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The aim of the current investigation is to evaluate the efficiency of tertiary butyl 
hydroquinone (TBHQ) as an antioxidant in edible oil like palm oil (Elaeis guineensis) by 
physical, chemical and ultrasonic properties. The effects of the varying amounts of 
TBHQ on the oxidation stability of palm oil have been investigated. The antioxidant in-
corporated palm oil system and control oil were subjected to heating at 180 ± 5 °C con-
tinuously for a period of 4 h per day for 4 days consecutively. The parameters used to 
assess the thermal degradation and oxidation properties of the palm oil include ultrason-
ic velocity, viscosity and density. Adiabatic compressibility, intermolecular free length, 
relaxation time, and acoustic impedance have been calculated from experimental data. 
The effect of thermal ageing on the physical properties of the oil was confirmed by 
chemical analysis, which included free fatty acid, total polar compounds, and estimation 
of fatty acids profile by gas chromatography (GC). The chemical changes were studied 
by FT-IR bands. The results obtained from ultrasonic studies have shown improvement 
in oxidative stability and retardation in thermal degradation of the antioxidant-loaded oil 
in comparison with the base oil. Hence, the ultrasonic velocity and acoustical parameters 
used for assessment of stability of frying oil and palm oil with TBHQ can be recom-
mended for repeated frying without adverse effects on the physical properties.
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Introduction

Heat treatment is a widely used process in food 
processing industries. As heat-processed foods are 
much appreciated, analytical studies that can assess 
the changes caused by heating have been demanded 
from researchers1–4. Oils and fats, when heated, suf-
fer thermal oxidation and produce compounds such 
as peroxides. The peroxides turn into aldehydes, ke-
tones, epoxides, dimers and polymers, undermining 
the quality of food5, while the physical properties of 
the oils and fats are changed6. In order to minimize 
such effects, the food industry makes use of antiox-
idants7. The important antioxidants used in the food 
industries are butylated hydroxyanisole (BHA), bu-
tyl-1-4-hydroxytoluene (BHT), tert-butyl hydroqui-
none (TBHQ), and propylgallate (PG), of which 
TBHQ has been found to be the most effective anti-
oxidant8,9.

According to USDA code of Federal Regula-
tions, ‘antioxidants’ are substances used to preserve 
fats, oils, and foods by retarding deterioration, ran-
cidity or discolouration due to oxidation. Edible oils 
with unsaturated fatty acids, especially polyunsatu-
rated fatty acids, are more susceptible to oxida-
tion10,11. The use of antioxidants is the most pre-
ferred way to inhibit lipid oxidation12 as the addition 
of polyphenols to foods and biological systems 
scavenge free radicals13–15.

The activity of an antioxidant can be estimated 
by quantitative estimation of primary or secondary 
products of autoxidationof fats16,17, oils, and foods 
or by monitoring other variables. The primary prod-
ucts such as hydro peroxides formed during lipid 
oxidation are measured by iodometric titration, 
which is generally expressed as the peroxide value 
(PV)18,19. The secondary products of oxidation occur 
when the hydroperoxide decompose to form car-
bonyl and other compounds. Of the available meth-
ods for measuring hydroperoxides decomposition *Corresponding author: E-mail: mujeedabanu@gmail.com
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products, determination of aldehydic compounds 
(Anisdine value-AV, Thiobarbituric acid val-
ue-TBA)20, measurement of total carbonyls21 or se-
lected carbonyl compounds and assessment of 
off-flavours and off-odours due to the formation of 
volatile decomposition products of hydroperoxides 
by objective and subjective means are used exten-
sively. Since these methods are time consuming and 
laborious, they cannot be employed for accepting or 
rejecting the products. Most sophisticated methods, 
such as nuclear magnetic resonance (NMR), near 
infra-red (NIR) spectroscopy, and mass spectra 
(MS) etc.,22,23,54 meet the requirements but are cost 
intensive. Therefore, a cost effective and simple an-
alytical method needs to be developed to meet the 
above requirements.

