Dr. J. Gotlin

Inž. Aleksandar Pucarić

Institut za oplemenjivanje i proizvodnju bilja

Poljoprivrednog fakulteta u Zagrebu

UTJECAJ GUSTOĆE SKLOPA NEKIH HIBRIDA KUKURUZA NA VISINU PRIRODA

UVOD

Povećanje proizvodnje kukuruza po jedinici površine u nas i u svijetu općenito ima tendenciju sjetve hibrida ranijih vegetacijskih grupa, a koji su tolerantni na povećan sklop. Naime treba imati u vidu da su za sada iscrpljene gotovo sve mogućnosti u agrotehnici u odnosu na povećanje prinosa postojećim selekcijskim materijalom. Gnojidba se približila gotovo svome maksimumu za postizanje visokih prinosa. Svako dalje povećavanje umjetnih gnojiva ne daje ekonomski opravdano povećanje prinosa.

Osnovna obrada tla, borba protiv korova i štetnika u principu je također riješeno na zadovoljavajući način. To praksa koristi gotovo do mogućeg maksimuma. Prema tome ostalo je jedino pitanje izbor hibrida koji su tolerantni na gušće sklope, a time je omogućena daljnja granica povećanja prinosa, koristeći pri tom postojeći sistem gnojidbe, klimatske i zemljišne uvjete gotovo do maksimuma.

Da bi proizvođači po mogućnosti dobili što jasniju predodžbu o ovoj problematichi iznijet ćemo u kratkim crtama pregled literature o navedenoj problematici kao i vlastita ispitivanja.

YAO i SHAW (1964) iznose rezultate koji pokazuju da kod istog razmaka redova kukuruz u većoj gustoći sklopa (70.000 biljaka po hektaru) koristi više vode nego kod manje gustoće sklopa od 35.000 biljaka po hektaru. Međutim, kod manjeg razmaka redova, i to kod 53,34 cm, kukuruz koristi manje vode nego kod šireg razmaka od 106,68 cm. Ove razlike autori tumače kao posljedicu neto radijacije. Zbog veće neto radijacije na visini od 1 m iznad biljaka veći su gubici vode i kukuruz sijan na 106,68 cm koristi više vode.

Najveći učinak u korištenju vode bio je kod razmaka redova 53,34 cm i gustoće sklopa od 70.000 biljaka, a najmanji kod razmaka redova 106,68 cm i gustoće sklopa 35.000 bilj./ha.

Najveći prinosi su postignuti kod gušće sjetve i manjeg razmaka redova, kao posljedica boljeg rasporeda listova, a kao rezultat toga bilo je bolje korištenje sunčeve energije.

Do sličnih rezultata došao je i **COLVILLE** sa suradnicima (1963) kada je kod sjetve od 50,80 cm x 50,80 cm kod gustoće sklopa od 39.600 biljaka po ha dobio prirod od 91,64 q/ha zrna, a kod iste gustoće ali razmaka sjetve od 101,60 x 101,60 cm prirod je bio 57,12 q/ha zrna. Povećanje priroda u užim redovima tumaći se kao posljedica smanjene kompetencije između biljaka i povećanje apsorpcije sunčeve radijacije.
STINSON i MOSS (1960) ističu znatnu razliku među hibridima u pogledu iskorištavanja svjetla. Hibridi koji su tolerantni prema gustoći skloba, tolerantni su i prema zasjenjivanju, dok hibridi koji su manje tolerantni na gušći sklop, također su manje tolerantni prema zasjenjivanju. U svom drugom radu MOSS i STINSON (1961) su ispitivali 2 tolerantna i 2 netolerantna na gusti sklop single crossa kukuruza, a svi su sadržavali liniju C-103. Kod svih hibrida provedena su dva tretmana: bez zasjenjivanja i zasjenjivanje biljaka čime je smanjen intenzitet svjetla za 45%. Dobiveni rezultati pokazuju da su u uvjetima zasjenjivanja svi hibridi smanjili produkciju znra po biljci, ali kod tolerantnih hibrida to smanjenje je iznosilo u prosjeku 50%, a kod netolerantnih 86%. Ta razlika je bila signifikantna. Znatan utjecaj na ovo smanjenje ima pojava jalovih biljaka. Kod tolerantnih hibrida u uvjetima bez zasjenjivanja bilo je 1%, a u uvjetima zasjenjivanja 13% jalovih biljaka dok je kod netolerantnih taj postotak iznosio 5% i 76%, respektivno.

