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Abstract: What Kirchhoff actually did concerning spanning trees in the course of his classic paper in the 1847 Annalen der Physik und Chemie 
has, to some extent, long been shrouded in myth in the literature of Graph Theory and Mathematical Chemistry. In this review, Kirchhoff’s 
manipulation of the equations that arise from application of his two celebrated Laws of electrical circuits — formulated in the middle of the 
19th century — is related to 20th- and 21st-century work on the enumeration of spanning trees. It is shown that matrices encountered in an 
analysis of what Kirchhoff really did include (a) the Kirchhoff (Laplacian, Admittance) matrix, K, that features in the well-known Matrix Tree 
Theorem, (b) the matrix G encountered in the theorem of Gutman, Mallion & Essam (1983), applicable only to planar graphs, and (c) the 
analogous matrix M that arises in the Cycle Theorem (Kirby et al. 2004), a theorem that applies to graphs of any genus. It is concluded that 
Kirchhoff himself was not interested in counting spanning trees, and, accordingly, he did not explicitly do so. Nevertheless, it is shown how the 
modulus of the determinant of a certain matrix (here denoted by the label C') — associated with the linear equations arising from application 
of Kirchhoff’s two Laws — is numerically equal to the number of spanning trees in the graph representing the connectivity of the electrical 
network being studied. Kirchhoff did, however, invoke the concept of spanning trees, introducing them in a complementary fashion by referring 
to the chords that must be removed from the original graph in order to form such trees. It is further emphasised that, in choosing the cycles in 
the network being studied, around which to apply his circuit Law, Kirchhoff explicitly selected what would now be called a ‘Fundamental System 
of Cycles’. 
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INTRODUCTION 
N 1845, Gustav Robert Kirchhoff (1824–1887), a 21-year-
old undergraduate describing himself as a member of 

the physikalischen Seminars at the Albertina University of 
Königsberg in East Prussia (now the Russian city of 
Kaliningrad[1,2]), wrote an 18-page exposition on the theory 
of electrical networks and published it, styling himself 
‘Studiosus Kirchhoff’, in the Annalen der Physik und 
Chemie[3] (also then known, because of its editor, as 
‘Poggendorff’s Annalen’). Almost at the very end of this 
somewhat lengthy (and by no means easily comprehen-

sible) paper[3] (on pp. 513 and 514 of it), Kirchhoff quite 
suddenly enunciated his celebrated two Laws governing 
the currents and the electromotive forces in a classical 
electrical network — Laws which have long-since passed 
into the literature and into the folklore of pre-university 
Physics, featuring, as they invariably do, in elementary text-
books (e.g., Refs. [4–8]), and being firmly established, for 
more than a century, as a part of our common scientific her-
itage that is ‘... well-known by every schoolboy’. Over the 
last eighty years, these Laws have been applied in a variety 
of ways outside the realms of macroscopic electrical 
networks: for example, at the microscopic level, to ring 
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currents in conjugated systems (e.g., Refs. [9–12]) and, 
more recently, they have even been invoked in the contexts 
of metabolic networks (e.g., Ref. [13]) and of applying the 
principle of maximum entropy production (e.g., Ref. [14]).  
 These Laws, which refer to any general electrical net-
work, no matter how complicated, across which a potential 
difference is maintained, may be expressed as follows: 

I. Around any closed cycle (‘geschlossene Figur’)[3,15] in 
the network the algebraical sum of the potential dif-
ferences is zero, irrespective of whether these poten-
tial differences arise from the fall of potential caused 
by current flowing across a resistance situated in the 
cycle or from an electromotive force acting around 
the cycle.  

 The qualification ‘algebraical’ here denotes that if 
the current in a particular arm (wire) that forms part of the 
cycle is assumed to be flowing in the opposite sense to that 
in which the cycle is being traversed then the contribution 
of ‘(current × resistance)’ from that arm is to be counted 
negatively in the total sum of such contributions. Likewise, 
the contribution of any electromotive force encountered 
within the cycle may also be positive or negative (as appro-
priate), according to how its terminals are connected (‘in 
series’) within that cycle. In a slight modification of 
Kirchhoff’s notation,[15] if the cycle in question is traversed 
by passing through p arms of the network that are labelled 
k1, k2, ... , kp, and if the intensities of the currents in these 
individual arms are denoted by

1 2
, , ... ,

pk k kI I I , the respective 
resistances in these arms by 

1 2
, , ... ,

pk k kw w w , and the (q) 
electromotive forces in series around the cycle are called 
E1, E2, ... , Eq, then Kirchhoff’s First Law may be stated (with-
out use of the ‘sigma’ notation — likewise eschewed by 
Kirchhoff[3]): 

 
1 1 2 2 1 2... ...

p pk k k k k k qw I w I w I E E E       . 

II. Currents at any junction (‘Punkte’)[3,15] of wires are 
conserved — i.e., the total current entering a given 
junction is equal to the total current leaving it.  

 (A similar convention as to the signs of the currents 
applies as in Law I — currents passing into a junction having 
one sign, and those passing out of it, another.) If (s) wires 
that are labelled λ1, λ2, ... , λs and that bear currents 

1 2
, , ... ,

sλ λ λI I I meet at a point then Kirchhoff’s Second Law 
may be stated: 

 
1 2

... 0
sλ λ λI I I    . 

 (It may be noted that, in Ref. [3], the labellings of the 
two Laws as ‘I’ and ‘II’ are reversed; in fact, nowadays, the 
Laws usually are labelled (e.g., Refs. [4–8]) as in Ref. [3]; 
however, in his subsequent memoir[15] — which is the foun-
dation on which the present review is based — Kirchhoff 

