Utjecaj prašine koja se udise pri obradi željeza na intersticijalnu muskulaturu izoliranih pluća zabe

J. Mikšić, T. Jordanov, S. Huković

Institut za farmakologiju i toxikologiju Medicinskog fakulteta u Sarajevu

(Primljeno 15. X 1969)

Na model-sustemu izoliranih pluća ispitivan je toksični utjecaj prašine koja se stvara pri obradi željeza. Osim ispitivanja suspencije ukupne prašine, ispitivano je ovaj kemijski čistih, topljivih komponenta prašine aplikirane na alveolarnu i pleuralnu stranu. Pluća su ravnomjerno kosaksijalno stimulusirana a bio je ispitivani uzajamni utjecaj stimulacije i efekti sustance.

Prašina i posebno topljivi ioni metala, koji u obliku oksida dolaze kao njene glavne komponente, aplikiran na pleuralnu stranu dovode do spaznuma glatke muskulature izoliranih pluća i povećanja izazvanih kontrakcija. Ukoliko se spomenute sustance aplikiraju na alveolarnu stranu, kada pri obavljanju pula obično dolazi u kontakt sa sluznicom, prašina iz krcala izaziva jak spazam a prašina iz boke reakciju pluća. Od uvan ispitivanih komponenti željezo i nikol redovito dovode do spazma a magnezij i mangan do reakcije kada dođu u kontakt s alveolama pluća. Pri prosuđivanju djelovanja raznih prašina treba voditi računa ne samo o njihovom djelovanju kao faktoru pneumokonioza nego i o njihovom akutnom farmakološkom efektu.

Utjecaj prašine koja nastaje pri obradi željeza u željezari Znica ispitivan je na izoliranim plućima. Aplikirana je suspencija prašine in vitro na pleuralnu stranu pluća, uzela iz krcala, kokoare i više podripa za pripremu rude. Ustanovljeno je ranije da prašina dovodi do spaznuma glatke muskulature parenhima pluća (1)

Mechaničke reakcije pluća žabe rezultat su kontrakcije intersticijalne muskulature (2). Pomenuta reakcija može se izazvati aplikacijom raznih sustancija (3) ili električnom stimulacijom nerva (4), odnosno transmuralnom stimulacijom (5). Izolirana pluća žabe odgovaraju jednoj alveoli pluća sivasaca (2). Kavum pluća podijeljen je s niskim pregradama (6).

Izrada ovog rada pomogla je od Republičkog fonda za naučni rad SRBiH.
Pluća se mogu izvrnuti kao prst na rukavici pa se supstanse mogu aplikirati na alveolarnu ili pleuralnu stranu. Taj model-sistem za ispitivanje djelovanja udahnutog materijala na gliktu muskulaturu pluća uzet je u cilju da se ispituju efekti iona metalna koji se pojavljuju kao najvažnije komponente prašine u pogonu Željezare. Cilj je ovog rada da se pokaže djelovanje prašine in toto, njenih najvažnijih 8 komponenata aplikiranih na pleuralnu i alveolarnu stranu izoliranih pluća, koja su simultano ravnomojno električki stimulirana.

METODA

Pluća se uzimaju od žaba (Rana ridibunda). Poslije dekapitacije i otvaranja grudnog koša kroz larinks se uvodi platińska žica u kavum pluća i veže. Kad se žele suspendirati pluća da bi se supstancja mogla aplicirati na alveolarnu stranu, pluća se izvrnu kao prst na rukavici. Izmjenje pluća vrši se pincetom uvučenom u kavum povlačeći vrh pluća prema van.

Pluća se suspendiraju u posudu za izolirane organje, u kojoj je otopina slijedećeg sastava: NaCl 6 g; KCl 0,42 g; NaHCO₃ 0,30 g i CaCl₂.6H₂O 0,47 g u 1 litri redestiliran rastećata vode. Otopina je konstantne temperature 37°C ± 0,5°C i kroz nju prolaze mjehuriči karbogloben (95% O₂ , 5% CO₂). Vrh pluća povezan je koncem frontalnom pisaljkom. Opterećenje je 0,5 g, a povećanje na pisaljci 1:6. Električni stimulus ostvaruje se puštanjem kvadratičnih submaximalnih stimulijsa preko platinskog štapića u kavum pluća na platinski štapić zamocen u otopinu. Električni parametri su: 15 Hz, duljina 2 m/sek, daju se svake 4 minute kroz 10 sekundi.