Ultrasound represents an innovative, and 
emerging technology as a destructive or non-de-
structive one. It has a frequency range of 16–100 
kHz (Power Ultrasonics) followed by a range from 
100 kHz-2 MHz representing the sonochemistry 
range, and at the end the non-destructive range from 
2 MHz up to 10 MHz25–27. Ultrasonic methods are 
simple, instantaneous, and cost-effective for the 
study of the physical characteristics of various oil 
products for quality control purposes28. Although 
limited information is available on the determina-
tion of physical properties of triglycerides by using 
the ultrasonic interferometry technique29, there is 
scarcity on its application in studying the molecular 
interaction between lipid and antioxidants.

A few studies have revealed that the measure-
ment of viscosity and density can be used to deter-
mine the oxidative stability30–32, while ultrasonic 
velocity is used to understand the molecular interac-
tions29,33,34 in the oil. However, the effect of a syn-
thetic antioxidant on the oils has not been fully elu-
cidated by ultrasonic velocity.

Palm oil (PO) with its inherent frying proper-
ties is used due to its techno-economic advantages 
over other oils and fats. Past studies have demon-
strated the frying performance of palm olein during 
continuous frying of snack foods34. Palm oil con-
tains saturated fatty acids like palmitic acid (44.3 
%), oleic acid (38.4 %) and linoleic acid (10.8 %), 
vitamin E especially tocotrienols, vitamin K and 
magnesium. The antioxidant activity of palm oil is 
due to the presence of carotenoids and vitamin E. 
Beta carotene is the reason for the yellow colour of 
the PO, it may also be an important factor for the 
free radical scavenging activity. However, palm oil 
is not very stable at high temperatures and deterio-
rates on repeated heating and/or frying.

The objectives of this research were: (i) to in-
vestigate the TBHQ activity in palm oil using ultra-
sonic velocity, density, and viscosity; (ii) to study 
the secondary parameters such as adiabatic com-

pressibility, intermolecular free length, relaxation 
time, acoustic impedance, and (iii) fatty acid profile 
by gas chromatography (GC), total polar com-
pounds (TPC), free fatty acid (FFA), and spectral 
changes in FT-IR to correlate the chemical changes 
in PO and antioxidant activity.

Experimental study

Materials

Fresh palm oil (PO) was obtained from Penta-
gon Overseas India Limited, India. TBHQ was pur-
chased from Sigma Aldrich, and AR grade chemi-
cals were used for the chemical analysis. Samples 
of palm oil (control) and palm oil with 50, 100, 150 
and 200 ppm of TBHQ were heated in an oil bath at 
a temperature of 180 °C continuously for 4 h per 
day for 4 days. As per ISO 9001:2008 norms (Indi-
an Standard Quality Management System require-
ments), 150 ppm of TBHQ is allowed in vegetable 
oils; however, the general standard for food addi-
tives allows 200 ppm (Codex 1995)50. Hence, a 
maximum of 200 ppm TBHQ has been used in this 
investigation. All measurements of heat-treated oils 
were carried out in triplicate and average values are 
reported.

Techniques

The density (ρ) of the pure oil and its mixtures 
was measured using a 10 mL specific gravity bottle, 
and distilled water was used as reference. The vis-
cosity (η) of the oil and oil-antioxidant mixtures 
were measured using an Ostwald’s viscometer im-
mersed in a temperature controlled water bath (Ad-
vance Technocracy Inc.; Ambala; India).

The ultrasonic velocity (U) of PO with and 
without TBHQ were measured using an ultrasonic 
interferometer (Mittal Enterprises; New Delhi,  India), 
at 2 MHz frequency with a tolerance of ± 0.005 %. 
The accuracy of the instrument is 0.1 m s–1.

The adiabatic compressibility (β) is defined as 
the decrease of volume per increase of pressure 
when no heat flows in or out. Such a change is re-
lated to the compressibility of the medium by fol-
lowing the thermodynamic relation;
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=  
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where, V is the volume, δv is the relative change in 
volume, and δp is the relative change in pressure. It 
can also be calculated from the ultrasonic velocity 
(U) and the density (ρ) of the oil using Newton La-
place35 equation as follows;
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The adiabatic compressibility of liquid can be 
expressed in terms of intermolecular free length 
(Lf), which is the distance between the surfaces of 
the neighbouring molecules and is given by the fol-
lowing equation;

 
1
 2 f T adL K b=  (3)

where, KT is the temperature-dependent constant, 
i.e. 201.1209 ⋅ 10–8 at 303 K.

