of the players and the number of the game rounds.
Interpreted in another way, the payoff is a multivariable
function, whose maximum cannot be found by the classi-
cal optimization algorithms.

One possibility to find the extrema of such payoff
function is to simulate the natural selection. One can
generate a set of strategies and then “leave it to the natu-
ral selection.” The best strategy will be the one that be-
comes dominant in a population.

Most of the studies in this field have been done under
the assumption that the individuals reproduce asexually;
the strategies fight among each other, the generation after
generation, with relative frequencies proportional to their
payoff in the previous generation. It means that particular
strategy could be, and usually is used by more than just
one player. The players with copied strategies might be
considered as the clones of the corresponding original
strategies. It should be stressed that in this approach there
is no crossbreeding between different strategies.

On the other hand, the GA could be applied to the
SIPD if the strategies are suitably encoded in the form of
artificial chromosomes. An example of such approach is
our model, in which each reactive strategy (𝑝, 𝑞) is rep-
resented by a 10-bit chromosome. [8] The first five bits
in the chromosome encode the probability 𝑝, and the
remaining five bits encode the probability 𝑞 (Figure 11).

Figure 11. Double-point crossover operator applied to
the parent chromosomes which represent a (𝑝, 𝑞) SIPD

strategy.

round (ALLD) is the only strategy that is generally evolutionar-
ily stable (in more details commented in [8]).

13 This kind of strategy is known as reactive strategy.

Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 67

Figure 12. The cooperation coefficients over time in (a) populations that reproduce asexually, (b) populations with
sexual reproduction. For the asexual reproduction, the cooperative strategies win after around 1000 generations. The

sexual reproduction does not allow the extinction of different strategies and results in their erratic and cyclic exchanges.

The payoff gained in one round serves as a fitness
function for the evaluation of strategies — the most suc-
cessful strategies will have the highest chances for mat-
ing. After being selected, every chromosome is subjected
to double point crossover operator. One crossover point
is randomly selected on the 𝑝 and another on the 𝑞
chromosome segment (confer Figure 11).

At the beginning of each iteration (each round of the
game), the cooperation coefficients are calculated as the
averages of the strategy 𝑝-probabilities,

𝑝̅ = �𝜔𝑖𝑝𝑖

𝑁𝑠𝑠𝑠

𝑖=1

. (24)

Here 𝜔𝑖 stands for the relative frequency of the 𝑖-th
strategy with the cooperation probability 𝑝𝑖, and the
summation is over all 𝑁𝑠𝑠𝑠 strategies.

This, sexually reproduced SIPD model have shown
that the subsequent populations are going through the
erratic and cyclic exchanges of cooperation and exploita-
tion. Such result is just the opposite from what the previ-
ous models—with asexual reproduction of individuals—
are giving. In them, once some strategy is extinct, its
restoration is impossible. Figure 12 shows the coopera-
tion coefficients for both of these cases.

The instabilities in our model are the consequence of
the GA variation operators. They preserve the genetic
variability and diversity of the dominant strategies. In
this case, the genetic algorithm does not deliver an opti-
mal solution (the best strategy). On the contrary, it re-
stores the defective strategies and leads to the instability
and divergence. There is no dominant strategy that would
eliminate the opponent players for good. Both, the co-

operators and the exploiters can rule the world by them-
selves just temporarily.

8. CONCLUSION

When some optimization problem is being solved using a
genetic algorithm (GA), it is not guaranteed that it will
give a perfect or even a very good solution. But quite
often it will deliver a “good enough solution”, and almost
always it will provide some kind of useful information
about the problem.

The examples presented in this paper have shown that
the global extremum of the single-variable functions was
found very effectively, especially in the case of the 4th-
degree polynomial. Its derivative gives a third order
equation that cannot be solved easily. Obviously, the
strength and the justification for the use of GA increase
with the number of function’s local extrema and general-
ly with the degree of the function complexity.

On the other hand, in the case of the Stochastic Iterat-
ed Prisoner's Dilemma, the GA did not perform that
efficiently. The populations of strategies do not evolve
toward any dominant type of strategy. Instead, they di-
verge and jump from one near-optimal solution to anoth-
er, showing that there is no clear winning strategy. How-
ever, although “the best” strategy wasn’t found, the GA
revealed erratic and circular patterns in the level of coop-
eration over time.