NORDEN (1964) iznosi na osnovu dobivenih rezultata da je na slabodreniranim tlima gustoća skloba imala znatan utjecaj na razvoj korijena. Autor iznosi da je suha tvar korijena po biljci smanjila za 72% povećanjem gustoće skloba od 12.500 biljaka na 62.500 biljaka po hektaru, a širina i dubina prodiranja korijenovog sistema se smanjila za 14, odnosno 33%. Ovo smanjenje razvoja korijena povećanom gustoćom skloba je rezultat smanjenja osvjetljenja koje utječe na fotosintezu i radi toga se manje ugljikohidrata translocira u korijen, a izgleda da su upravo ugljikohidrati neophodni za bolji razvoj korijena. Količina suhe tvari korijena povećala se na jedinici površine sve do gustoće skloba od 50.000 biljaka po ha. Daljnjim povećanjem na 62.500 biljaka po ha došlo je do signifikantnog opadanja suhe tvari korijena i to za 96%.

MUHR i ROST (1951) iznose da se je pod optimalnim uvjetima vode i gnojidbe prirod kukuruza povećavao gustoćom skloba od 24.150 biljaka po ha gdje je iznosio 65,3 q/ha znra do gustoće 78.400 biljaka gdje je bio 106,5 q/ha znra. Težina klipa se smanjila od 270 g kod rjeđeg skloba na 162 g po biljci.

STRINGFILD i suradnici (1951) iznose da se u uvjetima gdje tlo i klima daju prinos manje od 18,8 q/ha znra prirod smanjuje ako je razmak redova veći od 76 cm kod iste gustoće sjetve, tj. 38.750 biljaka po ha. Međutim, pod uvjetima gdje tlo i klima mogu dati prirode od 44 q/ha znra do 62,7 q/ha znra — prirod kod iste gustoće ne smanjuje sve do razmaka redova od 127 cm. Kod povećanih razmaka između redova (152 i 178 cm) prirodi opadaju kod iste gustoće od 3,7 q/ha do 5,6 q/ha znra.

SCHMIDT i COLVILLE (1967) u svojim ispitivanjima o utjecaju zasjenjivanja na prinos i komponente prinosa iznose slijedeće:

Prosječna površina lišća po biljci kod ispitivanog hibrida N6 x B 14 u gustoći 39.450 bilj./ha iznosila je 5824 cm². Pri toj gustoći postignut je prirod 100,3 q/ha. Smanjenjem osvjetljenja ispod klipa za 25% i 50% smanjio se prirod za 5%, a smanjenjem osvjetljenja za 75 i 100% smanjio se prirod za 13 i 14%, respektivno u odnosu na kontrolu.
Dalje autori iznose da se povećanjem zasjenjivanja listova ispod klipa smanjivala težina zrna po biljci premda ne signifikantno. Autori su se ispitivaju uzeli ove tretmane zasjenjivanja jer se smatra da je fotosinteza u listovima ispod klipa limitirana nedovoljnim osvjetljenjem u visokim gustoćama sklopa.

RUTGER i RISIUS (1966) iznose da su podaci iz literature o odnosu između gustoće sklopa i zaraženosti sa snijeti (Ustilago maydis) protivurnječni i radi toga su proveli detaljnja istraživanja da se dobije jasnija slika o tom odnosu. Ispitivanja su provedena sa 30 hibrida u tri gustoće sklopa (20.800, 25.000 i 29.200 bilj./acre) i na 5 lokacija u državi New York.

Na svim lokacijama prosječno za sve hibrade zaraženost sa snijeti se je povećava povećanjem gustoće sklopa. Kod hibrada otpornih na snijet povećanjem gustoće sklopa malo se je povećala zaraženost sa snijetima, a kod hibrada neotpornih na snijet, povećanjem gustoće sklopa jako se je povećala i zaraženost na snijeti.

COLUMVILLE i suradnici (1964) na osnovu pregleda literature iznose da sklop kod kukuruza varira od 30.000—60.000 bilj./ha u humidnim područjima do 15.000—30.000 bilj./ha u nenaodnjavanim semiaridnim područjima. Na osnovu svojih ispitivanja 6 hibrada različitih po dužini vegetacije na 10 mjesta u Nebraska u uvjetima navodnjavanja u toku 3 godine autori zaključuju da adaptirani hibriz A.E.S. 806 (120 dana vegetatione) daje najveći prirod u gustoći sklopa 40.000—50.000 biljaka/ha, dok raniji hibrizi kao Iowa 4417 (100 dana vegetatione) su povećavali prirod do 60.000 bilj./ha što je bila najveća gustoća u pokusu. Dalje je ustanovljeno da raniji hibrizi pokazuju manju razliku u prirodu kad se uzgajaju na tlu manje i veće plodnosti a da kod kasnijih hibrida ta razlika je veća.