himself interchanged this order and labelled his two Laws 
as was done above. Accordingly, in this account, and thus 
contrary to modern usage, we follow Kirchhoff’s second la-
belling.[15]) 
 It was two years later, in 1847, that Kirchhoff fol-
lowed up with this second paper[15] in the same journal — 
this time under his professional ‘adult’ name, G. Kirchhoff 
— and this second work made seminal contributions to the 
two ostensibly disparate fields of (i) fundamental systems 
of cycles and spanning trees in graphs, and (ii) the suffi-
ciency conditions for the independence of a set of linear 
equations. Unlike his 1845 paper[3] which, as noted, is sel-
dom now cited and has just become part of the elementary 
literature — e.g., Refs. [4–8] — Kirchhoff’s second pioneer-
ing publication on electrical networks[15] is still widely re-
garded as a primary source and it is still frequently referred 
to directly in the research literature.  
 However, despite the evident and continued interest 
in this paper,[15] and the long availability of a complete[16] 
and of a partial[17] English translation of it, what Kirchhoff 
actually said and did in his 1847 memoir[15] concerning 
spanning trees has itself become something of a long-
standing myth in this field. Some authors claim that 
Kirchhoff proved the (now) well-known Matrix Tree Theorem 
— e.g., Ref. [18] — while others say that this Theorem was 
only implicit in his work, or that he proved a result ‘dual to’ 
the Matrix Tree Theorem.[19–24] Still others are less 
committal and are altogether more circumspect on the 
question.[25–27] This dilemma is discussed in further detail, 
later, and its resolution will be the main aim of this paper. 
 In order to address some of these matters, we pre-
sent — in a simple and straightforward way that should be 
accessible to those without detailed knowledge of Graph 
Theory — an assessment of what Kirchhoff actually did es-
tablish as far as the enumeration of spanning trees is con-
cerned, and of how his 1847 work[15] relates to subsequent 
and, in some cases, very recent developments in this area. 
In a subject as old as this one there have naturally been 
many considerations of it before — starting with the intui-
tive but systematic and highly illuminating appraisal by 
Ahrens,[28] exactly fifty years after Kirchhoff (which moti-
vated the present account) and progressing, almost imme-
diately after that, to the formal structures of Poincaré[29] 
and Veblen.[30] We emphasise, therefore, that, in the pre-
sent work, there is certainly no intention on our part to at-
tempt to supplant previous thorough and comprehensive 
treatments — such as, for example, the formal accounts of 
Bryant,[31,32] Slepian,[33] Chen[34] and Bondy & Murty[35] — 
nor the extensive coverage in the electrical engineering lit-
erature, such as Refs. [36–42]. Rather, our emphasis here 
will be on giving a simple, easily comprehensible, exposi-
tion of the essence of the matter — illustrated, for 
convenience, by extended consideration of just one specific 
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example — and on connecting Kirchhoff’s work with late 
20th-century extensions that enable the spanning trees of a 
planar graph to be counted by considering its inner 
dual,[21,43–46] as well as with 21st-century developments con-
cerning spanning-tree counts in graphs that may, in gen-
eral, be non-planar.[47,48] Our analysis will largely be 
discursive and be focussed on the extended worked exam-
ple, just referred to; formal proofs will be provided but they 
will be relegated to the Appendix. 
 As a preparation for this, we first review (in the next 
section) three results that are relevant to our subsequent dis-
cussion: the celebrated Matrix Tree Theorem[11,18,22–27,49,50] 
(proved[27] inductively, for example, by Brooks et al.[50] in 
1940) and some more recent and, consequently, less well-
known theorems for counting spanning trees, due to 
Gutman, Mallion & Essam[21] (1983) (for planar graphs) and 
Kirby, Klein, Mallion, Pollak & Sachs[47,48] (2004) (for graphs 
of any genus). (For an example of the very latest work on 
spanning trees and their relations to graph eigenvalues, 
please see Refs. [51, 52] and the articles cited in them.) 
 

ILLUSTRATION OF THE MATRIX 
TREE THEOREM (MTT), THE 

THEOREM OF GUTMAN ET AL. 
(GME), AND THE CYCLE THEOREM 

(CT), BY MEANS OF A WORKED 
EXAMPLE 

The Matrix Tree Theorem (MTT) 
(Refs. [11, 18, 22–27, 49, 50]) 

Let D be the (v × v) degree matrix[27,53,54] of some labelled 
graph G (with v vertices and e edges), and let A be the (v × v) 
vertex-adjacency matrix of G, so labelled.[25,26,53,54] Then the 
equi-cofactorial singular matrix K = (D – A) has been called 
the Kirchhoff Matrix[11,25,26,55–57] (and it is sometimes also 
known as the Laplacian Matrix[58,59] and, by still other 
authors,[27,60,61] as the Admittance Matrix) of G. We then have 

The Matrix Tree Theorem: Any cofactor of K is equal to the 
number of spanning trees of G. 

Example: A labelled graph, G, and its Kirchhoff matrix, K, 
are shown in Figure 1. 
 Any cofactor of the matrix K will be found to have the 
value 60 which is, therefore — by virtue of this Matrix Tree 
Theorem — the number of spanning trees in (i.e., what is 
sometimes called the complexity[57] of) the network shown 
in Figure 1. 
 It may be observed that, in this particular case, the 
graph in question is small enough for this result to be veri-
fied directly by systematically considering all possibilities, 
as follows. Because the circuit rank of the graph is three, 

three edges have to be removed to form a spanning tree; 
we exhaustively consider six cases, according to whether or 
not the edges shared by neighbouring faces (‘rings’) — 
(3,8), (4,7) and (6,7) — are deleted in the process of span-
ning-tree formation: 

(i) If edges (3,8), (4,7) and (6,7) are not removed, there 
are (2 × 2 × 3) = 12 ways of forming a spanning tree. 

(ii) If edges (3,8) and (4,7) are not removed, but edge 
(6,7) is removed, there are (4 × 3) = 12 ways of form-
ing a spanning tree. 

(iii) Likewise, if edges (3,8) and (6,7) are not deleted but 
edge (4,7) is deleted, there are (4 × 3) = 12 ways of 
forming a spanning tree. 

(iv) If edges (4,7) and (6,7) are not removed, but edge 
(3,8) is removed, there are (2 × 5) = 10 ways of form-
ing a spanning tree. 

(v) If edges (3,8) and (4,7) are deleted and edge (6,7) is 
not removed, there are 7 ways of forming a spanning 
tree. 

(vi) Likewise, if edges (3,8) and (6,7) are deleted and 
edge (4,7) is not removed, there are 7 ways of form-
ing a spanning tree. 

 Summing the number of ways listed in (i)–(vi), above, 
gives the total number of spanning trees as 60, as predicted 
by the Matrix Tree Theorem. 
 It may be noted in passing that precisely three of the 
ten edges may be removed from this graph, without any 
restrictions, in 10C3= 120 ways. We have already seen that 
60 of these ways give rise to a spanning tree. Accordingly, 

              

2 1 0 0 0 0 0 1
1 2 1 0 0 0 0 0

0 1 3 1 0 0 0 1
0 0 1 3 1 0 1 0
0 0 0 1 2 1 0 0
0 0 0 0 1 3 1 1
0 0 0 1 0 1 2 0
1 0 1 0 0 1 0 3

  
   
   
 

   
  
 

   
   
    

 

Figure 1. A labelled planar graph with 8 vertices and 10 
edges, and its Kirchhoff matrix, K. 
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the spanning-tree density of this graph — as defined by one 
of us (RBM) and Trinajstić,[62] — is 60 ÷ 120 = 0.5. 
Historical Note: The precedence of the Matrix Tree Theo-
rem (MTT) is in question not just on account of Kirchhoff’s 
work.[15] It should first be noted that, contrary to what is 
inferred in (for example) Ref. [18] and unequivocally stated 
in Ref. [23] (and in many other references elsewhere — 
please see below, in this paragraph), Kirchhoff[15] did not 
explicitly invoke any matrix notation; neither did he directly 
prove the Matrix Tree Theorem. However, the determinant 
of a matrix remarkably similar to K arose when, in 1860, 
Borchardt[63] expressed the resultant of two polynomial 
equations of nth degree, φ(x) = 0 and ψ(x) = 0, in terms of 
the values that they assume at certain points when any of 
the (n+1) values 0 1, , ... , na a a is substituted for x.[64] 
Borchardt,[63] like Kirchhoff,[15] did not make explicit men-
tion of trees but he did distinguish between cyclic and non-
cyclic products of certain terms;[55] Borchardt[63] even com-
mented on the fact that the singular matrix in question 
would be equi-cofactorial. Borchardt’s paper[63] is fully dis-
cussed in Muir’s monumental work on determinants.[64] 
Moon[22] has observed that ‘Maxwell’s Rule’, known to 
James Clarke Maxwell and J. J. Thomson (1892),[65] is an 
equivalent result, as is ‘Sylvester’s Rule’ (1857),[66] known 
to Cayley[67] and to Sylvester.[66] Nevertheless, Cvetković et 
al.[27] believe that the MTT was first fully proved by Brooks, 
Smith, Stone and Tutte[50] in 1940 and, independently, by 
Trent,[68] in 1954; these same authors also point out that an 
elementary proof was presented by Hutchenreuther in the 
mid 1960s.[69] At the age of 80, Tutte documented his per-
sonal reminiscences[57] about the evolution of the proof in 
the classic paper published as Ref. [50] and Tutte’s account[57] 
throws fascinating light on the process of its development. 
Meanwhile, Fleischner[55] claims that Kasteleyn[70] attributes 
the theorem to Kirchhoff,[15] whilst Harary and Palmer[71] 
credit Bott and Mayberry[72] with it, at the same time saying 
that the MTT is implicit in Kirchhoff’s work;[15] Fleischner[55] 
likewise asserts that ‘... a careful study...’ of Ref. [15] shows 
that the MTT is implicit in Kirchhoff’s second paper.[15] 
Quoting Muir,[64] Weinberg[37] and Chen,[34] Moon[22] has 
opined that Kirchhoff[15] gave a result dual to the MTT, 
involving a sum ‘... over the products of edges forming the 
complement of a spanning tree’ (by which is presumably 
meant those edges that are frequently called ‘chords’.[32,47]) 
In addition to referring to some of the proofs already 
mentioned, Moon, in his classic book,[22] has stated that the 
MTT has been proved by Lantieri,[73] Okada & Onodera,[74] 
Uhlenbeck & Ford,[75] Dambit,[76] and Rényi.[77] For further 
details on these somewhat tangled historical aspects the 
reader is referred to Chapter 5 (pages 41 and 42) of the 
monograph by Moon,[22] to the footnote on page 38 of the 
book by Cvetković, Doob, & Sachs,[27] and to footnote 18 (on 
page IX.73) and footnote 21 (on page IX.76) of the treatise 

