Transformations of Urban Structure
Effects of Railway Construction on the Urban Tissue in the Cities of Austro-Hungarian Empire (1867-1918)
Preliminary Communication
UDC 711.7(436/439)"1867/1918"

Preobrazbe urbane strukture
Uloga željeznice u oblikovanju urbanoga tkiva u gradovima Austro-Ugarske Monarhije (1867.-1918.)
Prethodno priopćenje
UDK 711.7(436/439)"1867/1918"
Table I. The relationship between the built area of the city and railway lines in the 1st development period: pre-1867 (1838-1867), 2nd development period: mid Austria-Hungary around 1900 and 3rd development period: late Austria-Hungary period till 1918.

<table>
<thead>
<tr>
<th></th>
<th>1st DEVELOPMENT PERIOD</th>
<th>2nd DEVELOPMENT PERIOD</th>
<th>3rd DEVELOPMENT PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIENNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRAGUE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUDAPEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZAGREB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- **Urban structure before 1867**
- **Railways**
- **Greenery**
- **River**

Éva Lovra¹, Mladen Obad Šćitaroci², Bojana Bojanić Obad Šćitaroci²

¹ University of Pécs
Faculty of Engineering and IT
Marcel Breuer Doctoral School
HU – 7624 Pécs, Boszorkány Street 2

² University of Zagreb
Faculty of Architecture
HR – 10000 Zagreb, Kaciceva 26
lohra.eva@gmail.com
mos@arhitekt.hr
bbojanic@arhitekt.hr

This paper explores the role of the railway and railway stations in the development and structural changes of the towns in the former Austro-Hungarian Monarchy with the aim to create an adequate framework of urban typology. This part of urban typology can serve as a method for identifying different types of Austro-Hungarian towns and is defined by the relationship between the identified urban fabric and the railway.

Transformations of Urban Structure
Effects of Railway Construction on the Urban Tissue in the Cities of Austro-Hungarian Empire (1867-1918)

Željeznica
Urbana struktura
Urbane preobrazbe
Urbana tipologija

Rad se bavi istraživanjem uloge željeznice i željezničkih stanica u razvoju i strukturnim promjenama gradova blješe Austro-Ugarske Monarhije sa ciljem oblikovanja prikladnog okvira urbane tipologije. Taj dio urbane tipologije može poslužiti kao metoda za određivanje različitosti austro-ugarskih gradova, a definirana je međuodnosom identificiranog urbanog tkiva i željeznice.
INTRODUCTION

Urban structure of the 19th century cities was significantly transformed and developed with the establishment of the railway system in all scales in terms of the built environment. In his work The Architecture of the City Aldo Rossi elucidates urban artefacts as primary elements since their presence has cooperated in the morphological and cultural evolution of the urban environment. According to Rossi, any element capable of accelerating the process of urbanization is a primary element: railway stations in the 19th century could act as primary elements since they accelerated the process of urban tissue transformation. Along with railway lines, they were able to structure the city. On the urban tissue level, railway stations were major evidences of railways and industrialization, which often acted as symbols of modernization. Their position and the relations between the surrounding urban tissue types and the railway and railway stations, as well as their influence on the urban structure are considerable in urban typology of Austro-Hungarian cities. The study focuses on four Central-European cities with a mutual historical background as former Austro-Hungarian cities and on the urban tissue transformation caused by the railway in this period. The constitutional merger of two states, the Austrian Empire and the Kingdom of Hungary, followed by the Compromise (1867), created a unique state structure and development policy. Urban development of the dualist state took on a new direction, partly because of the state-regulated city development (in case of the capitals, Vienna and Budapest), and partly because of the emerging economic development in the Transleithanian territories since economic alignment by that time had a strong impact on the urbanization processes.

The four cities – Vienna, Prague, Budapest and Zagreb – have been chosen to represent the Trans- and Cisleithanian territory of the unified, yet diverse area of the Dual Monarchy, since their role in the dual monarchy was socially and politically significant. Vienna, as the capital of the Austrian Empire, and Budapest (unified in 1872/73), as the capital of the Hungarian Kingdom, played the main role in the progressive, state-regulated urban development, but the leading, yet provincial cities of the Bohemian Crown Lands (Prague) and the Kingdom of Croatia-Slavonia (Zagreb) also witnessed intensive development. The research focuses on the cities beyond the Leitha River, and in a wider context compared to the towns of the former Austrian Empire, to show the urban manifestation of the combined power of Austria-Hungary. The progressive urban development of the second part of the 19th century was the manifestation and the consequence of the industrialization and the new socio-economic and political status. Although Vienna was the first representative of a modernizing metropolis, it was a peripheral one in the 19th century, representing a paradigm of the Central European city, sharing common cultural and socio-historical (later political) background as a driving force of urban evolution. The construction