The relaxation time is the time taken for the 
excitation energy to appear as transitional energy, 
and it depends on the temperature and impurities. 
The dispersion of the ultrasonic velocity in a mix-
ture reveals information about the characteristic 
time of the relaxation process that causes disper-
sion. The relaxation time (τ) can be calculated using 
the following equation;29
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The specific acoustic impedance (Z) is as fol-
lows:35

 Z = U ρ  (5)

where, U and ρ are the velocity and density of the 
oil, respectively.

Fatty acid by gas chromatography

Fatty acid methyl esters (FAME) of the oils 
were prepared by transesterification, according to 
AOCS method No: Ce 1–62, 199837. FAMEs were 
analyzed by gas chromatography (GC) (Fisons 
8000, Co., Italy), equipped with a hydrogen flame 
ionization detector (FID) and a fused silica capillary 
column (100 m × 0.25 mm i.d.), coated with 0.20 
μm SP2560 (Supelco Inc., Bellefonte, PA) as the 
stationary phase. The oven temperature was pro-
grammed from 140 to 240 °C at 4 min–1 with an 
initial hold at 140 °C for 5 min. The injector and 
FID were at 260 °C. A reference standard FAME 
mix (Supelco Inc.) was analyzed under the same 
operating conditions to determine the peak identity. 
The FAMEs were expressed as relative area per-
centage.

The free fatty acid (FFA) content as the per-
centage of oleic acid was determined using AFNOR 
NF T 60- 204 method.

The AOCS method Cd 20–91 was used to de-
termine total polar compounds (TPC) of oil. A chro-
matogram column (21 mm i.d. and 450 mm long) 
was filled with about 30 mL of a mixture of light 
petroleum and diethyl ether (87:13, v/v). A wad of 
glass wool was introduced at the lower end of the 
column with the aid of a glass rod. Slurry of 24 g of 

silica gel in about 80 mL of the solvent mixture was 
poured into the column. The elution solvent was 
drained through the column until its level was 10 
cm above the silica gel level. About 4 g of sea sand 
was added and the supernatant was drained down to 
the sand layer. In order to estimate TPC, 2.5 g of oil 
was dissolved in 20 mL of solvent mixture contain-
ing light petroleum and diethyl ether (87:13 v/v) at 
room temperature. The volume was then made up to 
50 mL and the resulting solution was introduced 
into the column and drained off to the level of the 
sand layer. The non-polar compounds were eluted 
with 150 mL of solvent mixture at a flow rate of 2.5 
mL min–1. TPC was calculated using the following 
equation;

 TPC (%) = [m – m1]/100

where, m1 is mass (g) of the non-polar fraction, and 
m is mass (g) of the sample containing 20 mL of 
solution added to the column.

Results and discussion

In this study, the effects of different heating 
times and different amounts of TBHQ addition on 
the thermal oxidative stability of palm oil has been 
investigated using parameters such as viscosity27,33, 
density, and ultrasonic velocity34,35. The study of 
thermal degradation and stability of the palm oil 
with antioxidant was carried out by heating the oil 
at 180 ± 5 °C for the desired time. The viscosity, 
density, and ultrasonic velocity of PO and PO with 
different concentrations of TBHQ were measured at 
30 °C.

The effects of different heating time and TBHQ 
content on density (ρ) of PO are shown in Fig. 1. 
The density of heated palm oil gradually and sub-
stantially increased with heating time. Incorporation 

29 
 

29 
 

 
Fig.1 – Variation of density as a function of heating time for control palm oil and its 

composition with different tertiary butyl hydroquinone content 

 
Fig. 2 – Viscosity as a function of heating time for the control and palm oil with different 

concentrations of tertiary butyl hydroquinone 

F i g .  1  – Variation of density as a function of heating time for 
control palm oil and its composition with different 
tertiary butyl hydroquinone content
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of 200 ppm of TBHQ into the oil caused a slight 
increase in the density values as compared to the 
unheated oil. This may be due to slight changes in 
the chemical composition of oil formulations. The 
density of PO was 887.76 kg m–3 and changed to 
919.38 kg m–3 and 904.23 kg m–3 for the heat-treated 
control oil and PO with 200 ppm TBHQ, respec-
tively. The significant change in density of the con-
trol oil may be due to severe damage of its chemical 
structure and composition.