Upotrijebljene supstanse su: niklov klorid (NiCl₂ · H₂O), željezni klorid (FeCl₃ · 6H₂O), aluminijev klorid (AlCl₃ · 6H₂O), kalcijev klorid (CaCl₂ · 6H₂O), magnezijev klorid (MgCl₂ · 6H₂O), manganov klorid (MnCl₂), kromov trioksid (Cr₂O₃) i silicijev oksid (SiO₂).

REZULTATI

a) Utjecaj električne stimulacije

1. Pluća žabe se ravnomjerno kontrahiraju pri konstantnim električnim podražajima. Ako je elektroda uvučena u tkivo pluća a pleuralna strana izložena u posudi za izolirane organje, kontraktije su ravnomjerno, ali su reakcije na električne stimuluse mnogo podložnije promjenama koje nastaju drmanjem, isparanjem ili dodavanjem raznih supstanca.

2. Efek električne transcuralne stimulacije mnogo je manje podložan promjenama ako su pluća izvrnuti. Taj, ako je elektroda postavljena na pleuralnu stranu, a sluznica izložena otonini. Visina izazvanih kontraktacija s konstantnim električnim stimulusom mnogo se manje mijenja promjenom eksperimentalnih uvjeta ili dodavanjem raznih supstanca.
b) Utjecaj suspendirane prašine uzete iz raznih pogona:

1. Prašina uzeta iz krećne peći (73,87% CaO i 6,01% SiO₂) koja je injicirana u koncentraciji od 50 μg/ml na alveolarnu stranu dovodi do snažnog spazma plućne muskulature i smanjuje relativnu visinu kontrakcije. Nakon ispijanja efekti stimulacije se vrlo smero vraća na kontrolnu vrijednost.

2. Prašina uzeta iz nove valjauice - gdje se više obuđa kvalitetnog čelika - u kojoj je glavni sastojak željezo (64,77%) aplicirana je na alveolarnu stranu pluća u suspendiriji 0,5 mg/ml. Ona dovodi do povećanja spazma i do povećanja relativne i apsolutne visine kontrakcije.

3. Prašina uzeta iz koksarca (rasporedivač uglja) izazvala je relaksaciju pluća aplicirana u koncentraciji suspendirije 0,5 mg/ml na alveolarnu stranu pluća.

4. Prašina uzeta iz rude sinter VP, grubu priprema, data je u suspendiriji 0,5 mg/ml na alveolarnu stranu. Glavne komponente prašine su: Fe₂O₃ 32,73%, Fe 22,89%, CaO 16,22%, SiO₂ 10,60%, MnO 3,29%, Al₂O₃ 3,17%, Mn 2,59%, MgO 2,20%. Ona izaziva slab povećanje to numa i izazivanih kontrakcija.

5. Prašina uzeta iz rude sinter I je po kvalitativnom sastavu slična sastavu prašine navedene pod br. 4. Aplicirana u istoj koncentraciji na alveolarnu stranu izaziva također lagan spazam i povećanje izazivanih kontrakcija.

6. Prašina uzeta iz čeličane II (rad livne jame prve nagibne peći) ima slijedeće glavne komponente: SiO₂ 24,04%, Fe₂O₃ 21,51%, Al₂O₃ 20,20%, Fe 15,25%, MgO 9,71%, CaO 0,08%, MnO 1,70%, Mn 1,23% i Cr₂O₃ 1,17%. Aplicirana na alveolarnu stranu u suspendiriji 0,5 mg/ml izaziva povećani spazam plućne muskulature i povećanje izazivanih kontrakcija.

c) Utjecaj topljivih iona metala koji se pojavljuju kao najvažnije komponente prašine raznih pogona željezare

1. Željčani klorid (0,1 mg/ml) apliciran na pleuralnu ili alveolarnu stranu izaziva povećanje spazma intersticijalne muskulature i smanjenje relativne visine kontrakcije. Aplikiran na alveolarnu stranu (sl. 1) mora se dati u 10 puta većoj koncentraciji da bi se dobio isti efekt kao kada je dat na pleuralnu stranu.