Henceforth, we conclude that—besides the determi-
nation of the function extrema—the genetic algorithm
can occasionally give us something quite different — a
new insight into the subject of study.

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

68 Technical Journal 10, 3-4(2016), 55-70

9. REFERENCES

[1] Mitchell, M.: An Introduction to Genetic Algorithms.
Bradford Book MIT Press, Cambridge, Massachu-
setts, 1996.

[2] Gondra, I.: Parallelizing Genetic Algorithms, in
Artificial Intelligence for Advanced Problem Solving
Techniques, Vrakas, D. & Vlahavas, I. eds., Hershey,
Information Science Reference, 2008.

[3] Negnevitsky, M.: Artificial Intelligence – A Guide to
Intelligent Systems, Addison-Wesley, Harlow, 2005.

[4] Booker, L. B.: Recombination, in Handbook of Evo-
lutionary Computation, Kenneth de Jong ed., Oxford
University Press, 1997.

[5] Lin, W. Y.; Lee W. Y., Hong, T. P.: Adapting
Crossover and Mutation Rates, Journal of Infor-
mation Science and Engineering, No. 19, 2003, pp.
889-903.

[6] Soni, N.; Kumar, T.: Study of Various Mutation
Operators in Genetic Algorithms, International Jour-
nal of Computer Science and Information Technolo-
gies, Vol. 5, No 3, 2014, pp. 4519-4521.

[7] Nowak, S.: Tit for tat in heterogeneous populations,
Nature, Vol 355, 1992, pp. 250-253.

[8] Hižak, J.: Genetic Algorithm Applied to the Sto-
chastic Iterated Prisoner’s Dilemma, conference pa-
per, Basoti 2016, Tallinn, Estonia (to be published)
https://www.researchgate.net/publication/305768564
_Genetic_Algorithm_Applied_to_the_Stochastic_
Iterated_Prisoner_Dilemma.

[9] Obitko, M.: Introduction to Genetic Algorithms, Web
tutorial, http://www.obitko.com/tutorials/genetic-
algorithms/index.php.

[10] Hundley, D. R.: Lectures on Math Modeling, Ch. 4
Genetic Algorithm, Walla Walla: Whitman College,
http://people.whitman.edu/~hundledr/courses/M350
/Note02.pdf.

[11] Wkp2: Wikipedia articles: Genetic Code, Codons,
https://en.wikipedia.org.

[12] Wkp1: Wikipedia article: Space Technology,
https://en.wikipedia.org/wiki/Space_Technology_5.

* All cited Web sites and Web pages were accessible
and their URLs were correct in December 2016.

Authors’ contacts:
Jurica Hižak, M.Sc.
University North, Dpt. of Electrical Engineering
104. brigade 3, HR-42000 Varaždin
jurica.hizak@unin.hr
Robert Logožar, Ph.D.
University North, Dpt. of Multimedia.
104. brigade 3, HR-42000 Varaždin
robert.logozar@unin.hr

APPENDIX A. FINDING EXTREMA OF TWO

POLYNOMIAL FUNCTIONS BY THE GENETIC
ALGORITHM ─ MATLAB CODE

A.1. Genetic algorithm for finding the maximum
of a square function

%%MAXIMUM
%This program finds the x-value for which
%the function f(x)=36x-x^2 reaches the
%maximum value.
%Program written by Jurica Hižak
%University North, Varaždin,2016

%FITNESS FUNCTION:
ff=inline('36.*x-x.^2')
%Parameters:
n=100 %number of generations
popsize=40 %population size
mutrate=0.001 %mutation rate
nbits=5 %number of bits in a
 %chromosome

%CREATE an initial population:
popul=round(rand(popsize,nbits))
%Create a vector that will record near-
%optimal solutions across the generations:
best=zeros(1,n)
%Create a vector that will track the
%average the fitness of the population:
avg_fitness=zeros(1,n)