The changes in the viscosity values as a func-
tion of heating time are plotted in Fig. 2. The vis-
cosity (η) gradually and substantially increased with 
heating time. Adding 50, 100, 150 and 200 ppm of 
TBHQ into PO led to different increments in the 
viscosity values for different oil heating times. The 
viscosity of fresh oil is 0.5785 ⋅ 10–1 N s m–2. Fig. 2 
shows that the heat-treated control oil exhibits a 
drastic increase in viscosity of 1.6523 ⋅ 10–1 N s m–2, 

whereas the oil with 200 ppm of TBHQ had the 
lowest viscosity of 0.84419 ⋅ 10–1 N s m–2 for 16 h 
heating time. The obtained results were in good 
agreement with the already publishresults28,38–40. The 
viscosity of oil increases with duration of frying 
due to oxidation, isomerization, and polymerization 
reactions. An oxidation reaction leads to the forma-
tion of carbonyl or hydroxyl groups resulting in 
flux among the molecules that in turn increases the 
viscosity33.

The ultrasonic velocity and attenuation depends 
on the physico-chemical properties of the oil41. A 
majority of the studies have used ultrasonic evalua-
tion of food, as it is more reliable than attenuation 
and related to the physical and chemical properties 
of the medium42. The variation in the ultrasonic ve-
locity with heating time is indicated in Fig. 3. After 
each heating period the ultrasonic velocity increas-
es, and thus it is possible to distinguish the two 
oils29. The changes in velocity of heat-treated oils 
are due to changes in the chemical composition of 
the oils. It was observed that the ultrasonic velocity 
increased linearly with heating time similar to the 
density and viscosity variations. The ultrasonic ve-
locity increased significantly in the control oil from 
1452 m s–1 to 1490 m s–1 after 16 h heat treatment. 
The smallest increase (1464 m s–1) in ultrasonic ve-
locity was recorded for palm oil with 200 ppm TBHQ.

Figs. 4 to 7 illustrate the interaction between 
the ultrasonic waves and the composition of oil 
molecules. The adiabatic compressibility and free 
length are the deciding factors of the ultrasonic ve-
locity in liquid systems29. The increase in the ultra-
sonic velocity was due to the decrease in the free 
length and adiabatic compressibility. The adiabatic 
compressibility and free length were found to differ 
slightly for oil with 200 ppm of TBHQ as compared 
to the changes in the base oil. The decrease in the 
values of the free length indicates that the triglycer-
ide molecule with unsaturated bonds is likely to 
collapse as a result of the oxidation process32. The 
structures of triglycerides are kept intact due to the 
presence of TBHQ41 in oil. Hence, the values of free 
length, which indicates the intermolecular distance, 
did no reduce as a result of using TBHQ.

The changes in the relaxation time of oil against 
heating time are plotted in Fig. 6. It was found that 
relaxation time increased with the heating time. The 
base oil showed greater enhancement in relaxation 
time, and its lowest increment was found in oil with 
200 ppm of TBHQ. The dispersion of ultrasonic ve-
locity in the system should contain information 
about the characteristic time, τ of the relaxation pro-
cess that causes dispersion, where, τ is in the order 
of 1  ⋅  10–11 s due to the structural relaxation pro-
cess44 and in such a situation, the molecules rear-
range due to a co-operative process45.

F i g .  2  – Viscosity as a function of heating time for the con-
trol and palm oil with different concentrations of 
tertiary butyl hydroquinone

F i g .  3  – Effect of heating time on ultrasonic velocity of the 
control and palm oil with different concentrations of 
tertiary butyl hydroquinone
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The acoustic impedance is calculated using ul-
trasonic velocity and density, and was plotted as a 
function of heating time (Fig. 7). It was found that 
the acoustic impedance was low in the oil with 
TBHQ and without heating. With increased heating 
time, the acoustic impedance increased in the base 
oil, but to a very little extent in the oil with 200 
ppm of TBHQ. The excess parameters play a major 
role in understanding the nature of intermolecular 
interactions in liquid mixtures46. The intermolecular 
free length and acoustical impedance depend upon 
the intermolecular attractive and repulsive forces. 
Excess acoustical impedance may be due to the py-
rolysis effect allowing the fitting of molecules of 
different sizes after collapsing the triglyceride struc-
ture.