1 Schivelbusch, 2004
2 Rossi, 1982: 12
3 Transleithania was an unofficial term for the Lands of the Crown of Saint Stephen: referred to the Austro-Hungarian Empire beyond the Leitha (Lajta) river. Cisleithania refers to the Habsburg lands of the Dual Monarchy. After the Austro-Hungarian Compromise (1867), Transleithania consisted of the Kingdom of Hungary (including the former Principality of Transylvania, Voivodeship of Serbia and Banat of Temeschwar), the self-governed Kingdom of Croatia-Slavonia (1868), and the free port of Fiume (Rijeka, Croatia).
4 Prague was chosen because it played a leading role in the Monarchy, since Francis Ferdinand d’Este was in favour of the Triple Monarchy, expanding Austro-Hungarian dualism into trialism.
5 Zagreb was chosen since the idea of the trialist monarchy (Austro-Hungarian-Croatian Monarchy) was proposed as well as in the case of the Czech Crown Lands.
6 Demographic expansion: Vienna (1850: 551,000; 1910: 2,031,000), Prague (1850: 118,400; 1910: 640,000), Budapest (1850: 180,000; 1910: 880,000), Zagreb (1850: 20,000; 1910: 69,000). [Günzburger Makas, Damljanovic, 2010: 27]
7 The industrial revolution in the Kingdom of Hungary occurred with delay, the country could join only the second wave of the industrial revolution (1871-1914), however it partly worked off its disadvantage until the First World War.
8 Vadas, 2005: 23-34
9 Gerevich, 1978: 306
10 Csendes, 2005: 37-45
of first railway lines (Vienna in 1838, Prague in 1845, Budapest in 1846 and Zagreb much later, in 1862) and the establishment of first railway stations took place in mid-19th century in the majority of (Central) European cities. Due to the demographic growth which was stimulated by the industrial revolution, cities faced the need of spatial expansion and urban regulations.

As old city walls were demolished in Vienna (1857), an international urban planning tender was issued and the winning plans modified and accepted in 1859: the idea was based on two ring roads, the inner ring (Ring and Franz-Josef-Kai) which followed the line of former city walls and ramparts, and the outer ring (Lastenstraße) which enclosed the area around the former glacis from the outside. Areas suitable for further expansion lay at the edge of the city. In 1861, the Emperor approved the establishment of the Gürtel Straße, as the outer ring following the line of the Linienwall (demolished in 1894).8

On the Pest side of the later unified Budapest, an inner ring road (Kőkörút) was formed parallel to city walls, while the main radial roads led to former city gates. The lack of fortification around Budapest made urban regulation more expensive and less effective, given that in many cities (including Vienna) eradication of the fortification and integration of the glacis created huge open spaces available for urban development. Due to expensive land expropriations, the urban structure of Budapest, with some exceptions, is characterized by a small number of large urban spaces and parks compared to Vienna. The adoption of the general regulatory plan was preceded by an international competition in 1871.9 Lajos Lechner, who was awarded with the first prize, elaborated the plan that would connect ring roads on the Buda side with the ring road in Pest (Nagykörút 1872-1897/1906).10

In 1880 Zagreb was hit by an earthquake which caused great damage and contributed to the town’s modernisation, since most of the built environment was demolished. In 1887 the first Urban Development Master Plan was made which shaped the Green Horsehoe (Zelena potkova or the Zagreb Ring11), a framework of park squares around the centre of the Lower Town, established on an unbuilt land (fields and gardens). Milan Lenuci was a city planner and engineer credited with the idea of constructing a U-shaped green belt around the city centre.

Compared to other European cities, the central area of Prague remained largely untouched by the late 19th century, apart from the redevelopment of city walls (medieval fortifications were demolished in 1874 to make space for the growing city) and parts of Josefov, a quarter that was demolished between 1893 and 1913 as part of an initiative to model Hausmann’s Paris.12 Medieval streets and houses of Josefov, the Jewish quarter, were replaced with modern roads and apartment buildings.

In European cities in general it is possible to distinguish urban characteristics, while in historical towns of the former Austria-Hungary, especially in cities of the former Hungarian Kingdom, there are numerous overlaps of different historical structures combined with strong local character.

