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ABSTRACT

The knot vectors of a B-spline surface determine the ba-
sis functions hereby, together with the control points, the
shape of the surface. Knot manipulations and their in-
fluence on the shape of curves have been investigated in
several papers (see e.g. [4] and [5]). The computations
can be made very efficiently, if the basis functions and
the vector function of the B-spline surface are represented
in matrix form (see [1] and [6]). In our latest work [2]
we summarized the knot manipulation techniques and the
corresponding computations in matrix form. We also de-
veloped an algorithm for a direct knot sliding, how a knot
can be repositioned in one step instead of inserting a new
knot value, then removing an old one from the knot vector.

In this paper we analyse the effect of varying knot inter-
vals on the Gaussian curvature of a B-spline surface at a
given point. We present an algorithm for the deformation
of a B-spline surface, so that it should go through a given
point with a given Gaussian curvature. The result of this
deformation is, that a sphere with a given radius will fit
tangential the reshaped surface at the given point with
equal Gaussian curvatures. In applications the same situ-
ation arises, when a ball-end tool is pushed into a surface
during processing.

In our algorithm we use only linear interpolation equations
besides the repositioning of knot values, in order to get
numerically stable and effective solutions.
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Podešavanje zakrivljenosti B-splajn ploha ope-
racijama na čvor vektorima

SAŽETAK

Na ovaj način čvor vektori B-splajn ploha odred-uju

temeljne funkcije zajedno s kontrolnim točkama te ob-

lik plohe. U nekoliko članaka (vidi na primjer [4] i [5])

proučavale su se operacije na čvorovima i njihov utje-

caj na obilk krivulja. Izračuni mogu biti izvedeni vrlo

efikasno ako su temeljne funkcije i vektor funkcije B-splajn

plohe prikazane u matričnom obliku (vidi [1] i [6]). U

našem posljednjem radu [2] saželi smo metode operacija

na čvorovima i odgovarajućih izračuna u matričnom obliku.

Takod-er, razvili smo algoritam za izravno klizanje čvorova,

tj. pokazali smo kako čvor može biti premješten u jednom

koraku umjesto da uvodimo novu vrijednost čvora, a zatim

uklanjanjem starog iz čvor vektora.

U ovom članku analiziramo utjecaj mijenjanja intervala

čvorova na Gaussovu zakrivljenost u zadanoj točki B-

splajn plohe. Prikazujemo algoritam za deformaciju B-

splajn plohe tako da prolazi kroz zadanu točku sa zadanom

Gaussovom zakrivljenošsću. Rezultat ove deformacije kaže

da kugla zadanog radijusa dira preoblikovanu plohu u

zadanoj točki s jednakim Gaussovim zakrivljenostima. Ista

situacija dogad-a se u primjenama kad je alat kuglama ugu-

ran u plohu tijekom procesa.

S ciljem da postignemo numerički stabilna i efikasna

rješenja, osim premještanja vrijednosti čvora, u našem al-

goritmu koristimo samo jednadžbe linearne interpolacije.

Ključne riječi: prikazi plohe, geometrijski algoritmi

1 Problem solution in the symmetric case

The mathematical formulation of the problem

Our task is to push a given sphere into a B-spline surface
by reshaping a part of it around a given common interpola-
tion point such that, the surface and the sphere are in a tan-

gential position and they have equal Gaussian curvatures
at this point (Fig 1, Fig 2). We only address the geomet-
rical side of the problem, but not the mechanical aspects.
Furthermore, we do not set conditions on area or volume
preserving. We just focus on this geometrical design prob-
lem.
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Figure 1: The sphere will be pushed into the interpolation
point given in the middle.

Figure 2: The deformed surface and the sphere have equal
Gaussian curvature at the common point.

The shape of the surface can be controlled by its control
points and by the parametrization of the basis functions,
that means, by the knot vectors. The interpolation problem
with a prescribed Gaussian curvature leads to quadratic ra-
tional expressions of the surface data, but our algorithm
avoids nonlinear numerical methods by choosing appro-
priate variables, interpolation conditions and by applying a
simple iteration method.
Let the B-spline surface of degree 3×3 be given with non-
uniform periodic knot vectors (u1 < u2 < · · · < un+4) and
(v1 < v2 < · · ·< vm+4), n,m≥ 4. The vector function rep-
resenting the B-spline surface is