by Fleischner.[55] It is to establish precisely what it was that 
Kirchhoff actually did in his second paper (Ref. [15], 
published in 1847) that is the main purpose of this review. 

The Theorem of Gutman, Mallion & 
Essam (GME) 
(Refs. [21, 44–46]) 

Let G be a planar graph, and let G+ be its complete 
(‘geometric’[21,43,76,78,79]) dual. Now delete the infinite-face 
vertex of G+ and all the edges incident upon it. The resulting 
graph, G*, is called the inner dual of G. Another way of 
constructing the inner dual is as follows, and the algorithm 
about to be described is illustrated (in Figure 2) by its 
application to the planar graph shown in Figure 1 (and 
Figure 2(a)), where the several vertices of G are denoted by 
full, solid circles. Place a point (denoted by an open circle in 
Figures 2(b) and 2(c)) inside each of the closed, finite regions 
(which are also known as rings, faces or patches) of G; this 
set of points will constitute the vertices of G* (depicted, as 
stated, by open circles). Now join by edges all pairs, i and j, 
of these vertices if and only if the enclosed regions of G 
within which lie the vertices i and j of the inner dual G* are 
adjacent in G (that is, have an edge in common in G). 
Furthermore, such an edge in G* is drawn between vertices 
i and j for every edge that is shared by the faces of G within 
which lie the vertices of G* when G* is constructed by the 
algorithm described (and illustrated in Figure 2(b)). Finally, 
the skeleton of the original graph G is discarded and the 
vertices of G* are then conveniently — though arbitrarily 
— labelled (see Figure 2(c)). 

The Theorem of Gutman, Mallion & Essam (1983)[21] 

The number of spanning trees in a connected, planar graph 
G is given by 

det ( * *) .B A  

 Here, A* is the vertex-adjacency matrix[53,54] of the 
labelled inner dual G*, and B* is a diagonal matrix with 
diagonal elements b1, b2, ... , bi, ... , bμ, where bi is the 
number of edges in the boundary of the face of G that is in 
1–1 correspondence with the vertex i of G* which, in all, 

 

Figure 2. Construction of an inner dual in the context of the 
theorem of Gutman, Mallion & Essam.[21] 
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has μ vertices. For example, in the inner dual (Figure 2(c)) 
of the graph G depicted in Figure 1, vertex 1 of G* originally 
lay within a four-membered ring of G when that inner dual was 
constructed by the algorithm just described (see Figure 2(b)), 
vertex 2 of G* was within the five-membered region of G, 
and vertex 3 of G* is in 1–1 correspondence with the other 
four-membered ring of G. Furthermore, the left-hand four-
membered ring and the five-membered ring of G have two 
edges in common, and the region of G that is of length five 
and the right-hand region of length four share a single edge 
in G. From all this information, the matrix G = (B* – A*) 
featuring in the theorem of Gutman et al.[21,44–46] is thus: 

4 2 0
2 5 1 ,

0 1 4

 
    
  

G  

of which the determinant is again 60, thereby confirming 
the value for the complexity57 of G (Figure 1) found, above, 
by means of the Matrix Tree Theorem. It may be noted that, 
in this example, establishing that the complexity is 60 by 
means of GME merely involves developing a (3 × 3) deter-
minant, whereas application of the MTT necessarily invol-
ved evaluating a (7 × 7) determinant. It should also be men-
tioned in passing that, depending on the embedding, the 
matrix G for a given graph (in the GME approach[21]) is not 
unique[44,46] — though, for a planar graph (which are the 
only type of graphs to which this GME theorem is 
applicable), the modulus of det G is unique. 

The Cycle Theorem (CT) — the Theorem 
of Kirby, Klein, Mallion, Pollak & Sachs 

(2004) 
(Refs. 47,48) 

The theorem of Gutman, Mallion & Essam[21] (GME) relies 
on the fact that, for a planar graph, the number of spanning 
trees in the graph is equal to the number of spanning trees 
in its complete (geometric) dual — see, for example, Ref. 
[21], p. 65 of Ref. [22], Refs. [76–78] and p. 38 of Ref. [79]. 
Consequently, this theorem is in general applicable only to 
planar graphs.[46] Subsequently, Kirby et al.[47] proposed 
what they call the Cycle Theorem (CT), applicable to graphs 
of any genus. As with GME, the Cycle Theorem frequently 
gives rise to a determinant of smaller size ((μ × μ)) than the 
one (of size (v – 1) × (v – 1)) that would be encountered if 
the MTT were applied to the same problem; (μ ≤ v – 1, if the 
average degree of the graph ≤ 44 v , as is often the case 
with graphs of chemical interest). The Cycle Theorem, in its 
original form,[47] is formally applied as follows. First, for a 
given vertex-labelled graph (such as, for example, that in 
Figure 1), a set of edge orientations may be (arbitrarily) 
assigned — as is shown, for example, in Figure 3, for the 
edges a–j of the graph depicted in Figure 1. 

 Next, a set of arbitrarily-oriented cycles (that is, 
circuits with a sense of direction) is selected; (these will be 
described in more detail shortly.) Kirby et al.[47] then 
defined the (μ × e) matrix Z to be a cycles → edges 
incidence-matrix, and the matrix M to be the product ZZT. 
Kirby et al.[47] discussed three types of cycles sets, which 
they called fundamental, independent and patch. (For a 
convenient summary of this please see p. 49 of Ref. [54].) 
These are as follows: 

(1) Suppose a spanning tree is selected — for example, 
if, from the graph depicted in Figure 3, the edges a, 
d and j were deleted, then the spanning tree 
illustrated in Figure 4 (below) would be created. 