The aim is to identify the factors of influence on the urban fabric caused by the railroad system, and to determine the character and directions in which urban tissue evolved as a result of the construction of railway lines and stations within the framework of urban typology. Further on, research results and methodology could be applied as the theoretical background and as part of practical methods in urban revitalization projects (restoration and revitalization of historic parts of the city), since the research deals with urban structure transformation and urban relations related to railway lines and stations.

THEORETICAL AND METHODOLOGICAL FRAMEWORK

The research methodology is based on two different practices, combining some aspects of the Heritage Urbanism [HERU] method14
and some of the integrated urban morphological method (created by Éva Lovra), to provide an adequate research framework.

According to the HERU method, to identify the factors of identity (in our case the direction of territorial development caused by the railway system), distinctive characteristics of the subject of study have to be determined by establishing a "catalogue" in which characteristics and peculiarities are identified via different points of view (in our case spatial and urban point of view are taken into account). The criteria for the evaluation of the existing urban heritage have to be determined on the basis of selected examples processed in a research catalogue (Table I and II) based on the studied archival maps of the 1st (pre-1867), the 2nd (mid Austria-Hungary period around 1900) and the 3rd period (late Austria-Hungary period till 1918).25

The integrated urban morphological methodology is based on the practice of Italian and English urban morphology schools: in his work, morphological practice and studies Muratori focused on the typology via four scales (building-district-city-territory) due to his understanding of the directions shaping the building fabrics, urban organism and territories.26 Caniggia further developed Muratori’s theories with a focus on typo-morphology and an understanding of the built form by examining the historical process of its formation. In the case of cities in the former Austria-Hungary, if we adopt the Caniggian approach, historical processes played major role in the urban morphological development. Besides the Caniggian urban typology/morphology, the Conzenian approach27 is applicable with limitation to the analysis and typology of the dualist cities, since the goal of the Conzen’s town-plan analysis28 is to trace the character of towns via their elements and development through time. The urban tissue [Caniggia, Maffeij] or plan-unit [Conzen] is a diverse combination of streets, plots, and block-plans. Furthermore, Conzen’s morphological approach is based on morphological periods29, as they are urban manifestations of diverse social and cultural history. In order to establish the urban tissue typology of the former Austro-Hungarian towns within the framework of the English and the Italian morphological school, and later to determine the urban typology, it is important to create an integrated and developed research practice.30

The integrated and developed morphological research practice consists of several aspects/elements (plot; streets and street systems; and their more complex form: urban tissue; fringe belt; morphological region/townscape31) due to the creation of the urban tissue and their more complex form, the city typology.

According to Éva Lovra, urban typology (town types) in the dual monarchy period (Austria-Hungary: 1867-1918) can be outlined via the formation of a matrix of characteristics and driving forces, via definition, description and combination of urban tissue types defined by the different features and combinations of urban forms, taking into account dominant urban tissue types. Railway systems, parks, green spaces and other urban formations and their location within the city, as well as the relations to the various types of urban fabric are significant in terms of determining and defining the urban types/urban typology. The establishment of urban typology has to take into account the position of the town centre according to different urban tissues. The combination of urban tissue types, relations32 and dominance of certain urban tissues determines the urban tissue type. The relationships according to urban tissues and the surrounding: 1. Urban tissue type and the centre; 2. Urban tissue type and the green areas; 3. Urban tissue type and the main roads/railway; 4. Urban tissue type and the river/lake.

This research focuses on the "urban tissue type and the railway" and demonstrates the role of the railway in the direction of urban development and the importance in urban typology (determination of the urban types of the cities in the studied period) via the combination of the HERU methodology and the integrated approach of urban morphology and urban relations.

IDENTITY FACTORS OF URBAN TISSUE ALONG RAILWAY TRACKS

ČIMBENICI IDENTITETA URBANOG TKIVA DUŽ ŽELJEZNIČKIH TRASA

Since our research focuses on the post-industrial urban tissue and urban types, it has to be highlighted that the regulation of the growing (industrial) city was one of the main concerns of the 19th century engineers in general. Architects of the time, among others Robert Owen, Tony Garnier and Ebenezer Howard, studied the issue and the potential of the growing city from different directions, while in the case of the modernizing cities in the former Austria-Hungary, the works of Camillo Sitte (The Art

25 1st [CS No 1, 6, 7, 12, 17]; 2nd [CS No 2, 3, 8, 9, 13, 14, 18] and 3rd development period [CS No 4, 5, 10, 11, 15, 16, 19, 20].
26 CANIGGIA, MAFFEI, 2001 (1979)
27 In his study, he deals with general aspects of the urban morphological analysis, among which he differentiates the town plan, land utilization pattern and building fabric within the townscape. The more important subdivision is related with the town plan that is in the case of the dualist cities is the most important source of the typology.
of Building Cities, 1889) and his critic Otto Wagner (The Large City, 1911) are the most relevant, since urban tissues of the Austria-Hungarian cities are diverse.