The measured acoustic parameters, such as β, τ, 
Lf and Z, were correspondingly found to change to a 
large extent in the control PO. The addition of the 

antioxidant, TBHQ, allowed no breaking up of the 
molecular clustering in the oil. The interaction be-
tween the molecules of the oil occurred to a lesser 
extent, and hence, very small structural changes oc-
curred during heating in the presence of an antioxi-
dant. In the control oil, as the antioxidant activity is 
much less, a break up occurred in the molecular 
clustering, releasing several dipoles for the interac-
tion. In view of the greater interactions, larger 
changes have occurred for heat-treated oils in the 
adiabatic compressibility, intermolecular free length, 
relaxation time, and acoustical impedance. It was 
found that the stability of PO with antioxidant 
TBHQ was better even at high temperatures and af-
ter prolonged heating31,32.

Gas chromatography (GC) is a useful analytical 
technique for studying the effect of different pro-
cessing conditions on the fatty acid composition of 
oils47. Tables 1 and 2 present the results of the fatty 

F i g .  4  – Variation of adiabatic compressibility of the control 
and palm oil with different concentrations of tertiary 
butyl hydroquinone with heating time

F i g .  5  – Effect of heating time on intermolecular free length 
of the control and palm oil with different concentra-
tions of tertiary butyl hydroquinone

F i g .  6  – Variation of relaxation time of the control and palm 
oil with different concentrations of tertiary butyl hy-
droquinone as a function of heating time

F i g .  7  – Variation of acoustic impedance of the control and 
palm oil with different concentrations of tertiary bu-
tyl hydroquinone as a function of heating time
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acid (FA) profiles of PO and formulated PO, re-
spectively with heating time. The incorporation of 
TBHQ enhanced the oxidative stability of the heat-
ed oil samples. The estimated concentration of the 
unsaturated fatty acids by means of relative GC 
peak areas showed that palm oil treated with 200 
ppm TBHQ had significantly lower values in com-
parison with the base oil. The PO with 200 ppm 
TBHQ showed slight changes in the FA composi-
tion in heated oils, which reflected that antioxidant 
addition in unsaturated oils retards the degradation 
of oils. A reduction in the amount of linoleic acid 
was observed with the increase in concentration of 
oleic acid18.

The FA composition of oil has significant effect 
on its frying performance as well as on its physi-

co-chemical behaviours. The FA profile of the fry-
ing oils changed as a result of cyclization, polymer-
ization, and hydrolytic, oxidative and other chemical 
reactions promoted by frying conditions48. The lin-
oleic acid level in deep-frying oils appears to be an 
obviously negative factor in oil stability. In this 
study, changes in the FA profile of oils during fry-
ing are basically among the unsaturated fatty acids, 
whereas the saturated fatty acids are slightly in-
creased.

Pure palm oil contained myristic acid, palmitic 
acid; stearic acid; oleic acid; linoleic acid in the 
proportions of 1.7, 44.3, 4.8, 38.4 and 10.8 %, re-
spectively. The compositions of myristic acid, pal-
mitic acid, stearic acid, oleic acid, and linoleic acid, 
in heat-treated base oils changed to 4.5, 50.8, 10.9, 

Ta b l e  1  – Changes in the fatty acid composition (%) of palm oil during heating

Fatty acid
Heating time (h)

0 4 8 12 16

C14:0 1.7 ± 0.2 2.3 ± 0.3 3.6 ± 0.4 4.1 ± 0.3 4.5 ± 0.2

C16:0 44.3 ± 1.2 45.0 ± 1.1 47.1 ± 1.0 48.9 ± 0.9 50.8 ± 1.2

C18:0 4.8 ± 0.4 5.0 ± 0.5 6.7 ± 0.4 8.3 ± 0.5 10.9 ± 0.6

C18:1 38.4 ± 1.1 38.8 ± 0.9 34.4 ± 0.8 31.2 ± 0.7 27.3 ± 0.8

C18:2 10.8 ± 0.8 8.9 ± 0.7 8.2 ± 0.6 7.5 ± 0.3 6.5 ± 0.3

C18:3 ND ND ND ND ND

Total 100 100 100 100 100

SFA, % 50.8 ± 1.8 52.3 ± 1.2 57.4 ± 1.2 61.3 ± 1.1 66.2 ± 1.1

MUFA, % 38.4 ± 1.1 38.8 ± 0.9 34.4 ± 0.8 31.2 ± 0.7 27.3 ± 0.8

PUFA, % 10.8 ± 0.8 8.9 ± 0.7 8.2 ± 0.6 7.5 ± 0.3 6.5 ± 0.3

C14:0 Myristic acid, C16:0, palmitic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic acid; α-C18:3, α-linolenic acid, SFA 
saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, ND not detected