  If, in such a spanning tree, the removed edges 
(the ‘chords’[32,47] of the spanning tree) were then re-
inserted, separately and one at a time — with all pre-
viously re-inserted chords again being removed 
before the re-insertion of another — a unique set of 
cycles would be obtained, which is called[28] a funda-
mental system of cycles (e.g. Ref. [80]). The process is 
illustrated for the spanning tree in Figure 4 by the cycles 
depicted in Figure 5 (at the top of the next page). 

  These cycles are distinct, and their number is 
equal to μ, the circuit rank of the graph.[80] If (as 
here) they are assigned an arbitrary direction, they 
are called a fundamental system of cycles (rather 
than circuits). These are explicitly the sorts of cycles 
that Kirchhoff adopted in Ref. [15]. Though he chose 
them, Kirchhoff himself did not use that actual name 
for such circuits/cycles but, as early as 1897 
(precisely fifty years after Kirchhoff’s work being 

 

Figure 3. The labelled graph in Figure 1, with labelled edges 
and arbitrarily assigned directions. 
 

 

Figure 4. A spanning tree of the graph depicted in Figure 3. 
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discussed here[15]), Ahrens[28] made explicit reference 
(in German) to a ‘“Fundamentalsystem von Kreisen”’. 

(2) If arbitrary linear-combinations of such fundamental 
cycles are taken, the resulting system is called an 
independent set of cycles. (Here, the word ‘inde-
pendent’ is used in the sense of a vector space;[47] a 
fundamental system of cycles is also, self-evidently, 
a set of independent cycles, in the meaning intended.) 

(3) If the graph under study is planar and cycles that run 
around each of the several faces (finite regions[47]) of 
the graph are selected, these are termed patch cycles. 
Patch cycles for the planar graph shown in Figure 3 are 
depicted in Figure 6 (at the bottom of this column). 

 (Note that all of (1), (2) and (3) are guaranteed to be 
independent sets in the sense stated: (1) and (3) are, how-
ever, special cases of such sets of independent cycles). 
 Kirby et al.[47,48] then defined the matrix M as being 

M = ZZT 

and, provided that the selected set of cycles is either fun-
damental (see (1), above) or patch (see (3), above), the 
Cycle Theorem simply states that 

t(G) = det M, 

where t(G) denotes the number of spanning trees in the 
original graph G. If the set of cycles used is ‘independent’, 
but not ‘patch’ or ‘fundamental’, the statement of the Cycle 
Theorem is more complicated and involves division by the 
determinant of the matrix U discussed in Ref. [47] or of the 
matrix M* discussed in Ref. [48]; det U (or det M*) is 1 in 
certain situations and different from 1 in others. As we are 

nowhere going to consider such sets of cycles in this discus-
sion, we do not pursue this aspect any further, and, accord-
ingly, only the more-restricted version of the Cycle 
Theorem, quoted above, is adopted here. As Kirchhoff[15] 
explicitly chose fundamental[28] sets of cycles (see (1), 
above), this more-limited version of the Cycle Theorem is 
all that is relevant for our present purposes. 
 We here give applications of the Cycle Theorem to 
the graph shown in Figure 1. A fundamental system of 
cycles is illustrated in Figure 5 (above). The appropriate 
cycles → edges incidence-matrix Z[47,54] may be generated 
from the following table: 

α 0 0 0 1 1 1 1 0 0 0
.

β 0 0 1 0 0 1 1 1 0 1
γ 1 1 1 0 0 1 1 1 1 0

a b c d e f g h i j
   




 

 From this, 

T

4 2 2
2 5 4 ,
2 4 7

  
  
 





M ZZ  

the determinant of which is 60, in agreement with previous 
estimates.  
 A set of patch cycles is illustrated in Figure 6 (at the bot-
tom of the opposite column). The appropriate cycles → edges 
incidence-matrix Z for these may be obtained from the table: 

α 0 0 0 1 1 1 1 0 0 0
.

β 0 0 1 0 0 1 1 1 0 1
γ 1 1 0 0 0 0 0 0 1 1

a b c d e f g h i j
   




 

 From this, 

T

4 2 0
2 5 1 ,

0 1 4

 
    
  

M ZZ  

the determinant of which is again 60, in agreement with 
previous estimates. (Note also that, for this planar graph, 
the matrix M arising from an application of patch cycles is 
the same as the matrix G that featured when we earlier ap-
plied the theorem of Gutman, Mallion and Essam;[21] this is 

 

Figure 5. The fundamental system of cycles associated with the spanning tree illustrated in Figure 4. 
 

 

Figure 6. Patch cycles associated with the labelled graph 
depicted in Figure 3. 



 
 
 
 E. C. KIRBY et al.: Kirchhoff & Spanning Trees 409 
 

DOI: 10.5562/cca2995 Croat. Chem. Acta 2016, 89(4), 403–417 

 

 

 

no coincidence and it will in fact always be the case when a 
planar graph is being dealt with, as was emphasised and 
shown in Ref. [47]). 
 Although, in this discussion, we shall not be using 
sets of independent cycles that are neither fundamental 
nor patch, we nevertheless, for completeness, illustrate 
such a set in Figure 7 (above). 
 The table for forming the Z-matrix associated with it is 

α 0 0 1 1 1 0 0 1 0 1
.

β 1 1 1 0 0 1 1 1 1 0
γ 1 1 1 1 1 0 0 1 1 0

a b c d e f g h i j
  

  

 

 For this,  

T

5 2 4
2 7 5 .
4 5 7

 
   
 
 

M ZZ  

 As it happens, det M = 60 — what we already know 
to be the ‘right answer’ but, here, this is fortuitous (and 
could not necessarily have easily been predicted in ad-
vance) and this circumstance arises because, on this occa-
sion, the absolute value of det U, defined in Ref. [47], does 
in fact turn out, in practice, to be numerically equal to 1. 
 

KIRCHHOFF’S SOLUTION OF AN 
ELECTRICAL NETWORK 

After these preliminaries, we now illustrate Kirchhoff’s 
work in his second memoir[15] by applying his analysis to the 
currents flowing in a particular electrical network, the con-
nectivities in which are represented by the graph in Figure 1. 
This graph — now, for convenience, regarded as an elec-
trical network — is again depicted, this time with (arbitrary 
but subsequently fixed) orientations, in Figure 8 (above, in 
the right-hand column). 
 In the Figure, the eight vertices are numbered (1–8), 
and the ten currents or edges — with arbitrarily assigned 
senses indicated by their respective arrows — are labelled 
by lower-case letters (a–j). The cycles considered — a set of 
three fundamental ones, of arbitrary sense, that are 
illustrated in Figure 5 — will later be labelled with lower-
case Greek letters (α, β, and γ). Resistances, likewise not 

marked in the above Figure — following Kirchhoff’s original 
notation[15] — will be denoted by wk, where wk is the 
numerical value of the resistance situated along edge k. 
Sources of electromotive forces, which would need to be 
present for currents to flow but the details of which are not 
relevant for our present purposes, are also not shown 
explicitly in Figure 8. 
 Kirchhoff[15] was, of course, concerned with solving 
the currents in an electrical network, the relevant equa-
tions being expressions of the two Laws enunciated in his 
first memoir.[3] For a network such as that shown in Figure 
8, these equations may be expressed in in matrix form as 

CI = N , 

where C is a certain matrix (characteristic of the network) 
that we shall discuss further, I is a column vector of un-
known currents, and N is a column vector whose entries are  

(a) electromotive forces for those elements of N arising 
from an application of Law I. These will be zero for 
cycles in the electrical network that do not involve a 
battery and non-zero for those cycles that do involve 
a battery; 

(b) zeros, for all the elements of N that arise from an 
application of Law II.  