For the current study, literature review and analysis of maps were chosen to describe the historical process of the development of the city form and its spatial consequences. The literature provided the methodological base [Conzen, Caniggia] and the historical studies are important for establishing the framework of urban typology, which was not studied in these circumstances before.

URBAN CONTEXT

BEFORE AND RIGHT AFTER THE CONSTRUCTION OF RAILWAY LINES AND STATIONS

As shown in Table I, the selection of location and the construction of railway lines were limited not only by the technical level and geo- and hydrographical features, but also because the price of land in the wider city territory city was foregrounded since at the beginning of the industrialization most of the railroads and stations were built by private companies. According to available studies, first railway stations were built in the four cities, but they were mostly terminal stations placed outside of the built area, often on the outskirts of the city. The Kaiser Franz-Josefs Bahnhof (Fig. 1) was the only station that penetrated into Vienna’s inner districts (Fig. 2), and since mid-19th century Prague (Fig. 3) was built up within baroque city walls, the first railway station and railway lines (1845-Masaryk, marked with A in Table I, II; Fig. 4) were positioned only partly within city walls (passenger part / the station itself), with the

18 Conzen, 1960 (1969)
19 Morphological regions or townscape units are areas of homogeneous urban form (building and plan type).
20 The integrated methodology is the methodological base and theorem of the upcoming Ph.D. dissertation of Éva Lovra.
21 Changes in the road structure influence the division of plot shapes. Numbers of plots form plot series (urban blocks). The blocks make up the city’s urban tissue and can thus indirectly define the urban tissue metamorphosis via street network changes. Determination of urban tissues requires identification of roads, followed by buildings – plots – plot series. Based on the street network changes, the direction and the character of the city’s development can be observed.
22 Relations: mutual relationships, relationship to the park, river, centre, city walls, castle, railway and periphery etc.
23 The urban context study is based on Table I [Heritage Urbanism method] and integrated analyses of maps of the 1st [CS No 1, 6, 7, 12, 17, 22] and 2nd period [CS No 2, 3, 8, 9, 13, 14, 18].
24 In Budapest the Hungarian National Railway [Magyar Állami Vasút – MAV] was founded just in 1868 (1869).
The railway node was finished in 1882 in the city of Prague, also the main station and the Smíchov terminal were connected to the network, the Masaryk Station (formerly Prague Station) remained unconnected [Kohout, Vančura, 1986: 97]. In the not yet unified Budapest, the first plan for connecting the railway was made in 1871. There were two versions of the plan, but both planned to go across unbuilt fields and meadows (less expensive fields). Only in 1877 was the connecting line finished, resulting in the construction of the Keleti Railway Station [Seebehler, 1877: 161-173, 224-240]. In Vienna the lack of connection of railway lines and stations enabled the creation of an appropriate network system. This gap was filled later on with the Stadtbahn (primary idea of Otto Wagner) in the inner/suburban areas and the Vienna connecting rail (1859) and Donauauefer-Donauländebahn.

In the case of Zagreb (Fig. 7) and Budapest, city walls as urban development limiting factors were absent (the defence line in Budapest did not withstand Ottoman conquests and has not been reconstructed since, and even if there are traces of the walls, these do not create physical barriers). The first railway line (1846, marked with A) was built in the northern part of the Pest side, followed by the main road leading to Vác from the terminal constructed at the border of the built-in area of the city. In the case of Zagreb, railway lines did not penetrate the built-up area of the city: they horizontally followed roads, but were placed far from the existing body of the city, in the fields. Urban development lines are clearly visible, following the horizontality, the railways and the existing roads. Actually, the Austro-Hungarian urban fabric (mostly the Lower Town area) was located between the railway and the existing medieval settlements (Gradec and Kaptol). In contrast with the linear distribution of railway lines in Zagreb, it is mostly the radial distribution with connecting lines that can be seen as the direction of development in other cities.

