RASPROSTRANJENOST KORIJENOVICE MREŽE VIŠANJA NA PODLOZI PRUNUS MAHALEB U DEGRADIRANOM ČERNOZEMU ISTOČNE SLAVONIJE

UVOD

Poznavanje rasprostranjenosti korijenove mreže voćaka u pojedinim tima ima veliko naučno i praktično značenje. Već je Justus von Liebig pisao: "Poznavanje korijenove mreže biljka predstavlja osnovu zemljoradnje. Spoznaju, da poznavanje rasprostranjenosti korijenovog sistema voćaka u tlu pruža osnovu za provedbu nekih meliorativnih mjera (odvodnja, navodnjavanje), da koristi kod bonitacije tla za voćnjake, kod izbora načina održavanja tla u voćnjacima, određivanje dubine obrađe te načina i dubine unošenja gnojiva, navela je mnoge istraživača da se bave tom problematikom. U tu svrhu razrađene su i brojne metode koje možemo podijeliti u četiri osnovne grupe:

1) metoda skeleta
2) metoda monolita
3) metoda promatranja kroz staklo
4) metoda s primjenom radiolozotopa

Ipak rasprostranjenje korijenove mreže različitih vrsta voćaka u različitim edafskim prilikama, nije još dovoljno proučeno, pa V. G. Rotmistrov s pravom konstatira da je korijen "pasiva u nauči".

U vezi sa sve većim razvojem, intenzifikacijom i unapređenjem voćarske proizvodnje, osjeća se potreba razrade napredne agrotehnike, kao osnove visokih prinosa. Činjenica, da se napredna agrotehnika mora temeljiti na poznavanju bioloških karakteristika voćaka a napose njihove korijenove mreže, upućuje nas na upoznavanje rasprostranjenja korijenove mreže voćaka u pojedinim tima. S time u vezi započeli smo 1961. godine ispitivanje rasprostranjenosti korijenove mreže višanja na podlozi PRUNUS MAHALEB u degradiranom černozemu istočne Slavonije.

KRATAK OSVRT NA LITERATURU

Korijenova mreža višanja u pojedinim tima malo je ispitivana. P. I. Pehoto (1946) piše da se na tima s plitkim iluvijalnim horizontima korijenova mreža višanja prostire u površinskim slojevima. To potvrđuju i ispitivanja, što su ih V. N. Balobin i A. G. Dušinska (1958) provedli na podzolastim tima.

Značajna su ispitivanja E. G. Bistia (1962.) o rasprostranjenju korijenove mreže višanja na karbonatnim černozemima. Prema ovom autoru glavnina korijenove mreže prostire se na dubini od 5—50 cm, dok se manji dio korijena prostore niže i dopire najdublje do 100 cm.

V. A. Kolesnikov (1959) navodi da na podzolastim tima korijen višanje može doprjeti do dubine od 2 m.

Zanimljiva su ispitivanja V. N. Balobina i A. G. Dušinske o odnosu između skeletnog i obrastajućeg korijenja kod višanja uzgajanih na raznim podlogama (sje- menjak Duge Lotove, sjenjak Vladimirovke i Prunus mahaleb). Autori su ustavnovili da Prunus mahaleb ima dva puta manje obrastajućeg korijenja, nego sjenenjak višnje sorte Vladimirovka.

VLASTITA ISPITIVANJA

1961. godine smo ispitivali rasprostranjenost korijenove mreže višanja na podlozi Prunus mahaleb na degradiranom černozemu istočne Slavonije (PD Erdut — pogon Marinović)
<table>
<thead>
<tr>
<th>Dubina u cm</th>
<th>H₂O</th>
<th>n/KCl</th>
<th>%₆ humusa po Walkley-Blacku</th>
<th>%₆ dušaka po Kjeldahlu</th>
<th>Egner-Richm. mg/100 g tla</th>
<th>%₆ Ukupni karbonati po Scheibleru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profil 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-20</td>
<td>8,38</td>
<td>7,20</td>
<td>2,35</td>
<td>0,09</td>
<td>10,5</td>
<td>0,34</td>
</tr>
<tr>
<td>20-40</td>
<td>8,40</td>
<td>7,30</td>
<td>2,60</td>
<td>0,09</td>
<td>7,5</td>
<td>0,16</td>
</tr>
<tr>
<td>40-60</td>
<td>8,20</td>
<td>6,80</td>
<td>1,43</td>
<td>0,05</td>
<td>9,4</td>
<td>0,16</td>
</tr>
<tr>
<td>60-80</td>
<td>8,30</td>
<td>6,90</td>
<td>0,88</td>
<td>0,05</td>
<td>10,0</td>
<td>0,26</td>
</tr>
<tr>
<td>80-100</td>
<td>8,42</td>
<td>7,40</td>
<td>0,70</td>
<td>0,04</td>
<td>—</td>
<td>3,83</td>
</tr>
<tr>
<td>100-120</td>
<td>8,50</td>
<td>7,45</td>
<td>0,60</td>
<td>0,02</td>
<td>—</td>
<td>10,50</td>
</tr>
</tbody>
</table>
Ispitivano područje se nalazi u semiaridnoj klimi s prosječnom godišnjom kišom od 624—642 mm (tokom vegetacije 350 mm) i srednjom godišnjom temperaturom oko 10,8 °C.