For the example of the network shown in Figure 8, three 
equations arise from application of the First Law (one from 
each of the independent (fundamental) cycles α, β, and γ 
depicted in Figure 5), and eight (one from each of the 
vertices 1–8) from an application of Kirchhoff’s Second Law. 
It may be observed in passing that Kirchhoff chose, right 
from the start, to select a (minimum) set of cycles — in his 
case fundamental ones — around which to apply his First 

 

Figure 7. A set of independent cycles for the graph shown in Figure 3 that are neither fundamental cycles nor patch cycles. 
 

 
Figure 8. A Kirchhoff electrical network related to the planar 
graph depicted in Figure 1. 
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Law, but he did not initially select the minimum number 
((v – 1)) of vertices at which to apply his Second Law: he 
first discussed all v of them and then demonstrated that 
the equations arising from application of his Law II to only 
(v – 1) of the vertices are independent equations. In the 
present example, the matrix C is constructed from the 
following table (cf. Ahrens (1897)[28]): 

0 0 0 0 0 0
0 0 0 0 0

0 0 0
1 1 0 0 0 0 0 0 0 1 0
2 1 1 0 0 0 0 0 0 0 0
3 0 1 1 0 0 0 0 0 0 1
4 0 0 1 1 0 1 0 0 0 0
5 0 0 0 1 1 0 0 0 0 0
6 0 0 0 0 1 0 1 1 0 0
7 0 0 0 0 0 1 1 0 0 0
8 0 0 0 0 0 0 0 1 1 1

d e f g

c f g h j

a b c f g h i

a b c d e f g h i j
α w w w w
β w w w w w
γ w w w w w w w

   






  








 

In the above, it should be noted that 

(a) the columns correspond to edges, a–j (see Figure 8); 

(b) the first three rows arise from an application of Law 
I to the three cycles α, β, and γ (in the fundamental 
set illustrated in Figure 5); 

(c) the last eight rows arise from an application of Law II 
at each of the vertices 1–8; 

(d) a rule for signs — which is arbitrary — has been 
chosen so that, for a cycle (rows 1–3), agreement in 
sense with a current is ‘+’, and disagreement is ‘–’; 
for a vertex (rows 4–11), current away from the 
vertex in question is ‘+’, towards it is ‘–’. 

 It will be observed that, in this example, matrix C is 
of dimension (11 × 10); this is so because the upper part of 
C (comprising the first three rows, above the dotted parti-
tioning-line) is of size ([number of fundamental cycles] ×  
[number of edges]) which, in the present case, is (3 × 10); in 
general, it is (μ × e). Henceforth, in the general case, we 
shall denote by the symbol P this matrix that arises from an 
application of Law I to the cycles in question. The last eight 
rows that constitute the lower part of C constitute a matrix 
of size ([number of vertices] × [number of edges]) (that is, 
(v × e)) which, here, amounts to (8 × 10). From now on, we 
shall refer to the matrix that arises from application of Law 
II as the matrix Q. In general, therefore, if the network com-
prises v vertices, e edges and μ independent cycles, the 
matrix C is of size ([μ + v] × e). Now, Kirchhoff proved[15,28] 
that, for a one-component graph, the quantity μ (what 
would nowadays be termed the cyclomatic number or 

circuit/cycle rank) is connected[15,28,80,81] to the quantities e 
and v by the relation 

μ = e – v + 1. 

 Kirchhoff proved[15] this by arguing that his Law I 
gives rise to μ independent equations and his Law II pro-
vides — as is reasoned below — a further (v – 1) independ-
ent equations. There are thus (μ 1)v  independent 
equations altogether and so these must determine all the 
individual currents in the several arms of the network, of 
which there are e. Equating (μ 1)v   to e thus gives the 
expression for μ that was stated above. It might be noted 
in passing that in the penultimate line of the proof of this 
relation in the left-hand column of page 7 of O’Toole’s 
English translation[16] of Ref. [15], there is a misprint 
whereby the equation ‘n – μ = m + 1’ is stated but it should 
in fact be ‘n – μ = m – 1’; (what Kirchhoff[15] and his modern 
translators, O’Toole[16] and Biggs et al.,[17] call m and n we 
here denote by v and e, respectively).  
 The relation just discussed and proved is thus tanta-
mount to saying that the size of C is ([e + 1] × e). C is, how-
ever, of rank e, for, as Kirchhoff showed,[15] any one of the 
v rows in it that correspond to the vertices — i.e., any one 
of the v rows of Q, representing the left-hand sides of the 
equations that arise from an application of Law II — may be 
struck out, to leave a square matrix that we shall call C'. It 
is self-evident from Law II (concerning current conservation 
at junctions) that these v vertex-equations are not inde-
pendent: because of applicability of the Kirchhoff Conser-
vation Law (what we are calling Law II), if all but one of the 
currents entering and leaving a given junction are known, 
then the last one is automatically predetermined, by 
virtue of that Current-Conservation Law. Kirchhoff thereby 
proved[15] that any selected (v – 1) of the v vertex-equa-
tions are independent. (This intuitive argument has been 
more rigorously and formally proved by Moon, on p. 40 of 
Ref. [22].) 
 By contrast, the rows of C that correspond to a min-
imum set of independent cycles (i.e., the rows of P, arising 
from an application of Law I), are themselves already inde-
pendent, by the very definition of independent cycles;[47,48] 
that is to say, P is of rank μ. In the present example, there-
fore, the first three rows of C form a matrix (P) of rank 3, 
and the last eight rows form a matrix (Q) of rank 7. The 
([μ + v – 1] × e) matrix C' is thus constructed so that its rank 
is e (= 10, in this case), corresponding to the number of cur-
rents (one for each edge) required to be found. Since, as we 
have already noted and proved above, μ = e – v + 1, it 
follows that  

μ + v –1 = e, 

and so C' will always be a square matrix of dimension (e × e). 
Let us now denote by Q' (of dimension ([v – 1] × e)) the 
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matrix Q with any one of its rows deleted, so that the (e × e) 
matrix C' is in general of the form 

'
'

 
  
 

P
C

Q
 . 

 In the above, P is of size (μ × e) — where μ = e – v + 1 
— and Q' is of size ([v – 1] × e); all this is consistent with the 
fact that C' is an (e × e) matrix (because μ + v – 1 = e). If the 
column vector with (e + 1) elements that was previously de-
fined as N becomes N', a column vector with e elements, 
when one of the v equations arising from an application of 
Law II is deleted, then the equations that Kirchhoff[15] had 
to solve were — when expressed in matrix notation — of 
the form 

C'I = N'. 