%EVOLUTION
iter=0
while iter<n
 iter=iter+1
%Calculate the value of each chromosome:
pop_dec= bi2de(popul)
%Calculate the fitness:
f=feval(ff,pop_dec')
%Average fitness of the population:
avg_fitness(iter)=sum(f)/popsize
%Sort fitness vector and find the indices:
[f,ind]=sort(f, 'descend')
%Sort chromosomes according to their
%fitness:
popul=popul(ind,:)
%The x-values:
pop_dec=bi2de(popul)
%The x-value of the chromosome with the
%highest fitness:
best(iter)=pop_dec(1)
%Calculate the probability of selection:
probs=f/sum(f)
%Selection of parents:
M=popsize/2
dad=RandChooseN(probs,M)
mom=RandChooseN(probs,M)

%CROSSOVER
%Choose the crossover point:
xp=randi(nbits-1)
%Take every 2nd dad's chromosomes
%and exchange the genes with mom’s:
popul(1:2:popsize,:)=[popul(dad,1:xp)...
popul(mom,xp+1:nbits)]
popul(2:2:popsize,:)=[popul(mom,1:xp)...
popul(dad,xp+1:nbits)]

https://www.researchgate.net/publication/305768564_GENETIC_ALGORITHM_APPLIED_TO_THE_STOCHASTIC_ITERATED_PRISONER%27S_DILEMMA
https://www.researchgate.net/publication/305768564_GENETIC_ALGORITHM_APPLIED_TO_THE_STOCHASTIC_ITERATED_PRISONER%27S_DILEMMA
https://www.researchgate.net/publication/305768564_GENETIC_ALGORITHM_APPLIED_TO_THE_STOCHASTIC_ITERATED_PRISONER%27S_DILEMMA
http://www.obitko.com/tutorials/genetic-algorithms/index.php
http://www.obitko.com/tutorials/genetic-algorithms/index.php
http://people.whitman.edu/~hundledr/courses/M350/Note02.pdf
http://people.whitman.edu/~hundledr/courses/M350/Note02.pdf
https://en.wikipedia.org/
https://en.wikipedia.org/wiki/Space_Technology_5
mailto:jurica.hizak@unin.hr
mailto:robert.logozar@unin.hr

Hižak, J.; Logožar, R. Prikaz genetičkog algoritma i njegova uporaba za nalaženje ekstrema — s implementacijama u MATLABU

Tehnički glasnik 10, 3-4(2016), 55-70 69

%MUTATION
%Number of mutations in the population:
nmut=ceil(popsize*nbits*mutrate)
 for i=1:nmut
 col=randi(nbits)
 row=randi(popsize)
 if popul(row,col)==1
 popul(row,col)=0
 else
 popul(row,col)=1
 end
 end
end

%PLOT the x-value of the best chromosome
%over time:
figure
%Generate an array of integers from first
%to the last generation:
t=1:n
plot(t,best)
axis([1 n 12 24])
xlabel('number of generations')
ylabel('x-max')
%Plot the average fitness value of the
%population over time and label the axes:
figure
plot(t,avg_fitness)
axis([1 n 100 400])
xlabel('number of generations')
ylabel('average fitness')

A.2. Genetic algorithm for finding the global
minimum of the 4-th degree polynomial

%%MINIMUM OF THE 4th DEGREE POLYNOMIAL
%The program finds the x-value for which
%the function
%f(x)=x^4-18x^3+110x^2-255x+300
%reaches the minimum.
%Program written by Jurica Hižak
%University North, Varaždin, 2016.

%FITNESS FUNCTION:
clear all
f=inline('x.^4-18*x.^3+110*x.^2-...
255*x+300')
%Plot the function and hold the figure:
x=0:0.1:8;
figure
ymin=feval(f,x);
plot(x,ymin)
axis([0 8 50 200])
xlabel('x')
ylabel('f(x)')
hold on
n=100 %number of generations
popsize=40 %population size
mutrate=0.001 %mutation rate
nbits=5 %number of bits in a
 %chromosome

%CREATE an initial population:
popul=round(rand(popsize,nbits))
%Create a vector that will record
%near-optimal solutions across
%the generations:
best=zeros(1,n);

%Create a vector that will track
%the average fitness of the population:
avg_fitness=zeros(1,n);