The urban tissue around railway stations was diverse, yet significant and peculiar to each city, according to the analysis of relevant historical maps using the integrated method:

- Vienna: stations were located mostly outside city walls, far from built-up areas, the rare examples inside outer walls were placed in open spaces surrounded by an irregular
street network and geometrically irregular blocks (Franz Josef, Hauptzollamt).

- Prague: the hybrid location of the Masaryk (formerly Prague) Station shows how a densely built urban structure with medieval roots was dealing with the requirement of new technological needs. The station was surrounded with mostly medieval structure, an irregular street network and blocks. The main railway station is located at the edge of former city walls, facing a large green area (park), but the facilities and the tracks are running on free (unbuilt) areas. Smíchov is a great example of a railway station located in an industrial area that remained of the same type for more than a century (it has a strong industrial character until the present day, even if it is in transition).

- Budapest: the main stations were located outside the built-up area, making it possible in the period of progressive urbanization of the Austro-Hungarian era to undergo intensive changes.

- Zagreb: stations were built on open spaces surrounded by gardens, thus providing an opportunity for the urbanization of Austria-Hungary. The first station (marked A) was situated in an open field, later on military facilities were built in the neighbourhood of the station and the railway lines.

THE CHARACTERISTICS OF THE URBAN PATTERN after the Construction of Railway Lines and Stations

OBLJEŽJA URBANOG TKIVA NAOK IZGRADNJE ŽELJEZNIČKE I ŽELJEZNIČKIH STANICA

1. Characteristics of urban fabric along the railways: as a result of the construction of railway lines, changes in the construction dynamics (urban pattern) can be examined around railway stations and lines. When tracks were laid parallel to the direction of spatial urban development, efficient spatial communication of the split areas on each side of the tracks was made impossible. Track represented spatial and social divisions. Parallel lines can be found in Zagreb. Radial track division, later on with the connecting circles, moderated the effect, but in the case of Budapest the moderate effect was significant. The loose urban structure dominated by single-family houses or rural environment, as well as the previously dominant undeveloped fields (cultivated or uncultivated land) were replaced by industrial sites and accompanying infrastructural buildings which can be considered as the consequence and the character of the industrialism period (Prague, Zagreb). In the vicinity of railway lines new settlements were built to meet housing needs of workers (typically regular, geometric structure/vertically and horizontally intersecting streets in Budapest, after the research period in Vienna).

Railway lines penetrated the existing urban tissue of the city only exceptionally; usually they passed beside the built environment (the existing structure). According to this feature, the area along the railway lines in many cases did not undergo significant changes (Vienna, Prague), especially if lines passed through an undeveloped territory (Budapest, Prague, Vienna).

Along the more centrally located railway lines the construction followed the dynamics of the incorporated central area, therefore in these areas multiple-story rental palaces are frequent, the building layouts, building types are more similar along the tracks than further away, in the inner city areas closer to the centre (Budapest).

In the case of Budapest, the first third of the dualist era was the most important section in the railway construction, even though the economic recession (started in 1873) slowed down the development of the railway system as well as urban development. The urban development plan (1871) was followed by less intensive changes: only indispensable demolition and path widening were taken into account (Nagykörút, Andrássy/Radial Road). The simple tissue (street network) of the undeveloped area was designed according to the radial-ring system practice with mostly
monotonous grid street networks, where only fractures of traversing streets brought some variety. The period of the new Nyugati railway station construction (1877, Eiffel Office) and the first period (started in 1872) of the Nagykörút (outer ring road) construction overlapped, and one of the most significant buildings of the ring road became the Nyugati station (Fig. 6). According to the stations, a diverse urban development scenario can be seen after the construction: extreme urban development (privileged area: Main Station /Zagreb/ and suburban: Southern Station /Zagreb/); modest/progressive urban transformation (Budapest and Prague /Smíchov/); in the case of Vienna and Prague (Main Station and Masaryk) just minor urban changes can be witnessed.

In Budapest (Fig. 5) and Zagreb the 2nd development period saw the most intensive urbanisation (discussed in the urban typology context), while the 3rd period can be seen as a sequel of previous works. Although the main urban transformation in Prague took place after the First World War and in Vienna in the 1st and the beginning of the 2nd period, these examples act as counterpoints in the com-

32 The railway line could act like a fringe belt that is taken separately in the analysis, although the railway station itself is part of the townscape and city structure, but taken as a counterbalance point in urban typology.

33 The significant factors of urban typology identification are chosen according to previous research by Éva Lovra, regarding the most important components of urban environment in the research period.
parison and emphasize the importance of the railway in further development.