b(u,v) = (u3,u2,u,1) ·
(
N4

u
)T ·Q ·M4

v · (v3,v2,v,1)T ,

where N4
u and M4

v are the corresponding coefficient matri-
ces of the basis functions and Q is the matrix of the control
points qi, j, (i = 1,2, . . . ,n, j = 1,2, . . . ,m).
We will restrict the computation to a region of 4×4 patches
of the B-spline surface because this part is influenced by
the second order curvature condition prescribed in the mid-
dle of this region. In this case n,m≥ 7. The other parts of
the surface outside of this region remain unchanged.
The input data of the B-spline surface are the knot vectors
(i.e. the parameter values) and the control points. The pa-
rameter grid with the actual region is shown in Fig 3, the

control net with the generated surface is shown in Fig 4.
In these examples the control net and the knot vectors are
symmetrical about the midpoint of the actual region, there-
fore, the generated surface is also symmetrical about this
point.

Figure 3: Parameter domain of the surface: 4×4 surface
patches are determined by the net of 11× 11
knot values, (h is constant).

Figure 4: 7×7 control points and the generated surface.

First phase of the deformation: interpolation
For the deformation of the surface we prescribe 9 interpo-
lation points and the Gaussian curvature at the interpola-
tion point P in the middle, where the sphere with the cor-
responding radius will touch the reshaped surface. Four
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interpolation points are given in the corners of the B-spline
surface. Five interpolation points, namely P and the four
corner points are shown in Fig 1. The remaining four inter-
polation points are determined around P according to the
radius of the given sphere symmetrically with respect to P
(Fig 5). They are computed on the surface of the sphere.
The corresponding parameter values of the required sur-
face are estimated by the relative measurements of the sur-
face patches and the sphere. To the nine interpolation con-
ditions we choose nine variables, which are nine inner con-
trol points of the 7×7 control net (Fig 6).

Figure 5: The nine interpolation points

Figure 6: Nine variable control points in the 7×7 control
net

Each of the nine interpolation conditions is a linear vec-
tor equation in the nine control points, which are the un-
knowns of a system of linear equations.

pi = b(ui,vi), i = 1, . . . ,9

The knot vectors are now fixed, and the coefficient matri-
ces are computed accordingly. On the right hand side the
vector function b(u,v) is depending on the nine unknown
control points and it is evaluated at the parameter values
(ui,vi). The unknown nine control points are included in
the matrix Q. The pairs of the parameter values (ui,vi)
belong to the interpolation points, the position vectors of
which are denoted by pi. The solution results in a con-
trol net of the B-spline surface interpolating the nine given
points. Its Gaussian curvature at the midpoint P is now
determined. How can it be equal to the given value?

Second phase of the deformation: adjusting the Gaussian
curvature
Now we modify the knot vectors in order to deform the
shape of the surface around the interpolation point P. In
the knot vectors four knot intervals in the middle of the
knot vectors will be changed by repositioning (sliding) the
knot values u5 ∈ (u4,u6), u7 ∈ (u6,u8) and symmetrically
v5 ∈ (v4,v6), v7 ∈ (v6,v8), respectively. These knot values
are marked in Fig 3. The variables in the knot vectors are
du and dv. For smaller du, dv the generated B-spline sur-
face gets nearer to the control net, for larger du, dv it is
more flat, and lies farther from the control net.
If we change the knot intervals du = dv and analyse, how
the Gaussian curvature of the surface (denoted by κG) at
the point P changes, we get a monotone scalar function
κG(du). In Fig 7 the corresponding radius = (

√
κG)

−1 of
the sphere is shown depending on du = dv.

Figure 7: The radius of the sphere as function of the length
of the knot intervals du = dv

The Gaussian curvature is varying in a limited interval
while the chosen parameter values are repositioned in the
intervals (u4,u6), (u6,u8) and (v4,v6), (v6,v8) of a fixed
length h, respectively. To a given Gaussian curvature be-
tween these limits the corresponding knot intervals du =
dv are determined by a simple iteration from this scalar
function.
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Then the required surface is generated with the new knot
vectors. The result of this computation is shown in Fig 2.
The point P is an umbilical (a special elliptical) point of
the new surface due to the symmetrical data and symmet-
rical change of the knot vectors. After this deformation the
boundary curves of the surface consisting of 4×4 patches
do not change, as it is shown in Fig 8.

Figure 8: The original and the deformed surfaces have the
same boundary curves.