In Ref. [15], Kirchhoff then solved this system of equations 
by, in essence, using Cramer’s Rule. He showed that the 
common denominator in these solutions is the sum of all 
the products of μ resistances,

1 2 3 μ
...k k k kw w w w , for each 

combination of μ elements selected from all e of them, 

1 2, ,..., ew w w , ‘... having the property that no closed figure 
remains [authors’ italics] after removal of the μ wires 

1 2 μ, ,... ,k k k ’[16] (This is equivalent to saying that only a 
spanning tree remains when those μ edges — nowadays 
called ‘chords’[32,47] — have been deleted.) Thus, in the pre-
sent example (in which μ is 3),  

det ' ,p q rA w w w C  

where the terms run over all possible sets of edges that are 
complementary to trees and A can effectively be taken to 
be 1 by means of a suitable multiplication of the common 
denominator and of the several numerators in the 
Cramer’s-Rule expressions for the individual elements of I 
— and, from the point of view of counting trees, we are not 
interested in these numerators. Nevertheless, we do note 
in passing that Kirchhoff explicitly documents that the nu-
merator in the Cramer’s Rule expression for the current in 
the wire labelled λ is the sum of all products of (μ–1) re-
sistances, 

1 2 3 μ 1
...k k k kw w w w


, ‘... having the property that 

[exactly] one closed figure remains after the removal of the 
wires 1 2 μ-1, ,... ,k k k  and that this closed figure contains ...’ 
the λth wire.[16] The product of each such combination of 
(μ – 1) resistances featuring in these numerators is multi-
plied by the (algebraical) sum of the electromotive forces 
located on the closed figure in question.[16]  
 As Bryant has observed,[32] det C' thus identifies all 
the spanning trees via their complementary edge-sets (some-
times referred to as chords[32, 47]); and if A is taken as 1, then 

|det C'| = t(G) , 

where |det C'| is the modulus of det C' and t(G) is the num-
ber of spanning trees in the original graph, G, representing 

the connectivity of the network under investigation. In 
other words, the complexity of the network under study is 
simply the number of terms of the wp wq wr-type (each be-
ing a product of three such wi-factors in the case of our il-
lustrative network with cycle rank 3, and a product of μ 
such factors, in general). 
 The matrix C for the network of Figure 8, with the 
fundamental system of cycles depicted in Figure 5 and with 
all the ws-terms set equal to unity, is 

 

0 0 0 1 1 1 1 0 0 0
0 0 1 0 0 1 1 1 0 1
1 1 1 0 0 1 1 1 1 0
1 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1

    
  
 
 

 
  

   
  
 
 

 
 
   

  

 The dotted line shown in the (11 × 10) matrix C, 
above, partitions it into (a) the (rank 3, row-independent) 
matrix P (the first three rows) arising from the Law-I equa-
tions and (b) the (row-dependent) matrix Q (the last eight 
rows) arising from the Law-II equations. It will be noted that 
when, as above, all the resistances, ws, are set equal to 1, 
the matrix P becomes simply the standard[54] (cycles → 
edges) incidence-matrix for the (arbitrarily) directed net-
work shown in Figure 3 (with the fundamental cycles as in 
Figure 5), and the matrix Q is then just the ordinary[54] (ver-
tices → edges) incidence-matrix for the same network. Of 
course, in the physical interpretation of these considera-
tions — which was properly Kirchhoff’s concern[3,15] — the 
actual numerical values (ws) of these resistances are vitally 
material, but they are not relevant for the topological (by 
which is meant graph-theoretical) ideas being extracted 
here, and so, in everything that follows, all ws-values will 
automatically be assumed to have been set at unity. 

 Finally, we note that when any one of the last eight 
rows of the above (11×10) matrix is deleted — thereby 
converting it into the (10×10) non-singular matrix C' — the 
modulus of the numerical value of det C' is again found to be 
of magnitude 60; (the actual sign of det C' depends on the 
initial — arbitrary — labelling and ordering of the vertices, 
edges and cycles of the network, and on which row of C is 
deleted in order to form C'). This therefore confirms the 
computed complexity of the graph shown in Figure 1 — 
which is the planar graph associated with the electrical 
network depicted in Figure 8 — to be 60, a value earlier de-
duced by means of the Matrix Tree Theorem[11,22–26,49,50,55,57] 
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and of the theorems of Gutman et al.[21] and of Kirby et 
al.,[47] (as well as by the heuristic combinatorial reasoning, 
outlined earlier). 
 

SOME REMARKABLE PROPERTIES 
OF THE MATRIX C 

 
We now show how the matrix C arising from Kirchhoff’s 
work[15] is related to the matrix K that features in the Matrix 
tree Theorem[11,22–26,49,50,55,57] and (when the graph in ques-
tion is planar) the matrix G in the theorem of Gutman et 
al.[21] We also show — whether the graph of the network 
be planar or non-planar — how these considerations con-
nect with the matrix M, arising in what Kirby et al.[47,48] call 
the Cycle Theorem. We do this by examining the matrix CCT. 
(For the moment, we consider only networks that are rep-
resented by planar graphs — such as the one illustrated in 
Figure 8 — in order that the theorem of Gutman et al., in 
its original form,[21] shall be applicable, but, later, this re-
striction will be examined and relaxed.) We thus have 

T T T
T

T T

   
     
    

P P PP PQ
CC

Q Q QP QQ
, 

in which PPT is a (μ × μ) matrix and QQT is a (v × v) one. Now, 
PQT is the (μ × v) product of a (μ × e) (cycles → edges) matrix 
P and the transpose of Q, a (v × e) (vertices → edges) matrix 
for the same network, and QPT is the (v × μ) transpose of 
that product. By numerically working these products for the 
particular matrices P and Q in the example of the previous 
section, the reader may verify that (at least for the network 
shown in Figure 8) PQT and QPT are both zero matrices of 
the appropriate size. (This observation will be proved in the 
general case in the Appendix). Thus, CCT is in fact a parti-
tioned matrix, as follows: 

T
T 

T

 
  
 

PP 0
CC

0 QQ
. 

We now consider how the matrices 

( )
 

  
 

P
C

Q
 and ' ( )

'
 

  
 

P
C

Q
 

— which arise in our version of Kirchhoff’s treatment that 
is expressed in matrix form (above) — are related to the 
matrix K featuring in the Matrix Tree Theorem (MTT),[11,22–

26,49,50,55,57] the matrix G that is encountered in the theorem 
of Gutman et al.[21] (GME) (when the graph in question is 
planar), and the matrix M arising in the Cycle Theorem[47] 
(CT) (whether the graph in question be planar or non-pla-
nar). It is found that, for the (μ × e) matrix P and the (v × e) 
matrix Q, 

PPT = G, 
(the (μ × μ) GME matrix for the planar graph under discus-

sion, with its ‘patch’ cycles as as in Scheme 1, below), 

 
Scheme 1. 

and  
PPT = M, 

(the (μ × μ) Cycle Theorem matrix), 

if a fundamental set of cycles (such as that depicted in 
Scheme 2, at the foot of this page) is selected for any graph 
— which may be either planar or non-planar. 
 In addition, 

QQT = K. 