The Urban Typology Context

Kontekst urbane tipologije

The aim of the study was not to create a historical/spatial comparison of the four cities but to use the comparison to explain and prove the importance of railways and railway stations in the process of urban typology. The comparison of maps from the three periods shows the direction of urban evolution and the dynamics and location of railway development. In the 2nd development period the majority of railway stations were built in the wider territory of each city, giving the further direction of the expansion.

The analysis of urban typology is based on the integrated urban morphology method. Significant factors of urban typology identification: 1. placement of railway lines, railway stations; 2. their relations with the surrounding urban tissue and the historic (central) core; 3. other urban type defining factors (green areas and natural water surfaces).

The most relevant stations for urban typology are chosen according to Table I, as it can be considered as the outcome of the Heritage Urbanism methodology. Table I is graphically guiding, but without considering the focused classification of stations and identification of the urban tissue from the Austro-Hungarian period, no relevant surroundings can be chosen. In our case the most relevant stations are located in Budapest (A, F) and Zagreb (A, B), and to give a wider context in Vienna, since the most intensive urban tissue transformation can be seen in Budapest and Zagreb (Fig. 6 and 8) according to the comparison of the four cities, whereas urban tissue transformation of Vienna is less intensive, yet visible (Fig. 2).

1. **Street network structural changes** were prompted by the evolving transportation in the industrial period and the narrow streets that made communication within cities impossible. A special type of roads was constructed towards railway stations to connect stations (mostly placed on the outskirts) directly with the city centre. This type of streets can be found in Budapest (Keleti), but it was never established in Vienna or Prague. Keleti faces a large square and a radial road, structurally similar to the location of the Main Station in Zagreb (Fig. 8) where the station faces a large square and a green area/park, but the function is similar (next to the park, that is part of the Green Horseshoe, streets are wide enough for transport).

2. **Urban tissue patterns around relevant stations:**

- **1st type** in the neighbourhood of the selected railway stations in Budapest and the Main Station in Zagreb show some similarities: the pattern is dense and shows spatial organization by an unbroken row of rental palaces, mainly rectangular and less often polygonal plot series with some corner sub-series, generally more regular with fine grain.
- **2nd type** is based on the first, but looser with large green areas that broke the dynamics of the unbroken row of rental palaces. Multiple isolated buildings with similar layouts show the direction of the development of the plot series (Nyugati).
- **3rd type** is shown in the Southern Railway Station in Zagreb, the placement is less favourable, the location during the research period was more suburban, with such special characteristics as the proximity of military facilities (Rudolf Barracks 1888/1889). The surrounding of the station is characterized by
large open areas and "randomly" placed (facility/industrial) buildings. According to the 1910/13 (1915) cadastral map the urban tissue is loose with industrial characteristics, the station faces an open area, but the military buildings in the neighbourhood changed the pattern (not the urban distribution, but the land use is unique). In urban typology land use is less important, but since this urban tissue cannot be considered as homogeneous by the use, just by the pattern. The predominantly whole block plots and multiple isolated buildings with similar layouts should be considered as an important factor that has impact on the urban pattern of neighbourhood areas: creating an alien-like tissue surrounded by an unbroken row of buildings defined tissues.

Square as a pattern is present in all of the mentioned stations, but its distribution is widely different. Nyugati faces an outer ring road, with a square on the side of the station, but urban pattern analyses do not have a tissue changing role (open space, unbuilt space), they are not part of the simple tissue. **Urban tissues** are diverse around the station, since the surrounding was in rapid development, the nearly permanent state is considered: large unbuilt areas and densely built urban tissue (closed, rectangular construction pattern with inner yards and a nearly geometric plot division, plot series repeating themselves and the building layouts are similar, showing homogeneous construction dynamics). The role of the tracks and the station in the urban typology is multifold: it should be considered not just in the context of the surrounding tissues, but also at the simple tissue determination as well. The already mentioned situation of Keleti and the Main Station has to be discussed, since these two stations act as gates to their respective cities, although rental palaces are less notable around Keleti than around the Main Station in Zagreb. Tissue distribution is similar, but with different building layouts and there are some differences in the simple tissue. Both of them act as gates and follow lines towards the city centre. In Zagreb the green area (series of squares) with the station has a double...
effect in urban typology, since these should be taken as a single ensemble, not as unique elements.

Zagreb has an important role in urban typology, with its inner urban tissue and "counterpoints" (railway, parks, Sava River) relations and the fact that the entire new urban territory was established during the Austro-Hungarian period with a strict, grid-like simple tissue that could act as one of urban basic types of urban typology in Austria-Hungary.