ZUBER i DICKE (1964) iznose da snaga gnječenja stabljike (bušenje stabljike od strane moljca rezultira u smanjenju snage gnječenja stabljike) smanjuje se za 106,6 kg kad se povećala gustoća sklopa od 20.000 na 40.000 bilj./ha, a dalje se smanjila za 149,69 kg povećanjem gustoće sklopa od 40.000 na 60.000 bilj./ha.

Debljina kore se smanjila za 0,14 mm povećanjem sklopa od 20.000 na 40.000 bilj./ha, a povećanjem sklopa od 40.000 na 60.000 bilj./ha se je smanjila za 0,23 mm.

Prosječan broj povreda lista po biljci od strane moljca se smanjuje povećanjem gustoće sklopa.

Snaga gnječenja stabljike je pogodna metoda za određivanje oštećenja stabljike od strane moljca.

EIK i HANWAY (1965) iznose da broj listova po biljci jako zavisi o hibrizu, malo je zavisan o datumu sjetve, a u 3 do 4 pokusa starta gnojedba je povećala broj listova. Broj listova po biljci se smanjuje povećanjem gustoće sklopa.

Na površinu lišća datum sjetve malo utječe, hibrizi duže vegetacije formiraju veće listove nego hibrizi kraće vegetacije, gnojedba prije sjetve ili sa sjetvom općenito utječe na povećanje lisne površine, a povećanjem gustoće sjetve smanjuje se lisna površina po biljci.

Razvoj lisne površine (u m²/biljci) je brži kod kasnijih hibrida nego kod ranijih. Ta posljedica je zbog toga što kasniji hibridi imaju veće liste pa iako im se listovi kasnije odmotavaju u poređenju sa ranijim hibridima oni brže razvijaju lisnu površinu. Startna gnojidba pojačava razvoj lisne površine ako se ne izvrši prije toga zaoravanje gnojiva. Naročito se jako pojačava razvoj lisne površine ako u startnoj gnojidbi ima više dušika.

HAGEMAN i dr. (1961) iznose da je poljski pokus bio postavljen u cilju da se odredi utjecaj gustoće sklopa (10.000 i 70.000 bilj./ha) pozicije lista (gornji i donji) i vremena uzimanje uzoraka (5 i 13h) na aktivnost nitrat reduktoze u vodi rastvorljive proteine i koncentraciju NO₃ kod 2 hibrida kukuruza (H₂x2 x Oh 7 i WF 9 x C-103).

Na osnovu rezultata može se zaključiti:

1. U toku dana postoje promjene u aktivnosti nitrat reduktoze, vodno rastvorljivih proteina i NO₃ sadržavaju i u donjim i gornjim listovima kod oba hibrida.

2. Hy 2 x Oh 7 ima veći nivo aktivnosti nitrat reduktoze, sadržaj proteina i nitrata nego WF 9 x C-103.

3. Kod oba hibrida dnevne promjene aktivnosti nitrat reduktoze su u pozitivnoj korelaciji sa sadržajem vodno rastvorljivih proteina i u negativnoj korelaciji sa sadržajem nitrata.

4. Biljke manje zasjenjene (rjeđi sklop) imaju veći nivo aktivnosti nitrat reduktoze, sadržaj vodno rastvorljivih proteina i nitrata.

5. Povećanjem zasjenjenja proporcionalno se smanjuje aktivnost nitrat reduktoze.

Rezultati sugeriraju da u pregustom sklopu dolazi do opadanja priroda zrna kao rezultat nedovoljnog nivoa reduciranog dušika. Naime zbog cikličke prirode raznih metabolitskih sistema i kompleksne interakcije s okolinom teško je odrediti da li su CO₂ fiksacija i metabolizam ugljikohidrata ili metabolizam dušika glavni limitirajući faktor dobivanja visokih priroda u velikoj gustoći sklopa.

Uspkos ovim teškoćama može se navesti slijedeće:

1. Neka ispitivanja (KUPMEYER) navode da je metabolizam dušika prvi kritični faktor.

2. Veći nivo aktivnosti nitrat reduktoze i sadržaj vodno rastvorljivih proteina kod hibrida Hy 2 x OH 7 u dobroj je korelaciji sa njegovom sposobnošću da premaši prirodom WF 9 x C-103 u većim gustoćama sklopa.