(In the above, G, K and M are the matrices earlier computed 
for the directed network in question, which is shown in 
Figure 3 and Figure 8.). Thus: 

T  
  
 

G 0
CC

0 K
 

in the case of a planar graph with patch cycles (as in 
Scheme 1, above) or 

T  
  
 

M 0
CC

0 K
 

for any connected graph (of whatever genus) when a funda-
mental system of cycles (e.g., Scheme 2, below) is used. In the 
above, CCT is of size (μ + ν) × (μ + ν) — that is, (e + 1) × (e + 1), 
because μ = e – v + 1. (These observations concerning the 

 

Scheme 2. 
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network shown in Figure 3 and Figure 8 will be proved in 
the general case in the Appendix but, for the moment, we 
persist with the specific illustrative example being dealt with 
above.) It should be noted that, by virtue of the Binet-Cauchy 
Theorem,[47,68,82] if H is any (p × q) matrix, det (HHT) = 0 if 
p > q; otherwise, det (HHT) = ΣΔ2, where the sum is taken 
over all determinants Δ that can be made up out of the 
columns of H. Since G = PPT, where P is of size (μ × e) — with 
μ < e if, and only if, v ≥ 2 (as will evidently be the case, in the 
context) — and P is of rank μ, we deduce that the (μ × μ) 
matrix G is non-singular — as, indeed, it should be.[21] The 
(v × v) matrix K = QQT is, by contrast, predicted to be singu-
lar for, although Q is of size (v × e), its rank is only (v – 1);  
K = QQT is thus guaranteed to be a matrix with a vanishing 
determinant. This is, of course, all consistent with the 
well-known fact (evident from its earlier definition) that 
the (v × v) ‘Kirchhoff’ matrix K is singular.[11,22–27,47,49,55] 
Likewise, C is of size (μ + ν) × e — that is, (e + 1) × e — and it 
is thus concluded that the (e + 1) × (e + 1) matrix CCT is, 
appropriately, also singular (as can perhaps be more di-
rectly seen by a simple inspection of the partitioned matrix 
CCT, above, bearing in mind that K itself is singular). 
 However, as was earlier pointed out, what Kirchhoff 
did was to delete one of the rows of Q, a process that yields 
a ([v – 1] × e) matrix that we are here denoting by Q' — this is 
the matrix that Weinberg (on p. 11 of Ref. [37]), Moon (p. 40 
of Ref. [22]) and Bryant (p. 84 of Ref. [32]) call ‘the reduced 
incidence matrix’ of the connected graph G. Thus: 

'
'

 
  
 

P
C

Q
 

and (by workings analogous to those above) 

T' ' ,
'

 
  
 

G 0
C C

0 K
 

for a planar graph when patch cycles (such as those shown 
in Figure 6 and Scheme 1) are used, or, if a set of fundamen-
tal cycles (such as those depicted in Figure 5 and Scheme 2) 
are adopted for a graph that may be non-planar, 

T' ' ,
'

 
  
 

M 0
C C

0 K
 

where K' is the Kirchhoff matrix, K, with the jth row and the 
jth column of it deleted. Note that det K' is a diagonal minor 
— the (j, j) one — of K; it is, therefore, equal to the (j, j)-
cofactor of K — since (j + j) is guaranteed to be even. Thus, 
by the Matrix Tree Theorem,  

det K' = complexity. 

Also, by virtue of the theorem of Gutman, Mallion & 
Essam,[21] when a set of patch cycles, as in Figure 6, is used, 

det G = complexity, 

and, in general, because of the Cycle Theorem,[47] 

det M = complexity, 

when a fundamental system of cycles (such as that depicted 
in Figure 5 and Scheme 2) has been used.  
 We thus have (for a planar graph, with ‘patch’ cycles, 
as in Figure 6 and Scheme 1): 

T 2det( ' ' )=det =(det )(det ')=(complexity) ,
'

 
 
 

G 0
C C G K

0 K
 

or, in general, in the case of a non-planar graph, when a fun-
damental system of cycles (such as are depicted in Figure 5 
and Scheme 2) is adopted in the context of the Cycle Theorem, 

T 2det( ' ' )=det =(det )(det ')=(complexity) .
'

 
 
 

M 0
C C M K

0 K
 

 Now, since 

T T 2det( ' ' ) (det ')(det ' ) (det ')(det ') (det ') ,  C C C C C C C  

we deduce that 

2 2(det ') (complexity) ,C  

and that, therefore, 

det ( ') (complexity). C  

(The actual sign depends on the arbitrary way in which the 
vertices, edges and cycles of the planar graph G have been 
labelled, as well as on which row of the matrix Q has been 
deleted in the process of transforming the matrix Q to the 
matrix Q'.) 
 We have thus confirmed, by a different route from 
that which Kirchhoff followed, that the modulus of det C' — 
the common denominator in the expressions for the ele-
ments of the current vector I in the matrix version of 
Kirchhoff’s treatment — is equal to the number of spanning 
trees in G. Our argument above has at times been similar to 
(though it was initially independent of) the one presented 
in a somewhat more abstract way by Bondy & Murty on p. 
219 of Ref. [35]. We, by contrast, have developed the con-
cept from the starting point of Kirchhoff’s very physical rea-
soning in the context of electrical networks. We have, 
thereby, succeeded in demonstrating how the matrix C' is 
related (i) to K, the matrix featuring in the Matrix Tree 
Theorem,[11,22–26,49,50,55,57] and (ii) (for a planar graph, when 
patch cycles — e.g., such as those in Figure 6 — have been 
chosen) to the matrix G that arises in the theorem of 
Gutman, Mallion & Essam,[21] and (iii) to the matrix M en-
countered when a fundamental set of cycles (e.g., Figure 5) is 
employed when applying the Cycle Theorem to any graph 
— which, itself, may be planar or non-planar.[47] Fur-
thermore, by this means we have not only determined the 
numerical values of the graph complexities in question but 
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we have also related two of the specific matrices (G and M) 
that arise in these calculations to the nature (fundamental, 
patch, or neither) of the sets of independent cycles on 
which these spanning-tree enumerations have been based.  
 It should be noted that the arguments that we have 
advanced here lead to some possibly unexpected insight 
about how Kirchhoff’s two Laws connect with several of the 
theorems for spanning-tree enumeration that we have con-
sidered in this discussion — namely that: 

(a) the (μ × μ) matrices G and M, arising in GME[21] and 
CT,[47] respectively, derive from an application of 
Kirchhoff’s Law I (the ‘circuit’ law), around μ appro-
priately selected independent cycles that are extant 
in the network, whilst  

(b) the ((v – 1) × (v – 1)) matrix K', featuring in MTT,[11,22–

26,49,50,55,57] derives from an application of Kirchhoff’s 
Law II (the ‘current conservation’ law) at all but (any) 
one of the v vertices of the network. 

 

CONCLUSIONS 
The following four conclusions — three definite and one 
speculative — may be drawn from this investigation: 

1. Kirchhoff did invoke the concept of spanning trees, 
introducing them in a complementary fashion by re-
ferring to the chords that must be removed from the 
original graph in order to form such trees. He did, 
though, draw attention to the concept of a spanning 
tree by intuitively contrasting it with a ‘geschlossene 
Figur’; he did, however, make no explicit mention of 
the ‘baumförmigen Typus’, so named and discussed 
by Ahrens,[28] exactly 50 years later, in the 1897 
Mathematische Annalen. 