Ta b l e  2  – Changes in the fatty acid composition (%) of palm oil with 200 ppm TBHQ during heating 

Fatty acid
Heating time (h)

0 4 8 12 16

C14:0 1.7 ± 0.2 1.9 ± 0.2 2.1 ± 0.4 2.3 ± 0.2 2.5 ± 0.2

C16:0 44.3 ± 1.2 44.6 ± 1.0 45.0 ± 1.0 45.4 ± 0.9 45.8 ± 1.0

C18:0 4.8 ± 0.4 5.1 ± 0.4 7.4 ± 0.4 9.7 ± 0.5 11.4 ± 0.5

C18:1 38.4 ± 1.1 38.6 ± 0.8 36.6 ± 0.9 34.3 ± 0.8 32.8 ± 1.2

C18:2 10.8 ± 0.8 9.8 ± 0.7 8.9 ± 0.5 8.3 ± 0.3 7.5 ± 0.4

C18:3 ND ND ND ND ND

Total 100 100 100 100 100

SFA, % 50.8 ± 1.8 51.6 ± 1.2 54.5 ± 1.2 57.4 ± 1.2 61.7 ± 1.2

MUFA, % 38.4 ± 1.1 38.6 ± 0.8 36.6 ± 0.9 34.3 ± 0.8 32.8 ± 1.2

PUFA, % 10.8 ± 0.8 9.8 ± 0.7 8.9 ± 0.5 8.3 ± 0.3 7.5 ± 0.4

C14:0 Myristic acid, C16:0, palmitic acid; C18:0, stearic acid; C18:1, oleic acid; C18:2, linoleic acid; α-C18:3, α-linolenic acid, SFA 
saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, ND not detected
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27.3 % and 6.5 %, respectively, and in oil with 200 
ppm TBHQ, it changed to 2.5 %, 45.8 %, 11.4 %, 
32.8 % and 7.5 %, respectively after 16 h of heat-
ing. The frying stability of PO can be improved by 
incorporation of TBHQ, in order to reduce the 
change in linoleic and oleic acid, and consequently 
to improve their oxidative and heat stabilities. The 
data indicates that the amount of unsaturated fatty 
acid decreased gradually during repeated deep fat 
frying cycles. This may be due to oxidative and 
thermal degradation reactions during repeated deep 
fat frying cycles of the unsaturated fatty acid con-
stituents of triacylglycerols44. Better oxidation sta-
bilities were found in the formulated oils during 
repeated frying as compared to the base oil.

Formation of free fatty acids (FFA) for 
heat-treated oil is considered to be a measure of 
rancidity of oils. The percentage of FFA formed for 
repeatedly heat-treated oil is presented in Table 3. 
Initially, the base oil and the TBHQ-loaded oils had 
a similar FFA content; as the heating time continued 
the palm oil showed a higher FFA value than the 
TBHQ-loaded oils. FFA is formed due to hydrolysis 
of triglycerides and may be promoted by the reac-
tion of oil with moisture49. Addition of antioxidant 
caused a significant reduction in FFA values of PO. 
FFA content is the frequently used data to probe the 
shelf life of frying oil, but it is not recommended to 
be the only indicator.

Generally, degradation of oil during frying is 
accompanied increased polar compounds in the 
oils50. Many researchers have reported that total po-
lar compounds (TPC) are the most reliable indicator 
of oil degradation29,51. Polar compounds include all 
oxidized triglycerides, dimerized triglycerides, 
FFAs, monoglycerides, diglycerides, sterols, antiox-
idants, antifoamers, hydrogenation catalyst residues 
and soaps7. Table 3 shows the percentage of TPC 
formed during heating in PO and PO with 200 ppm 
TBHQ. Initially, the TPC contents of the base oil 
and the formulated oil were similar. The increase in 
the rate of TPC formation with heating time in the 