3. Opažanja pokazuju da prirodi blizu ili preko 200 bush/acre se postizavaju prvenstveno na tlima visoke plodnosti koja su dobro opskrbljena na organskim tvarima, koja su duboka, dobro aerirana. Takva tla mogu osi-
gurati i jednomjerniju opskrbu biljaka nitratima u toku vegetacije, a osim
toga nema razloga da takva tla ne opskrbe biljke drugim dušičnim spoje-
vima kao amino kiselinama, purinima itd.

Može se sugerirati da je visina priroda određena nivoom reserve pro-
teina ili prethodnim tvarima u sintezi proteina (npr. glutamin) i potenci-
jalom biljke da sintetizira proteine u toku kratkog perioda (2–3 tjedna)
oko metiliranja.

EARLEY (1965) iznosi rezultate sa hibridom Hy 2 x Oh 7 na tlu visoke
plodnosti. Površina lišća po ha se je povećavala povećanjem gustoće sklopa
od 10.000 do 70.000 po ha. Međutim, prirod rama po ha se je povećavao
kako se je index lisne površine povećavao od 0,7 do 2,3 a u najvećoj gustoći
sklopa 70.000 bilj./ha gdje je index lisne površine iznosio 2,9 došlo je do
smanjenja priroda i to zbog male količine ljetnih oborina.

KNIPMEYER i dr. ispitivali su kako zasjenjivanje i to umjetno i pri-
rodnog (razne gustoće sklopa 10.000 i 70.000 bilj./ha) utječe na sadržaj nitrata,
suhe tvari, šećera i limunske kiseline kod 3 hibrida. Dobiveni rezultati
su pokazali da se smanjenjem intenziteta svjetla povećava sadržaj nitrata
dok se smanjuje suha tvar po biljci i sadržaj šećera. Ukupni sadržaj
dušika i limunske kiseline nije bio pod utjecajem intenziteta svjetla. Isto
tako kod veće gustoće sklopa (28.000 bilj./ha) sadržaj nitrata je bio veći
nego kod manje gustoće sklopa (14.000 bilj./ha) suha tvar po biljci manja
je nego kod manje gustoće sklopa. Gustoća sklopa nije utjecala na sadržaj
šećera kod 3 hibrida izuzev kod Hy 2 x Oh 7 u stabljici gdje je u većoj
gustoći sklopa dobiveni manji sadržaj šećera i to 9, 11 i 13 tjedana po sjetvi.
Gustoća sklopa nije utjecala na ukupni sadržaj dušika i na sadržaj limun-
ske kiseline.

Na osnovu dobivenih rezultata autori zaključuju da smanjenje osvjet-
ljenja omata metabolizam dušika više nego metabolizam ugljikohidrata i
da je svjetlo glavni limitirajući faktor u smanjenju priroda po biljci pove-
ćanjem gustoće sklopa.

HAGEMAN i dr. iznose da se povećanjem gustoće sklopa progresivno
smanjivala aktivnost reduktoze nitrata u listu, sadržaj proteina i prirod
zrna po biljci. Postojala je korelacija između aktivnosti reduktoze nitrata
kod četiri hibrida i potencijala priroda.

Aktivnost reduktoze se smanjivala zasjenjivanjem biljaka (tj. većom
gustoćom sklopa), time se smanjuje količina reduciranog dušika raspolo-
živog za sintezu proteina.

VLASTITA ISTRAŽIVANJA

U god. 1966. i 1967. izvršena su ispitivanja u pogledu reakcije pojedinih
hibrida na gustoću sklopa te pojedine komponente priroda. Svi ispitivani
hibridi podijeljeni su u dvije grupe i to: grupa 200, 300 i 400 sa slijedećim
hibridima Bc-215, Bc-235, Bc-361, Bc SK 5a, W-464 A, Bc-410, Bc-420, Bc-444
i ZP-348, a u grupu 500 i 600 uvršteni su slijedeći hibridi: Bc-530, Bc-550,
Bc-580, Bc-596, Bc SK 5a i Bc SK 6a. Ispitivanja su izvršena na ekonomiji

233
Gustoće sjetve bile su slijedeće: 35.715 bilj./ha (razmak sjetve 80 x 35 cm — jedna biljka u kući), 41.666 bilj./ha (80 x 30 cm — 1 biljka), 50.000 bilj./ha (80 x 23 cm — 1 biljka) i 62.500 bilj./ha (80 x 20 cm — 1 biljka). Svaki pokus postavljen je po blok metodi sa slučajnim rasporedom u pet repeticija. Veličina osnovne parcele iznosila je 30 sadnih mjesta pa je kod gustoće 35.715 bilj./ha iznosila 8,40 m², kod 41.666 bilj./ha 7,20 m², kod 50.000 bilj./ha 6,00 m² i kod gustoće 62.500 bilj./ha 4,80 m².