CONCLUSION

In the former Austria-Hungary regional transport was part of the deliberate development policy, but influence over urban territories was site-specific with some similarities. The railway and the increasing intensity of urban development in the second half of the 19th century changed the scale and urban tissue of urban areas. Intensive modernization took place during the industrial period and one of the accompanying events was the realignment and modernization of transport, routes, street networks. The railway brought new construction dynamics (new simple tissue and urban pattern) to the surrounding areas. New urban forms, such as the widened radial street, square, park or other green areas in front of the railway station, and new building layouts resulted, and urban tissue typology was changed corresponding to the period when the station was built. In the studied cities, as some mutual characteristics can be seen, the first railway lines were placed in unbuilt areas, outside city walls (Prague, Vienna), just at the border of the built area (Budapest) and far from the built environment (Zagreb). The Masaryk (formerly Prague) Station was placed partly beyond the city walls and only the Franz Joseph Station (Vienna) penetrated the built environment, these two terminals being the only exceptions. Modern urban infrastructure exerted complex effects in settlements. Train stations incorporated into the urban tissue indicated the establishment of new sub-centres presenting a different, more grid-like spatial plan. The increasing number of regional railway lines impacted the improvement of certain parts of the city: new sub-centres were created, outskirts and the centre were connected. The results of the analysed period not only gave answers to the question of urban transformation of modernizing towns, but also showed the direction of development in the past. The most intensive urban transformation can be witnessed in Budapest and Zagreb, since the direction of urban development was identified in the four cities, the urban typology context was closely studied and explained in the case of railway stations of these two cities. Different urban contexts of the stations made it possible to study and determine the importance of the position and the relations between the surrounding urban tissue types and railway lines and railway stations in urban typology of the Austro-Hungarian cities.

[Proofreading: Anita Harkai, BA; Final proofreading: Zdenka Ivkovic, "Interalia"]
Bibliography

Archival Sources

1. Budapest City Archives, 3-5 Teve Street, Budapest /maps.hungaricana.hu [BFL]
2. National Archives of Hungary, 2-4 Bécsi kapu Square, Budapest /maps.hungaricana.hu [MOL]
3. Muzej Grada Zagreba, 20 Opatička Street, Zagreb [MGZ]

Cartographic Sources [CS]

1. Austrian National Library; http://images.bibliographisches-institut.de...
4. Budapest – 1872: Pest belterületének városrendezési térképe. Made by Halácsy Sándor; BFL XV.16.b.221/18; OSZK TM 578; OSZK TM 901; http://maps.hungaricana.hu/hu/2469/?query=FEZ%5D28%22Pest-Buda-Obuda%229
6. Müzej Grada Zagreba, 20 Opatička Street, Zagreb [MGZ]
7. National Archives of Hungary, 2-4 Bécsi kapu Square, Budapest /maps.hungaricana.hu [MOL]
11. Afbeeldingen van de 19e-eeuwse stadspandelingen van Zagreb, MAZ Inv. 1889: Regulatorna osnova; MGZ Inv. 1999: 88-89
12. Wagner – 1897: General plan of the area where the Vienna river flows into the Danube Canal, before 1872; Wagner – Museum Postsparkasse; http://www.ottowagner.com/the-building-s-history/
14. Hungarian National Archives, 2-4 Bécsi kapu, Budapest /maps.hungaricana.hu [HUN]
15. Szkalamera, Ž. et al. (1994), Zagreb na geodetsko-katastarskim zemljovidima i u zemljišnim knjigama, Gradski zavod za katastr i geodetske poslove, Zagreb
17. Afbeeldingen van de 19e-eeuwse stadspandelingen van Zagreb, MAZ Inv. 1889: Regulatorna osnova; MGZ Inv. 1999: 88-89
18. Wagner – 1897: General plan of the area where the Vienna river flows into the Danube Canal, before 1872; Wagner – Museum Postsparkasse; http://www.ottowagner.com/the-building-s-history/
19. Wagner – 1897: General plan of the area where the Vienna river flows into the Danube Canal, before 1872; Wagner – Museum Postsparkasse; http://www.ottowagner.com/the-building-s-history/
20. Wagner – 1897: General plan of the area where the Vienna river flows into the Danube Canal, before 1872; Wagner – Museum Postsparkasse; http://www.ottowagner.com/the-building-s-history/

Illustrations and Table Sources

1. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.
2. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.
3. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.
4. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.
5. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.
6. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.
7. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.
8. Figures and tables were used from the CS: 1, 4, 5, 7 and 9-20.