2. In choosing the cycles around which to apply his 
First[15] (Second)[3] Law, Kirchhoff explicitly chose 
what would now be called Fundamental Systems of 
Cycles. (Kirchhoff himself did not use that name for 
such cycles but the aforementioned German-speak-
ing author Ahrens[28] did make explicit reference to a 
‘ “Fundamentalsystem von Kreisen.” ’) 

3. Kirchhoff himself was not interested in counting 
spanning trees, and, accordingly, he did not explicitly 
do so. Nevertheless, if the values of all resistances 
are set equal to unity, the modulus of the determi-
nant of the matrix C' (exhaustively discussed in this 
account) is equal to the complexity of the graph rep-
resenting the network — C' being the matrix whose 
determinant appears in the common denominator in 
Kirchhoff’s Cramer’s-Rule solutions to the equations 

that arise from the cumulative application of his 
Laws I and II to an arbitrary electrical network, G. 
Thus: 

 ( ) | det ' |t G  C  

 because, if all resistances, ws , are set equal to 1, then 
the absolute value of the determinant of the matrix 
C' featuring in the common denominator of all 
Kirchhoff’s Cramer’s Rule expressions for the cur-
rents, Is, is simply equal to the number of terms of 
the 

1 2 3 μ
...k k k kw w w w  type that arise in the summation 

performed within that common denominator. (In 
concluding, though, we should once more empha-
sise that Kirchhoff himself did not explicitly use ma-
trix notation — indeed, his paper[15] preceded 
Cayley’s celebrated 1858 ‘memoir’[83] on matrices by 
eleven years.)  

4 If he had been so-inclined, and the necessary matrix 
notation had been available to him, we may specu-
late that Kirchhoff,[15] in 1847, could well have explic-
itly formulated the Matrix Tree Theorem[11,22–

26,49,50,55,57] in its modern form (as a result of his Law 
II concerning ‘conservation of current’ at junctions) 
or even — from his ‘circuit law’, Law I — recent re-
sults such as (a possibly restricted version of) the 
Cycle Theorem[47,48] (2004). 

 

APPENDIX 

Proof That 
PPT = G (or M), QQT = K, PQT = 0, and QPT = 0 

We need to prove in general the assertions that, in the 
preceding text, were simply claimed by actual demon-
stration in the particular case of the network depicted in 
Figure 8. 
 In what follows, concerning a connected, directed 
graph G representing an electrical network, we denote the 
μ independent cycles by μ1, μ2,..., μμ, the v vertices by v1, 
v2,..., vv, and the e edges by e1, e2,..., ee. Both the cycles and 
the edges are assigned arbitrary directions.  

(i) Proof that PPT = G (for a planar graph with specially 
selected cycles) 
For this proof (though not for the others, (ii), (iii) and (iv), in 
this Appendix) we need to assume (a) that the graph G, under 
consideration, is planar, and (b) that the μ independent basic 
cycles are chosen to coincide with the finite faces of G, and 
are all given the same sense. (This is the case, for example, 
with the patch cycles α, β, and γ shown in Figure 6 and 
Scheme 1). 
 Consider (PPT)ij, the (i, j)-element of the matrix PPT. 
This is the inner product between the vector comprising the 
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ith row (pi) of P and the vector that constitutes the jth 
column of PT, which is the jth row (pj) of P. If i ≠ j, the rth 

entries in the two rows are non-zero if and only if edge er 
lies in the ith circuit, μi and in the jth circuit, μj. Whenever 
this occurs, if the set of independent circuits is as described 
in the opening paragraph of this proof, the elements (P)ir 
and (P)jr of the unimodular matrix P will be of opposite 
signs, and so (P)ir(P)jr = –1. (For the definition of 
‘unimodular’ and its relevance in the present context see p. 
33 of Ref. [79], p. 218 of Ref. [35], p. 40 of Ref. [22], page 
84 of Ref. [32], and p. 99 of Ref. [57].) There will thus be a 
contribution of –1 to (PPT)ij for each edge that the finite 
region around which goes the cycle μi shares with the finite 
region around which runs the cycle μj. Thus, for i ≠ j,  
 (PPT)ij = – (the number of edges that μi has in com-
mon with μj). 
 Otherwise, when i ≠ j, (PPT)ij = 0. It is clear, therefore, 
that, for i ≠ j, (PPT)ij = – (A*)ij, where A* is the adjacency 
matrix of the inner dual of G, constructed by the algorithm 
described earlier and illustrated in Figure 2. Likewise, (PPT)ii 
is the inner product of pi with itself and, since the number 
of entries of +1 and –1 in pi is the number of edges around 
the cycle μi, it follows that 

(PPT)ii = bi, 

where bi is the element in the ith row and the ith column of 
the diagonal matrix B*, defined earlier in the context of the 
method of Gutman, Mallion & Essam (GME).[21] We have 
thus shown that  

 (PPT) = B* – A* = G □ 

(ii) Proof that PPT = M (for a graph that may be non-planar 
and when a fundamental set of cycles is adopted). 
This follows immediately — by virtue of the definition of M 
— from the Cycle Theorem.47 □ 

(iii) Proof that QQT = K 
This was proved by (amongst others) Trent[68] — who used 
an approach based on the Binet-Cauchey Theorem[47,82] — 
Hutschenreuter,[69] Bondy and Murty,[35] and Biggs.[79] The 
proof presented here is along the lines of that given by 
Biggs, on p. 27 of Ref. [79].  
 Consider (QQT)ij, the (i, j)-element of the matrix QQT, 
formed by multiplying Q and its transpose. (QQT)ij is the nu-
merical value of the inner product between the vector com-
prising the ith row (qi) of Q and the vector that constitutes 
the jth column of QT, which is the jth row (qj) of Q. If i ≠ j,  
the rth entries in the two rows are non-zero if and only if 
there is an edge joining vertices vi and vj; in this case, the 
two non-zero entries are +1 and –1, so that (QQT)ij = –1. 
Otherwise, (QQT)ij = 0, when i ≠ j. Likewise, (QQT)ii is the 
scalar product of qi with itself and, since the number of  

entries +1 or –1 in qi is the number of edges incident upon 
vertex vi (that is to say, is the degree of vertex vi), it follows 
that (QQT)ii = (D)ii and thus that, overall, 

QQT = D – A = K , 

as asserted. □ 

(iv) Proof that PQT = 0 and QPT = 0 
A proof of this was presented, in his several tours de force 
in this field (e.g., Refs. [31] & [32]) by Bryant, who credits 
the first part of it to the graph-theory pioneer O. Veblen, in 
his 1922 Analysis Situs (as graph theory/topology was then 
called);[30] Harary, in his book,[18] gives an analogous proof 
for undirected graphs. The result eventually even found its 
way — albeit informally and intuitively — into elementary 
texts (e.g., Ref. [84]). 
 Consider (PQT)ij, the (i, j)-element of the matrix 
formed from the product, PQT, of P and QT. (PQT)ij is the 
numerical value of the inner product between the vector 
comprising the ith row (pi) of P and the vector that consti-
tutes the jth column of QT, which is the jth row (qj) of Q. The 
rth entries in these two rows are both non-zero if and only 
if the edge er lies in the ith cycle, μi, and is incident upon the 
jth vertex, vj. If er is in μi, then vj is necessarily likewise in that 
cycle; but if vj is in μi then there is one (and only one) other 
edge (es, say) of μi that is also incident with vj. Whatever 
arbitrary orientation be assigned to the cycles and edges of 
G, the signs of the entries in P and Q are always such that if 
both (P)ir and (P)is are of the same sign, then (Q)ir and (Q)is 
will be of opposite signs, and vice versa. Hence, in all cases,  

(P)ir (Q)jr = – (P)is (Q)js 

and so 

     T ( ) 0
it jtij

t

 PQ P Q  

 PQT is thus a (μ×v) zero-matrix. Similarly, QPT is an 
(v×μ) zero-matrix. Both PQT and QPT are, consequently, inde-
pendent of the orientation given to the graph G. □ 
(Note: for an undirected graph, PQT = 0 (mod 2) — see 
Harary.[18]) 
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