Pretkultura na tabli na kojoj su postavljeni pokusi bio je kukuruz. Pošlije berbe kukuruza izvršeno je zaoravanje kukuruzovine i duboko oranje na 30—35 cm. Na proljeće je zatvorena brazda a pred sjetvu izvršeno je tanjuranje i dljanje čime je tlo pripremljeno za sjetvu. Gnojidba se je sastojala u zaoravanju sa kukuruzincem N-60 kg, P₂O₅ — 80 kg i 120 kg/ha K₂O. U toku vegetacije vršena su dva prihranjivanja, i to: prva prihrana sa N-40 kg/ha, P₂O₅ — 20 i K₂O — 30 kg, druga prihrana 50 kg N/ha.

U toku vegetacije u fazi svilanja i oplodnje 27—29. VII 1967. ustanovljena je kod osam hibrida (Bc 444, W 464 A, ZP 348, Bc 530, Bc 550, Bc 580, Bc 590 i SK VA) u sve četiri gustoće sklopa lisna površina, jačina osvjetljenja i koncentracija soka u stabiljci. Za ustanovljenje lisne površine kod svakog od navedenih hibrida i u svakoj od gustoće sklopa analizirano je pet prosječnih biljaka na kojima je svaki list posebno analiziran na dužinu i širinu. Jačina osvjetljenja mjerena je na visini 0,5 m, u visini klipa i na visini 2 m i to između redova i u redu između biljaka. MJerenje jačine osvjetljenja izvršeno je pomoću luksimetra. Koncentracija soka stabiljke mjerenje je pomoću refraktometra i to u nodiju kod klipa. Kod svakog hibrida i gustoće sklopa izvršena su tri mjerenja. Rezultati ovih analiza nalaze se u tabelama 1 i 2.

Dalje je analiziran broj polomljenih biljaka ispod klipa i težina kuku-ruzovine po parcelici. Rezultati pokusa prikazani su u tabelama 1—8.

Tabela 1 — Površine listova kod raznih single i double crosseva kukuruza u raznim gustoćama sklopa u početku mliječne zriobe

Vinkovci, 1966. god.

<table>
<thead>
<tr>
<th>Single cross — Double cross</th>
<th>35.715 bilj./ha</th>
<th>50.000 bilj./ha</th>
<th>62.500 bilj./ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bc SK 3a</td>
<td>15.600</td>
<td>20.600</td>
<td>24.500</td>
</tr>
<tr>
<td>ZP 348</td>
<td>18.900</td>
<td>31.600</td>
<td>36.500</td>
</tr>
<tr>
<td>W 464</td>
<td>21.000</td>
<td>29.500</td>
<td>34.000</td>
</tr>
<tr>
<td>Bc 530</td>
<td>22.400</td>
<td>29.800</td>
<td>32.300</td>
</tr>
<tr>
<td>Bc — 550</td>
<td>18.400</td>
<td>26.500</td>
<td>32.400</td>
</tr>
<tr>
<td>Bc — 580</td>
<td>22.600</td>
<td>28.500</td>
<td>38.900</td>
</tr>
<tr>
<td>Bc — 590</td>
<td>23.900</td>
<td>29.500</td>
<td>33.000</td>
</tr>
<tr>
<td>SK V</td>
<td>20.500</td>
<td>29.700</td>
<td>36.100</td>
</tr>
</tbody>
</table>
Tabela 1a — Lisna površina (m²/ha) kod nekih hibrida kukuruza u različitim gustoćama sklopa

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gustoća sklopa bilj./ha</th>
<th>Vinkovci, 1967. god.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bc 444</td>
<td>35.715</td>
<td>41.666</td>
</tr>
<tr>
<td>W 464 A</td>
<td>22.504</td>
<td>23.079</td>
</tr>
<tr>
<td>ZP 348</td>
<td>22.225</td>
<td>27.145</td>
</tr>
<tr>
<td>Bc 530</td>
<td>21.358</td>
<td>20.537</td>
</tr>
<tr>
<td>Bc 550</td>
<td>20.408</td>
<td>25.054</td>
</tr>
<tr>
<td>Bc 580</td>
<td>20.408</td>
<td>25.054</td>
</tr>
<tr>
<td>Bc 590</td>
<td>19.690</td>
<td>23.466</td>
</tr>
<tr>
<td>SK V A</td>
<td>22.572</td>
<td>25.441</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 2 — Koncentracija soka stabljike (%) kod nekih hibrida kukuruza u različitim gustoćama sklopa