Na ovom području dolazi degradirani šernozem dosta povoljnih fizikalnih i kemijalnih svojstava. Tlo je ilovaste teksture, porozno do vrlo porozno s osrednjim retencionim kapacitetom tla za vodu i povoljnim kapacitetom tla za zrak. Svojstva tla prikazana su u tabeli 1, a iznosimo i opis profila tla koji je otvoren ispod pokusnih stabala: 0—20 cm nalazi se sloj smeđe glinene ilovaće, mrvićaste struktura, isprepleten ten korijenjem voćaka i ostalog raslinstva; pozitivne se reakcije na karbonate; postepeno prelazi u 20—58 cm debliji sloj zagasitije smeđe ilovaće, grašaste do sitno orašaste strukture, slabo izražene reakcije na karbonate, postepeno prelazi u niži sloj. 58—80 cm sloj smeđe žučkaste ilovaće, grašaste strukture, pozitivne reakcije na karbonate. U ovom sloju nalazi se na gde koja konkrecija vapna, odnosno micelije karbonata, 80—100 cm nalazi se smeđe–žuto–sivi sloj ilovaće s nešto više konkrecije karbonata, i dublje dolazi 100—120 cm les sa mnogo micelija karbonata i po gde koja krhotina lešnih pužića. Reakcija na karbonate dosta burna.

Nasad je star 5 godina, dosta homogen, osrednje razvijenosti. Razmak sadnje je 6 x 6 m. Prosječne mjere nadzemnog dijela voćaka iznose: promjer debela 6,28 cm, visina debela 65 cm, visina stabla 321 cm, širina krošnje 300 cm, jednogodišnji prirast 26,7 m, prosječna dužina jednogodišnjih šiba 68 cm i maksimalna dužina jednogodišnjih šiba 115 cm.

METODIKA RADA

Kod ispitivanja korijena primjenjivali smo metodu skeleta (suhi postupak). Orijentaciona ispitivanja provodili smo metodom profila. Kod metode skeleta uzimali smo isječak 1/4 kruga kod 5 stabala, a proveli smo i otkopavanje čitavog stabla. Otkopano korijenje isekli smo i uzel uzorke na udaljenosti svakih pola metra od debela u dubinskim slojevima od po 20 cm. U površinskom sloju, smo vršili najprije otkopavanje do dubine od 10 cm. Uzeti uzorci korijena preneseni su u laboratore, gdje je izvršeno mjerenje duljine na pojedincima dubinama i udaljenostima od debela.

REZULTATI ISTRAŽIVANJA

Od ukupne dužine korijena otpada na skeletno korijenje (2 r veći od 8 mm) 16,65% a na obrastajuće 83,35%. Najveći dio (82,58%) obrastujućeg korijenja razvio se ispod krošnje, dok je samo 17,42% naden izvan opsega krošnje. Od ukupne težine korijenja otpada na korijenje ispod krošnje 97,9%, a izvan opsega krošnje 2,1%.

U površinskom sloju do dubine od 10 cm nije bilo korijenja, osim uz samo debelo. Izvan opsega krošnje nismo našli na korijenje do dubine od 20 cm, dok je ispod krošnje u sloju od 10—20 cm bilo dosta obrastujućeg i skeletnog korijenja.