Sources

Literatura

5. Gerevich, L. ed. (1978), Budapest története IV., Akadémiai Kiadó, Budapest
6. Gracanin, H. et al. (2012), Povijest grada Zagreba 1, Novi Liber, Zagreb
9. Magyar Mérnök- és Építészegylet (1928), Technikai fejlődésünk története 1867-1927, MM, Budapest
15. Skalamera, Z. et al. (1994), Zagreb na geodetsko-katastarskim zemljovidima i u zemljišnim knjigama, Gradski zavod za katastr i geodetske poslove, Zagreb
SUMMARY

SAZETAK

PREOBRAZBE URBANE STRUKTURE

ULOGA ŽELJEZNICE U OBLIKOVANJU URBANOGA TKIVA U GRADOVIMA AUSTRO-UGARSKA MONARHIJE

(1867.-1918.)

Ustavno spajanje dviju država - Austrijskog Carstva i Kraljevine Mađarske, nakon cega slijedi Austro-ugarska nagodba (1867.) te Ugarsko-hrvatska nagodba (1868.), omogućilo je jedinstvenu državnu strukturu i politiku razvoja. Urbani razvoj dvojne države krenuo je u novome smjeru, dijelom zbog urbana razvoja koji je bio reguliran od strane države (u slučaju glavnih gradova, Beča i Budimpešte), ali i zbog ekonomskog razvoja koji je imao snažan utjecaj na proces urbanizacije. Četiri grada — Beč, Prag, Budimpešta i Zagreb — odabrani su gradovi za analizu i istraživanje prikazani u ovome članku. S motrišta urbanoga tkiva želježnički kolodvori mogu se smatrati simbolom modernizacije druge polovice 19. stoljeća. Položaj i odnos kolodvora i trasa želježne pruge prema okolnom urbanom tkivu, kao i njihov položaj na urbanom sustavu, odlučivi su u austrougarskim gradovima, posebice s gledišta urbane tipologije. Istraživanje prikazano u ovome radu bavi se preobrazbom urbane strukture i urbanim odnosima zbog izgradnje želježničkog sustava. Nažalost, ne postoji detaljna istraživanja kroz cijeli period, već su poznati rezultati istraživanja možda olakšana s motrišta urbanoga tkiva. Osnovni rezultati istraživanja, snažno se odnose na smjer razvoja industrije i industrijskog urbanog razvoja, ali su i snažno utvrđeni u razvoju novih urbanističkih koncepata u razdoblju Austro-Ugarske Monarhije.

Biographies

ÉVA LOVRA, MSc, is a Ph.D. candidate at the University of Pécs, a researcher at the Slovak Academy for Science, a visiting lecturer at the University of Roma Tre. Research area: socialist modernism of post-WWII Serbia, urban tissue and urban tissue typology in Austria-Hungary.

MLADEN OBAD ŠÆITAROCI, F.C.A., Ph.D., full professor at the Faculty of Architecture, University of Zagreb. He is head of the research project Heritange Urbanism and author of numerous scientific and professional works in urban and physical planning and landscape architecture. [www.scitaroci.hr]

BOJANA BOJANIC OBAD ŠÆITAROCI, Ph.D., architect, is an associate professor at the Faculty of Architecture in Zagreb. Research area: history of landscape architecture, relationship between contemporary landscape architecture and heritage. [www.scitaroci.hr]

Mr.sc. ÉVA LOVRA je doktorandica Sveučilišta u Pécsu, istraživačica slovačke Akademije za znanost i gostujuća predavačica na Sveučilištu Roma Tre. Područja istraživanja: socialistički modernizam u Srbiji nakon Drugoga svjetskog rata, gradičko tkivo i urbana tipologija Austro-Ugarske Monarhije.

MLADEN OBAD ŠÆITAROCI, akademik, dr.sc., redoviti je profesor na Arhitektonskom fakultetu u Zagrebu. Voditelj je znanstvenoistraživačkog projektovanja i uzgajanje arhitekture. [www.scitaroci.hr]

BOJANA BOJANIC OBAD ŠÆITAROCI, izvanredna je profesorica Arhitektonskog fakulteta u Zagrebu. Područje istraživanja: povijest perivojne arhitekture, odnos suvremene perivojne arhitekture i naslijeđa. [www.scitaroci.hr]