2 The asymmetric case

In the non-symmetrical case the deformation presented
above leads to an elliptic surface point P, where the main
curvature values are different, though the Gaussian curva-
ture is equal to that of the given sphere. This situation
is shown in Fig 9 by pushing the sphere a bit into the
deformed surface, where the intersection has an elliptical
form.

Figure 9: Elliptical surface point at P with different main
curvatures

Now we carry out a further deformation in order to get a
special elliptic, i.e. an umbilical point at P. We repeat
the second phase of the deformation by changing the knot
intervals, now only in one parameter direction, let us say,
on the v-knot vector. For the chosen values of dv within
the intervals (v4,v6) and (v6,v8) we compute the curva-
tures of the parameter curves at the surface point P. As-
suming that the parameter net is orthogonal, the Gaussian

curvature is the product of the curvatures of the u- and v-
parameter curves. In Fig 10 the dependence of the curva-
ture of the v-parameter curve, denoted by v− curvature,
on the knot interval dv is shown. Meanwhile the val-
ues of the u− curvatures are practically constant (they
are not shown). We determine the knot interval dv to the
v−curvature which is equal to the u−curvature from this
monotone discrete function by simple iteration. The com-
puted surface with this knot vector has an umbilical point
at P. That is visualized by the sphere pushed slightly into
the surface at the touching point (Fig 11).

Figure 10: The values of the v−curvatures at the values of
the knot interval dv

Figure 11: Umbilical surface point at P with equal main
curvatures

We remark that by this second deformation the Gaussian
curvature has been changed slightly. Analysing this vari-
ation, an appropriate correction could be carried out in a
similar way, repeating the computation for modified values
of du and dv, if the difference in the radii of the touching
spheres computed from the resulting Gaussian curvatures
is not acceptable. We have omitted this step.
We remark also that there are no equal values of u- and
v-curvatures on the considered interval, if the surface is
strongly asymmetric around the point P. In this case the
parameter values of the four inner interpolation points have
to be corrected accordingly.
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3 The mathematical tools

Matrix form of the basis functions
The B-spline surface in our algorithm is presented in ma-
trix form. This form allows to write the interpolation con-
ditions in the form of explicit vector equations. In [1] we
have given a short overview of the published papers about
the matrix form of B-spline functions, and we also have
given a method for generating the entries of the coefficient
matrices of any degree over periodic knot vectors.
In our algorithm we have changed the position of a knot
value within a given knot interval in order to analyse the
change of the Gaussian curvature at a given surface point.
In each step the corresponding coefficient matrices have
been generated for the vector function representing the B-
spline surface.
In order to represent the basis functions of non-uniform
B-splines in matrix form first we describe a reformula-
tion technique of the de Boor-Cox recursion. From this
recursion formula we can generate the representation ma-
trix of the basis functions in the not normalized Bernstein
basis. Then we can apply a simple transformation from
the not normalized Bernstein basis to the polynomial space
spanned by the power basis. Thus with the algebraic refor-
mulation of the B-spline recursion we gain the conversion
matrices of the B-spline functions to the power basis.
First we present here a simple reformulation of the de
Boor-Cox recursion. The basis functions of order k over
the knot vector {t1, . . . tn} are defined by the de Boor-Cox
formula as:

N1
i (t) =

{
1, t ∈ [ti, ti+1)
0, otherwise,

Nk
i (t) = α(ti, ti+k−1; t)Nk−1

i (t)+α(ti+k, ti+1; t)Nk−1
i+1 (t),

where the function α is defined as

α(A,B; t) =
t−A
B−A

(1)

for arbitrary parameters A,B, where A 6= B, and for all
t ∈ [A,B].
We can generate the pieces of the basis functions restricted
to one knot interval [t j, t j+1) by rewriting the recursion as

N1
i (t) =

{
1, t ∈ [ti, ti+1)
0, otherwise,

Nk
i (t) = α(t j, t j+1; t)

[
α(ti, ti+k−1; t j+1)Nk−1

i (t)

+ α(ti+k, ti+1; t j+1)Nk−1
i+1 (t)

]
+ α(t j+1, t j; t)

[
α(ti, ti+k−1; t j)Nk−1

i (t)

+ α(ti+k, ti+1; t j)Nk−1
i+1 (t)

]
, where t ∈ [t j, t j+1).