base oil was different from the formulated oil with 
TBHQ. After 16 h of heating, the final TPC values 
were 22.3 % in the base oil and 11.5 % in the PO+ 
200 ppm TBHQ. These parameters are indicators of 
the state of oil deterioration. These results clearly 
indicate that the PO with 200 ppm TBHQ was more 
stable chemically than PO. Polar compounds are the 
sum of non-triglycerides of oil including fatty acids, 
sterols, tocopherols, mono- and di-triglycerides, al-
cohols, aldehydes, ketones, and other soluble com-
pounds in oil that are more polar than triglycerides52. 
Polar compounds accumulate on the surface of the 
frying pan and foods during frying. Most of the poi-
sonous materials are considered to exist in the polar 
compounds of oil53 formed during oxidation. If the 
TPC exceeds 25  %, according to FDA norms, the 
oil should be disposed54. It is observed that after 16 
h of heating, polar compounds in the PO reached 
22.3 %, and this may exceed 25 % on further heat-
ing. On the other hand, PO with 200 ppm of TBHQ 
reached 11.5 %, may not have polar compounds ex-
ceeding 25 % on further heating, and hence can be 
used.

Correlation of ultrasonic velocity with total 
polar compounds and free fatty acids

As long as the ultrasonic velocity is related to 
the physical properties of the medium like viscosity 
and density, velocity should also be related to these 
chemical indicators. The relationship between the 
ultrasonic velocity and both TPC and FFA for heat-
ed PO and PO with 200 ppm TBHQ at 30 °C are 
shown in Figs. 8 and 9, respectively. The changes in 
polar compounds with the change in ultrasonic ve-
locity relationships are found to be linear with the 
regression value, R2 = 0.982 in the case of base oil, 
and R2 = 0.996 for TBHQ-treated oil29. The changes 
in FFA with change in ultrasonic velocity relation-
ships are also found to be more linear with regres-
sion value, R2 = 0.991 in the case of base oil, and R2 
= 0.983 for TBHQ-treated oil. These findings are in 
accordance with data found elsewhere29,42. These 
chemical parameters, widely considered as oil qual-
ity  indicators and polynomial fits were found when 
relating the velocity. Therefore, measurement of ul-
trasonic velocity permits an estimation of the per-
centages of polar compounds and FFA independent-
ly in the oil.

FT-IR studies

The characteristics of FTIR for fresh PO, heat-
ed PO with and without antioxidant are shown in 
Fig. 10. The band at 3010 cm−1 is attributed to  
C–H stretching vibration of the cis-double bond55. 
Strong band absorptions were observed in the region 
3000–2800 cm−1 corresponding to C–H stretching 

Ta b l e  3  – Variation of % free fatty acid and % total polar 
compounds in

PO and PO + 200 ppm TBHQ for different heating times

Heating 
time (h)

% FFA % TPC

PO PO + TBHQ PO PO + TBHQ

0 0.16 0.16 5.0 5.0

4 0.25 0.20 8.1 7.2

8 0.33 0.24 12.1 8.9

12 0.41 0.28 18.1 10.1

16 0.51 0.32 22.3 11.5
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vibrations. The stretching vibrations of methylene 
(–CH2–) and methyl (–CH3) groups can be seen  
at 2923 and 2854 cm−1, respectively. The spectral 

region between 3050 and 2740 cm−1 undergoes  
several changes during the thermal oxidation pro-
cess.

The changes in the FTIR spectra were observed 
for 16 hat 180 °C heated PO. The band at 2854 cm−1 
and the shoulder at 2960 cm−1 increases their inten-
sity and width for 16 h heated PO at 180 °C. Signif-
icant changes are noticed in heated base oil as com-
pared to the heated PO with TBHQ. Methylene and 
methyl groups are also observed at 1463 cm−1 and 
1376 cm−1 due to their bending vibrations.

Two absorption peaks observed at 1748 and 
1160 cm−1 are due to the stretching vibrations of the 
aldehyde group (C=O) and ester group (C–O) re-
spectively56. In the region of the former peak, infra-
red energy is absorbed due to the carbon-oxygen 
bonds in the oil, and it is often used for determining 
the level of oxidation.