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gustoća sklopa bilj./ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bc 444</td>
<td>11,3</td>
</tr>
<tr>
<td>W 464 A</td>
<td>11,8</td>
</tr>
<tr>
<td>ZP 348</td>
<td>10,3</td>
</tr>
<tr>
<td>Bc 530</td>
<td>9,1</td>
</tr>
<tr>
<td>Bc 550</td>
<td>8,9</td>
</tr>
<tr>
<td>Bc 580</td>
<td>10,3</td>
</tr>
<tr>
<td>Bc 590</td>
<td>9,1</td>
</tr>
<tr>
<td>SK V A</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>1,6</td>
</tr>
</tbody>
</table>

Tabela 3 — Utjecaj gustoće sklopa na prirod znina single i double crossa kukuruza

<table>
<thead>
<tr>
<th>Prirod znina sa 14% vlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single cross — Double cross</td>
</tr>
<tr>
<td>35.715 41.666 50.000 62.500</td>
</tr>
</tbody>
</table>

Grupa 300-400

ZP 348	91,43	102,78	102,00	117,50
W 464 A	79,90	95,14	96,67	98,96
Bc 360	80,48	93,19	93,16	106,25
Bc 444	86,43	95,42	110,50	107,50
Bc 215	66,79	76,53	67,16	68,13
Bc 235	75,36	97,50	85,33	79,58

Signif. raz. P = 5%

| 8,57 |
| 11,66 |

Signif. raz. P = 1%

| 10,41 |
| 11,83 |

Grupa 500

Bc 530	77,98	87,78	100,83	105,00
Bc 596	106,43	114,58	131,50	133,54
Bc 550	82,98	96,11	98,00	98,75
Bc 580	92,02	102,22	114,67	112,08

Signif. raz. P = 5%

| 8,21 |
| 11,54 |

Signif. raz. P = 1%

| 9,16 |
| 12,77 |

Grupa 600

SK V	96,19	104,72	116,33	124,17
SK VI	117,86	111,53	138,67	151,07
Bc 590	91,67	96,67	107,17	107,92
SK VI A	104,88	102,92	131,83	126,46

Signif. raz. P = 5%

| 8,57 |
| 12,02 |

Signif. raz. P = 1%

| 9,02 |
| 14,00 |

235
<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gustoča sklopa bilj./ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35.715</td>
</tr>
<tr>
<td>Grupa 200, 300, 400</td>
<td></td>
</tr>
<tr>
<td>Bc 210</td>
<td>56.19</td>
</tr>
<tr>
<td>Bc 230</td>
<td>60.24</td>
</tr>
<tr>
<td>Bc 361</td>
<td>77.02</td>
</tr>
<tr>
<td>W 464 A</td>
<td>75.24</td>
</tr>
<tr>
<td>Bc 410</td>
<td>65.00</td>
</tr>
<tr>
<td>Bc 420</td>
<td>77.02</td>
</tr>
<tr>
<td>Bc 444</td>
<td>83.57</td>
</tr>
<tr>
<td>ZP 348</td>
<td>80.12</td>
</tr>
<tr>
<td>Signifik. razlika P = 5%</td>
<td>5.12</td>
</tr>
<tr>
<td>Signifik. razlika P = 1%</td>
<td>7.02</td>
</tr>
<tr>
<td>Grupa 500, 600</td>
<td></td>
</tr>
<tr>
<td>Bc 530</td>
<td>82.26</td>
</tr>
<tr>
<td>Bc 550</td>
<td>80.95</td>
</tr>
<tr>
<td>Bc 580</td>
<td>79.52</td>
</tr>
<tr>
<td>EH 286</td>
<td>92.38</td>
</tr>
<tr>
<td>EH 296</td>
<td>94.29</td>
</tr>
<tr>
<td>Bc 590</td>
<td>86.66</td>
</tr>
<tr>
<td>SK V A</td>
<td>93.57</td>
</tr>
<tr>
<td>SK VI A</td>
<td>110.60</td>
</tr>
<tr>
<td>Signifik. razlika P = 5%</td>
<td>5.60</td>
</tr>
<tr>
<td>Signifik. razlika P = 1%</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Tabela 4 — Postotak oklaska kod raznih single i double crossa kukuruza
Vinkovci, 1966. god.