Tabela br. 2 — Dužinska zastupljenost korijena u različitim dubinama izražena u %

<table>
<thead>
<tr>
<th>Dubina u cm</th>
<th>Ispod krošnje</th>
<th>Izvan krošnje</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>skeletno</td>
<td>obrastujuće</td>
</tr>
<tr>
<td>0—20</td>
<td>18,70</td>
<td>22,60</td>
</tr>
<tr>
<td>20—40</td>
<td>39,70</td>
<td>26,30</td>
</tr>
<tr>
<td>40—60</td>
<td>32,20</td>
<td>27,30</td>
</tr>
<tr>
<td>60—80</td>
<td>7,20</td>
<td>19,20</td>
</tr>
<tr>
<td>80—100</td>
<td>2,70</td>
<td>4,70</td>
</tr>
<tr>
<td>100—120</td>
<td></td>
<td>0,8</td>
</tr>
</tbody>
</table>

Zastupljenost korijena u pojedinim dubinskim slojevima (tabela 2) izražena je u postocima ukupne dužine skeletnog, odnosno obrastajućeg korijena ispod i izvan krošnje. Najviše skeletnog korijena ispod krošnje razvilo se u sloju od 20—40 cm, nešto manje na dubini od 40—60 cm, a samo 10% u nižim slojevima.
Obrastajuće korijenje ispod krošnje dosta je ravnomjerno raspoređeno u slojevima do 60 cm, a cca 25% pruža se u dublje. Najveći dio obrastajućeg korijenja izvan krošnje prostire se u sloju od 20 do 40 cm, a vrlo мало prodire dublje od 60 cm.

<table>
<thead>
<tr>
<th>Dubina u cm</th>
<th>Ispod krošnje</th>
<th>Izvan opsega krošnje</th>
</tr>
</thead>
<tbody>
<tr>
<td>0—20</td>
<td>23,34</td>
<td>—</td>
</tr>
<tr>
<td>20—40</td>
<td>39,32</td>
<td>46,75</td>
</tr>
<tr>
<td>40—60</td>
<td>28,51</td>
<td>44,92</td>
</tr>
<tr>
<td>60—80</td>
<td>7,11</td>
<td>5,00</td>
</tr>
<tr>
<td>80—100</td>
<td>1,70</td>
<td>1,80</td>
</tr>
<tr>
<td>100—120</td>
<td>0,18</td>
<td>1,80</td>
</tr>
</tbody>
</table>

Tabela 3 pokazuje zastupljenost korijenja u različitim dubinama, izraženim u postocima ukupne težine korijenja ispod, odnosno izvan krošnje. Isti podaci pokažu da se ispod krošnje korijenje razvija u pločnim slojevima, nego izvan krošnje, ali da općenito samo mali postotak korijenja prelazi dubinu od 60 cm.

ZAKLJUČAK

Ispitivanjem rasprostranjenosti korijenovog sistema kod petogodišnjih stabala višanja sorte Kereške na podlozi Prunus mahaleb, uzgajanih na degradiranom černozemom, ustanovljeno je da se korijenje razvilo uglavnom do dubine od 60 cm, i da vrlo malo prelazi opseg krošnje. Najveći dio korijenove mreže sačinjava obrastujuće korijenje, dok na skletano korijenje otpada samo 16,89% od ukupne dužine. Ispod krošnje razvijeno je obrastujuće korijenje i u površinskom sloju do 20 cm, kao i u sloju od 60—80 cm, dok je izvan opsega krošnje obrastujuće korijenje uglavnom samo na dubini od 20—60 cm.

LA RÉPARTITION DU SISTÈME RADICULAIRE DES GRIOTTIERS GREFFÉS SUR PRUNUS MAHALEB, CULTIVÉS DANS LE SOL CHERNOSEM DÉGRADÉ

Ing. Ivo Miljković
Fakultet agronomije — Zagreb

RÉSUMÉ

Les examins du système radiculaire sont effectués dans un verger de griottiers, variété «Kerechka» greffée sur Prunus Mahaleb âgé de 5 ans, plantés à 6 x 6 mètres, établis en terre limon-argileuse. Le verger est situé en Slavonie orientale dans le climat faiblement aride, à pluviométrie de 624 à 642 mm (au cours de la végétation 350 mm).

Les conditions de vie pour les arbres fruitiers sont bonnes, plus au point de vue physique, que chimique. Le sol est profond, la porosité de 52—62% assure une bonne aération, alors que la capacité de rétention de l’eau est suffisante (voir le tableau 1).

Les travaux entrepris nous laissent constater que la plupart des racines se développait dans une zone de 10 à 60 cm de la surface, ne dépassant pas qu’avec 17,42% de radicelles la projection de la couronne (voir le tableau 2 et 3).

La plus grand quantité de système radiculaire est constituée de radicelles, tandis que les racines squelettiques ne font plus que 16,89% de la longueur totale.

LITERATURA

858