2. Niklov klorid (0,1 mg/ml), slično željezu, apliciran na pleuralnu i alveolarnu stranu izaziva povećanje spazma, a smanjuje relativnu visinu kontrakcije. Da se dobije isti intenzitet djelovanja, treba ga aplikirati u 5–10 puta većoj koncentraciji na alveolarnu stranu nego na pleuralnu.
Tablica 1

Reakcija intersticijalne muskulature izoliranih pluća žabe na pleuralnu i alveolarnu aplikaciju topljivih iona metala koji u obliku oksida dolaze kao komponente prašine iz zeničke željezare

<table>
<thead>
<tr>
<th></th>
<th>Broj eksperimenata</th>
<th>Pleuralna aplikacija</th>
<th>Alveolarna aplikacija</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kontrakcija</td>
<td>relaksacija</td>
<td>kontrakcija</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>relaksacija</td>
</tr>
<tr>
<td>FeCl₃ - 6H₂O</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>MgCl₂ - 6H₂O</td>
<td>9</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>AlCl₃</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ukupno</td>
<td>38</td>
<td>35</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Sve ostale supstance – magnezijev, manganov i aluminijev klorid te kromov trioksid i silicijev oksid – aplicirane na pleuralnu stranu (50–100 μg/ml) izazvale su spazam alveolarno intersticijalne muskulature pluća i smanjenje relativne visine kontrakcije (tablica 1, slika 2 a).

4. Magnezijev i manganov klorid dati na alveolarnu stranu izazvali su relaksaciju parenhimatozne muskulature pluća i povećanje efekta električne stimulacije (sl. 2 b).

5. Kromov i silicijev oksid dati na alveolarnu stranu nisu dovodili do konstantne reakcije. U nekim slučajevima su dovodili do relaksacije, a u drugim do spazma.

DISKUSIJA

Suspenzije prašine date na alveolarnu stranu pluća izazivaju u svim slučajevima, osim u jednom, povećanje spazma muskulature pluća. Izuzetak je prašina uzeta iz kokare, koja je dovela do relaksacije intersticijalne...
Sl. 1. Registracija kontrakcije izoliranih pluća izazvane submaksimalnom električnom transmuralnom stimulacijom pluća žabe (15 Hz, 2 ms, svake 4 minute u trajanju od 10 sek.). Kod točaka Fe dodato je u posudu 0,1 μg/ml željeznog klorida na alcocilarnu stranu.
Sl. 2. Registracija kontraktije izoliranih pluća izazvane submaksimalnom električnom transmuralnom stimulacijom pluća (15 Hz, 2 ms/kv., svake 4 min. u trajanju od 10 sek.). Kod točke je injicirana, a kod strelice isprana substanca a) MnCl₂ 50 μg/ml na pleuralnoj strani, b) MnCl₂ 250 μg/ml na alveolarnoj strani.
Utjecaj željezne prašine na izoliranu pluću žabe

Cijalne muskature uz istovremeno povećanje izazvanih kontrakcija. Ovaj način na model-sistemu ukazuje na ispitivana prašina može izazvati spastičke reakcije pluća i sljedstvenu tonuše, spastičku respiraciju.

Ioni metala koji predstavljaju najvažnije komponente prašine uzete iz pogona 1) krečne peći, 2) nove valjonaice, 3) koksaere, 4) rude (sinter) v r grune pripreme, 5) rude sinter i 6) čeličane II izazivaju promjene tonusa i izazvanih kontrakcija intersticialne alveolarnje muskature pluća. Spojevi željeza, nikla, aluminija, kroma, siličija, mangana i kalija, apsorbišu u obliku otopince ili suspenzije na pleuralnu stranu pluća, dovode do spazma glatke muskature i smanjuju relativne visine izazvanih kontrakcija (1, 5). Ovakav efekt na model-sistemu izoliranih pluća ukazuje na to da spomenuta komponenta može dovesti do spazma glatke muskature bronhiola i alveola in situ i sljedstvenu tonuše, do otežanog spastičkog disanja. Rijetko je, međutim, mogućnost da spomenute substancije dođu u kontakt s receptorima na pleuralnoj strani. Mnogo je veća izloženost sluznicu pluća i bronhiola prašini za vrijeme rada u prašini. Model-sistem za toksiološka ispitivanja djelovanja supstanca na alveolarnu stranu su izvremena pluća (kao prst na rukavici) i izlaganje sluzničke strane otupini, u koju se injiciraju ispitivane supstance (7).