<table>
<thead>
<tr>
<th>Grupa 300—400</th>
<th>35.715</th>
<th>41.666</th>
<th>50.000</th>
<th>62.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZP 348</td>
<td>17.70</td>
<td>14.96</td>
<td>16.81</td>
<td>15.30</td>
</tr>
<tr>
<td>Bc SK 3a</td>
<td>15.30</td>
<td>13.94</td>
<td>13.67</td>
<td>13.80</td>
</tr>
<tr>
<td>W 464 A</td>
<td>22.26</td>
<td>20.19</td>
<td>20.28</td>
<td>23.81</td>
</tr>
<tr>
<td>Bc 360</td>
<td>17.53</td>
<td>15.67</td>
<td>18.06</td>
<td>15.74</td>
</tr>
<tr>
<td>Bc 437</td>
<td>19.00</td>
<td>17.17</td>
<td>18.13</td>
<td>19.40</td>
</tr>
<tr>
<td>Bc 310</td>
<td>18.38</td>
<td>18.09</td>
<td>20.66</td>
<td>18.22</td>
</tr>
<tr>
<td>Bc 315</td>
<td>18.52</td>
<td>17.33</td>
<td>18.80</td>
<td>18.99</td>
</tr>
</tbody>
</table>

Grupa 500	18.55	17.09	17.80	16.32
Bc 530	17.25	19.25	17.88	17.51
Bc 596	21.50	18.94	19.24	21.04
Bc 550	19.01	18.45	18.31	21.54

Grupa 600	20.21	20.31	20.85	18.30
SK V	20.21	20.16	20.37	18.67
SK VI	20.82	20.33	20.18	22.32
Bc 590				
WF 9 x M 14	20.35	19.79	21.34	20.41
Tabela 4a — Postotak oklaska kod nekih hibrida kukuruza u različitim gustoćama sklopa

Vinkovci, 1967. god.

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gustoća sklopa bilj./ha</th>
<th>35.715</th>
<th>41.666</th>
<th>50.000</th>
<th>62.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupa 200, 300, 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 210</td>
<td>19,83</td>
<td>19,32</td>
<td>16,99</td>
<td>16,01</td>
<td></td>
</tr>
<tr>
<td>Bc 230</td>
<td>18,89</td>
<td>17,99</td>
<td>15,57</td>
<td>14,46</td>
<td></td>
</tr>
<tr>
<td>Bc 361</td>
<td>18,18</td>
<td>18,68</td>
<td>16,73</td>
<td>16,20</td>
<td></td>
</tr>
<tr>
<td>W 464 A</td>
<td>21,61</td>
<td>21,87</td>
<td>21,03</td>
<td>19,07</td>
<td></td>
</tr>
<tr>
<td>Bc 410</td>
<td>21,10</td>
<td>20,40</td>
<td>17,99</td>
<td>17,24</td>
<td></td>
</tr>
<tr>
<td>Bc 420</td>
<td>21,03</td>
<td>20,88</td>
<td>22,09</td>
<td>19,10</td>
<td></td>
</tr>
<tr>
<td>Bc 444</td>
<td>21,04</td>
<td>22,22</td>
<td>19,50</td>
<td>19,72</td>
<td></td>
</tr>
<tr>
<td>ZP 348</td>
<td>16,56</td>
<td>15,83</td>
<td>15,27</td>
<td>13,88</td>
<td></td>
</tr>
<tr>
<td>Grupa 500, 600, 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 530</td>
<td>19,45</td>
<td>19,88</td>
<td>19,81</td>
<td>18,01</td>
<td></td>
</tr>
<tr>
<td>Bc 550</td>
<td>20,18</td>
<td>17,87</td>
<td>17,00</td>
<td>16,89</td>
<td></td>
</tr>
<tr>
<td>Bc 580</td>
<td>17,13</td>
<td>18,65</td>
<td>18,78</td>
<td>16,26</td>
<td></td>
</tr>
<tr>
<td>EH 286</td>
<td>17,72</td>
<td>17,43</td>
<td>18,42</td>
<td>17,41</td>
<td></td>
</tr>
<tr>
<td>EH 296</td>
<td>16,41</td>
<td>16,92</td>
<td>17,61</td>
<td>16,20</td>
<td></td>
</tr>
<tr>
<td>Bc 590</td>
<td>17,31</td>
<td>19,39</td>
<td>19,75</td>
<td>16,63</td>
<td></td>
</tr>
<tr>
<td>SK V A</td>
<td>20,62</td>
<td>18,25</td>
<td>20,64</td>
<td>17,39</td>
<td></td>
</tr>
<tr>
<td>SK VI A</td>
<td>21,43</td>
<td>22,54</td>
<td>21,58</td>
<td>20,27</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 5 — Postotak vlage zrna kod raznih single i double crossa kukuruza

Vinkovci, 1966. god.