(2)

According to this form we transform all segments of the
basis functions from the knot span [t j, t j+1) and represent
them over the unit interval as follows:

N1
i (t(u)) =

{
1, i = j
0, otherwise,

Nk
i (t(u)) = u

[
α(ti, ti+k−1; t j+1)Nk−1

i (t(u))

+ α(ti+k, ti+1; t j+1)Nk−1
i+1 (t(u))

]
+ (1−u)

[
α(ti, ti+k−1; t j)Nk−1

i (t(u))

+ α(ti+k, ti+1; t j)Nk−1
i+1 (t(u))

]
, (3)

where u ∈ [0,1), t ∈ [t j, t j+1) and u(t) = α(t j, t j+1, t).
Over the knot spans, where j = k,k + 1, . . . ,n− k the
basis functions have k different, non-zero polynomial
segments. These segments can be represented by a
matrix equation in the not normalized Bernstein basis
{uk−1,uk−2(1−u), . . . ,(1−u)k−1} over the unit interval:


Nk

1(t(u))
Nk

2(t(u))
...

Nk
n−k(t(u))

=Ck ·


uk−1

uk−2(1−u)
...

(1−u)k−1

 ,
t ∈ [t j, t j+1),

u ∈ [0,1),

(4)

where Ck ∈ Rn−k×k, and it contains the coefficients of
um(1− u)k−1−m computed recursively from (4). For each
k = 2,3, . . . this matrix contains several rows, where all ele-
ments are zeros. These rows contain the coefficients of the
basis functions that are zero over the knot span [t j, t j+1).
The non-zero rows for each j (from row j+ 1− k to row
j), where j ≥ k, give the coefficients of the basis functions
with the support containing the interval [t j, t j+1).

If we represent the segments of the basis functions from a
given knot span [t j, t j+1) in the matrix equation form (4),
then it is easy to transform this representation to a matrix
representation in the power basis: {uk−1,uk−2, . . . ,u,1}. In
order to find the transformation matrix of the basis func-
tions to the power basis, it is sufficient to find the transfor-
mation matrix Pk from the not normalized Bernstein basis
to the power basis for polynomials of degree k−1:


Nk

1(t(u))
Nk

2(t(u))
...

Nk
n−k(t(u))

=Ck ·Pk ·


uk−1

uk−2

...
1

 ,
t ∈ [t j, t j+1),

u ∈ [0,1).

(5)
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The Pk matrix is a lower triangular matrix with the entries:

Pk[i, l] =


(−1)i−l+1 ·

(
i−1
l−1

)
, l ≤ i,

0, otherwise,

where l and i = 1, . . . ,k. This matrix can be easily derived
according to the Binomial-theorem. A conversion matrix
from the not normalized Bernstein basis to the power basis
can be also found in the literature [3].

Interpolation and iteration
These mathematical tools are well-known basic methods in
solutions of various numerical problems. In our algorithm
the linear interpolation problem formulated by a system of
linear vector equations has been separated from the non-
linear interpolation problem, where a scalar value (i.e. the
Gaussian curvature of the surface) has to be interpolated
with vector variables. We have solved this problem by sim-
ple iteration on a monotone, scalar function by computing
discrete values of this function in an appropriate interval.
This method is fast and numerical stable. In this way we
have avoided non-linear numerical problems.
The computations and the figures have been made by the
symbolical algebraic program package Wolfram Mathe-
matica.

4 Remarks

In our algorithm there are some basic assumptions. The
first one is that the local deformation of a B-spline surface
of degree 3× 3 has been computed on a region of 4× 4
patches, where the fixed point lies in the middle of this re-
gion. Though each control point and each basis function
has an effect on four knot intervals, the boundary curves
of this part of the surface have not changed under the used
interpolation conditions.
The next assumption is that the prescription of the four in-
ner interpolation points are computed from the data of the
given sphere. The setting of the parameter values for which
the surface interpolates these points has been made on the
base of experimental results, as usually in the solutions of
many practical problems.
A further simplification in the solution is that we have com-
puted with surfaces on orthogonal parameter grids. In this
way we have computed the Gaussian curvature as the prod-
uct of the curvatures of the u- and v-parameter curves. In
this way we have avoided the numerical computation of the
main curvatures in each step, because this computation is
not essential in our algorithm.

5 Conclusions

We have given an algorithm for the solution of a practical
problem: how to press a given sphere into a B-spline sur-
face at a prescribed position. We have shown a solution,
when the surface is symmetric around the given interpola-
tion point. Then in the non-symmetric case we have shown
a further deformation of the surface in order to transform
the elliptical surface point into an umbilical one. In this
case the given sphere osculates the deformed surface with
equal Gaussian curvatures at the given tangential point.
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