%EVOLUTION
iter=0
while iter<n
 iter=iter+1
%Having assumed that the solution takes
%place somewhere inside the interval(1,8),
%insert as many real values as possible
%considering the number of bits nbits
%(e.g. 5-bits string allows 32 values).
%Therefore, the decoded value of each
%chromosome is:
pop_dec= 1+bi2de(popul).*(8-1)/(2^nbits-1)

%FITNESS
%First, find the function value fv
%of each chromosome:
fv=feval(f,pop_dec');
%Since we are looking for the MINIMUM,
%the fitness function will be defined in
%respect to "the worst chromosome" whose
%fv-value is actually the highest:
fit=max(fv)-fv;
%Average fitness:
avg_fitness(iter)=sum(fit)/popsize;
%Sort fitness vector and find the indices:
[fit,ind]=sort(fit, 'descend');
%Sort chromosomes according to their
%fitness:
popul=popul(ind,:);
%The x-value of the chromosome with
%the highest fitness:
best(iter)=pop_dec(1);
%Calculate the probability of selection:
probs=fit/sum(fit);
%Selection of parents:
M=popsize/2;
dad=RandChooseN(probs,M);
mom=RandChooseN(probs,M);

%CROSSOVER
%Choose the crossover point:
xp=randi(nbits-1)
%Take every 2nd dad's chromosomes
%and exchange the genes with mom’s:
popul(1:2:popsize,:)=[popul(dad,1:xp)...
popul(mom,xp+1:nbits)];
popul(2:2:popsize,:)=[popul(mom,1:xp)...
popul(dad,xp+1:nbits)];

%MUTATION
%Number of mutations in the population:
nmut=ceil(popsize*nbits*mutrate);

 for i=1:nmut;
 col=randi(nbits);
 row=randi(popsize);
 if popul(row,col)==1;
 popul(row,col)=0;
 else
 popul(row,col)=1;
 end
 end
end

An overview of the genetic algorithm and its use for finding extrema ─ with implementations in MATLAB Hižak, J.; Logožar, R.

70 Technical Journal 10, 3-4(2016), 55-70

%MINIMUM:
xmin=best(n)
ymin=feval(f,xmin)
%Plot (xmin,ymin) as a red ring on the
%current figure:
plot(xmin,ymin, 'ro')

%PLOT the x-value of the best chromosome
%over time:
figure
%Generate an array of integers from the
%first to the last generation:
t=1:n
plot(t,best)
axis([1 n -1 10])
xlabel('number of generations')
ylabel('x-min')
%Show textbox with the output value
%(xmin,ymin)
dim = [.26, .2, .2, .6];
str = ['xmin=',num2str(xmin),...
 'ymin=',num2str(ymin)];
annotation('textbox',dim,'String',...
 str,'FitBoxToText','on')

	1. Introduction
	1.1. Genetics in computation
	1.2. The purpose and the plan of the paper

	2. Outline of the genetic algorithm
	2.1. Genetic algorithm
	3.1 While the new population is not completed, do:
	2.2. Termination criteria
	2.3. Use of genetic algorithms

	3. search space and Initial Population
	3.1. Search space and individual solutions — their presentations and values
	3.2. Creation of the initial population
	3.3. Definition of the search space and creation of the initial population in MATLAB

	4. Selection
	4.1. Choice of the fitness function
	4.2. The choice of 𝒄 (the problem of negative fitness values)
	4.3. Population, average and relative fitness values
	4.4. The example and the implementation of the selection in MATLAB
	4.5. A few comments on the selection process

	5. Recombination and Mutation
	5.1. Recombination in genetic algorithms
	5.2. Implementation of recombination in MATLAB
	5.3. Mutation in biology
	5.4. Mutation in genetic algorithms

	6. Examples in MATLAB
	7. Use of the Genetic Algorithm in the Stochastic Iterated Prisoner Dilemma
	8. Conclusion
	9. References
	Appendix A. finding extrema of two polynomial functions by the genetic algorithm ─ matlab code
	A.1. Genetic algorithm for finding the maximum of a square function
	A.2. Genetic algorithm for finding the global minimum of the 4-th degree polynomial