The peak area around 1748 cm−1 is due to C=O 
bond stretching vibration. It is also interesting to 
follow the spectral changes in the C=O region 
(∼1748 cm−1). Here, the study shows changes in 
peak are at 1748 cm−1 for the heated samples. This 
observation is due to production of saturated alde-
hyde functional groups or other secondary oxida-
tion products that cause an absorbance at 1728 cm−1, 
which overlaps with the stretching vibration at 1746 
cm−1 of the ester carbonyl functional group of the 
triglycerides. When new carbonyls are formed from 
initial aldehyde and ketone compounds, the maxi-
mum absorbance is in the region between 1720 and 
1760 cm−1 resulting in a broadening of the 1748 cm−1 
band. The total amount of carbonyls formed can be 
measured by the intensity and area of the 1748 cm−1 
band. Also, it observed that height of the peaks in 
the heated PO is four times that of fresh PO at the 
regions 1463, 1376 and 1160 cm−1 and it is two 
times in the case of heated PO with TBHQ. The 

increases in the intensity of peaks indi-
cate the changes in the chemical com-
position, and in turn, it is a sign of de-
terioration47.

Conclusion

In the current study, a method has 
been developed to make use of ultra-
sonic velocity to determine the thermal 
stability of palm oil. Incorporation of 
varying amounts of TBHQ (50, 100, 
150 and 200 ppm) into PO provides 
improvements in the antioxidative po-
tency. The addition of antioxidant, 
TBHQ at the level of 200 ppm, result-
ed in the retardation of oxidative dete-
rioration of PO. Also in the present 

F i g .  8  – Change in ultrasonic velocity with % free fatty acid

F i g .  9  – Change in ultrasonic velocity with % total polar 
compounds

F i g .  1 0  – FTIR spectra of fresh palm oil, heated palm oil, and heated palm oil 
with TBHQ

38 
 

38 
 

As long as the ultrasonic velocity is related to the physical properties of the medium like 

viscosity and density, velocity should also be related to these chemical indicators. The 

relationship between the ultrasonic velocity and both TPC and FFA for heated PO and PO 

with 200 ppm TBHQ at 30 °C are shown in Figs. 8 and 9, respectively. The changes in polar 

compounds with the change in ultrasonic velocity relationships are found to be linear with the 

regression value, R2= 0.982 in the case of base oil, and R2 = 0.996 for TBHQ-treated oil 

(Izbaim 2010). The changes in FFA with change in ultrasonic velocity relationships are also 

found to be more linear with regression value, R2= 0.991 in the case of base oil, and R2 = 

0.983 for TBHQ-treated oil. These findings are in accordance with data found elsewhere 

(Izbaim 2010; Benedito et al. 2007). These chemical parameters, widely considered as oil 

quality indicators and polynomial fits were found when relating the velocity. Therefore, 

measurement of ultrasonic velocity permits an estimation of the percentages of polar 

compounds and FFA independently in the oil. 

FT-IR 

studies

4000 3500 3000 2500 2000 1500 1000

100

80

60

40

20

0

A
bs

or
ba

nc
e

Wave number cm–1

2923
2854

1748

1463

1160

1376

Palm Heated

Palm+TBHQheated

Palm Fresh

Fig. 10 – FTIR spectra of fresh palm oil, heated palm oil, and heated palm oil with TBHQ 



M. Banu et al., Radical Scavenging Activity of Tertiary Butyl Hydroquinone…, Chem. Biochem. Eng. Q., 30 (4) 477–487 (2016) 485

study, the variation in the secondary parameters β, τ, 
Lf and Z of palm oil with and without TBHQ are 
compared. It is found that the unsaturated fatty acid 
composition of the oil did not become saturated due 
to the presence of the antioxidant (TBHQ) upon re-
peated heating and at 200 ppm of TBHQ loaded for-
mulation stability is effectively retained, which is 
also in line with the general standard for food addi-
tives. These secondary parameters clearly indicate 
that the state of deterioration is worse in PO com-
pared to PO with TBHQ. Also, it was found that 
there is a linear change in the FFA and TPC along 
with change in ultrasonic velocity as a function of 
heating time. Fatty acids profile obtained by GC 
and changes in FTIR spectral regions 3050–2800 
cm−1 and 1100–1745 cm−1 supports the data obtained 
by ultrasonic studies. Palm oil with TBHQ has bet-
ter thermal stability than PO alone. Ultrasonic ve-
locity and acoustic parameters can be used to assess 
the thermal stability of PO. This methodology could 
be useful in evaluating the oxidative stability of ed-
ible oils in a simple and fast manner.
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