Željezo i nikl uvijek, a aluminijev klorid ponekad, dovode do spazma muskature pluća. Spazam, također uzrokuje oksid kroma i siličija u skoro 50% sluješjeva. Sve ovo ukazuje na to da prašina spojeva metala može uzrokovati spastičke promjene pluća in situ i dovesti do otežane respiracije ukoliko se udahne u dovoljnoj količini i dođe na sluznicu bronhiola i alveola. Proizlazi da prašine metala i njihovih spojeva, osim što djeluju kao strana tijela i, eventualno, kao uzročnici pneumokonioze, mogu izazvati akutna farmakološka djelovanja. Najčešće spazam.

Prema nekim, željezo izaziva samo benignu pneumokoniozom i neka djelovanja na re spiraciju (9). Postoji podaci da mješana prašina može smanjiti akutna farmakološka djelovanja pojedinog komponenta, što je složena prašina može smanjiti razvoj fibroze. Najefikasnija je aluminijeva prašina koja usporava silikozu (9, 10). Primjena aluminijeva prašine kao liječica za silikozu nije, međutim, dala dobro rezultate (11).

Utjecaj prašina i iona metala, koji su u obliku oksida (i), komponente tih prašina, razlikuje se ne samo po intenzitetu djelovanja nakon aplikacije na pleuralnu ili alveolarnu stranu. Aplicirane na pleuralnu stranu (sl. 1) sve su prašine i iona metala koji dolaze kao njihove komponente dovele do spazma; obratno, apicirane na alveolarnu stranu raškoljovale su se sa obzirom na pravac djelovanja. Željezo i nikl uvijek su dovodili do spazma, a mangane i magnezij do relaksacije pluća.

ZAKLJUČAK

Prašine uzete iz pogona Željezare u Zenici: 1) krečne peći, 2) nove valjonaice, 3) koksaere, 4) rude V P - gruba priprema, 5) rude sinter I i 6) čeličane II apicirane su in toto na alveolarnu i pleuralnu stranu
izoliranih pluća. Ioni metala koji su komponente pojedinih prašina također su aplicirani na pleuralnu i alveolarnu stranu izoliranih pluća. Pluća su transmurarno električki stimulirana u konstantnim intervalima i jačinama.


Literatura


Zusammenfassung

EINFLUSS DES EINGEATMETEN STAUBES, BEI VERARBEITUNG DES EISENS, AUF DIE INTERSTITIALMUSKULATUR DER ISOLIERTEN FROSCHLUNGE

Die toxische Wirkung des Staubes, der sich während der Eisenvorarbeitung bildet, wurde an isolierter Lunge die als Modell System diene untersucht. Neben der Untersuchung der gesamten Staubauspension, wurden auch einige (3) an die alveolare und pleurale Seite applizierte chemisch-reine Staubkomponenten untersucht. Die Lunge wurde gleichmässig kontrazial stimuliert und der Einfluss der Stimulation und der Substanzeinflüsse geprüft. Der Staub und besonders seine Hauptkomponenten die, an pleuraler Seite appliziert wurden, führten einerseits zum Spasmus der glatten Muskulatur der isolierten Lunge und andererseits zur Vergrösserung der herbeigeführten Kontraktionen. Wenn die genannten Substanzen an die alveolare Seite appliziert wurden, rief der Staub der Kalkgrube (Krecan) einen starken Spasmus hervor, weil der Staub aus der "Kokskez" (Koksara) eine Relaxation der Lunge herbeiführte. Von acht geprüften Kom-
pouchnicu Eisen und Nickel führen, in der Regel, zum Spasmus, und Magnesium und Mangan zur Relaxation wenn sie mit den Lungenalveolen in Kontakt kommen. Bei der Beurteilung der Wirkung verschiedener Stauben muss man nicht nur von ihrer Wirkung als Faktor der Pneumokoniose Rechnung führen, sondern auch von ihren akuten pharmakologischen Effekt.

Institut für Pharmakologie und Toxikologie
Medizinische Fakultät, Sarajevo

Eingegangen am
Gastro mucin® kapsule

Sredstvo za suzbijanje hiperlipidemije

- terapija sekundarne hiperlipidemije kod kardiovaskularnih oboljenja, dijabetesa, hipotireoze
- profilaksma infarkta miokarda i aterosklerotskih promjena na krvnim žilama
- dobro se podrzava, nesoksićan je i bez kontraindikacija.

Oprema: 60 kapsula