<table>
<thead>
<tr>
<th></th>
<th>Single cross —</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Double cross</td>
<td>35.715</td>
<td>41.666</td>
<td>50.000</td>
<td>62.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bilj./ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupa 300, 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZP 348</td>
<td>18,25</td>
<td>17,43</td>
<td>18,38</td>
<td>18,72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc SK 3a</td>
<td>18,22</td>
<td>17,08</td>
<td>17,80</td>
<td>17,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 464 A</td>
<td>19,01</td>
<td>20,79</td>
<td>19,35</td>
<td>18,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 360</td>
<td>18,07</td>
<td>16,06</td>
<td>17,05</td>
<td>17,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 437</td>
<td>18,02</td>
<td>18,52</td>
<td>18,00</td>
<td>22,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 310</td>
<td>17,62</td>
<td>19,31</td>
<td>19,60</td>
<td>19,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 315</td>
<td>18,42</td>
<td>18,52</td>
<td>19,17</td>
<td>20,47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupa 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 530</td>
<td>18,81</td>
<td>20,22</td>
<td>19,42</td>
<td>22,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 596</td>
<td>22,97</td>
<td>22,50</td>
<td>21,60</td>
<td>23,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 550</td>
<td>20,20</td>
<td>21,54</td>
<td>21,40</td>
<td>23,63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 580</td>
<td>20,55</td>
<td>21,22</td>
<td>21,60</td>
<td>22,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupa 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK V</td>
<td>21,14</td>
<td>20,48</td>
<td>22,95</td>
<td>21,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK VI</td>
<td>20,30</td>
<td>21,65</td>
<td>20,62</td>
<td>20,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 590</td>
<td>20,30</td>
<td>21,22</td>
<td>20,03</td>
<td>24,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF 9 x M 14</td>
<td>21,24</td>
<td>20,55</td>
<td>20,93</td>
<td>21,67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

237
Tabela 5a — Postotak vlage zrna kod nekih hibrida kukuruza u različitim gustoćama sklopa

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gustoća sklopa bilj./ha</th>
<th>35.715</th>
<th>41.666</th>
<th>50.000</th>
<th>62.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupa 200, 300, 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 210</td>
<td>18,25</td>
<td>19,16</td>
<td>19,76</td>
<td>17,98</td>
<td></td>
</tr>
<tr>
<td>Bc 230</td>
<td>18,01</td>
<td>17,48</td>
<td>18,56</td>
<td>16,00</td>
<td></td>
</tr>
<tr>
<td>Bc 361</td>
<td>22,65</td>
<td>23,44</td>
<td>22,04</td>
<td>20,94</td>
<td></td>
</tr>
<tr>
<td>W 464 A</td>
<td>22,23</td>
<td>22,46</td>
<td>22,18</td>
<td>20,19</td>
<td></td>
</tr>
<tr>
<td>Bc 410</td>
<td>23,63</td>
<td>21,90</td>
<td>23,70</td>
<td>21,46</td>
<td></td>
</tr>
<tr>
<td>Bc 420</td>
<td>21,04</td>
<td>22,04</td>
<td>21,64</td>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>Bc 444</td>
<td>23,35</td>
<td>23,72</td>
<td>22,18</td>
<td>22,04</td>
<td></td>
</tr>
<tr>
<td>ZP 348</td>
<td>19,09</td>
<td>19,40</td>
<td>21,25</td>
<td>17,19</td>
<td></td>
</tr>
<tr>
<td>Grupa 500, 600, 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 530</td>
<td>23,91</td>
<td>24,70</td>
<td>26,40</td>
<td>22,41</td>
<td></td>
</tr>
<tr>
<td>Bc 550</td>
<td>23,81</td>
<td>23,35</td>
<td>26,54</td>
<td>22,51</td>
<td></td>
</tr>
<tr>
<td>Bc 580</td>
<td>24,47</td>
<td>22,79</td>
<td>23,46</td>
<td>21,17</td>
<td></td>
</tr>
<tr>
<td>EH 286</td>
<td>25,31</td>
<td>24,19</td>
<td>27,05</td>
<td>22,98</td>
<td></td>
</tr>
<tr>
<td>EH 296</td>
<td>25,03</td>
<td>27,36</td>
<td>25,91</td>
<td>24,10</td>
<td></td>
</tr>
<tr>
<td>Bc 590</td>
<td>24,75</td>
<td>23,77</td>
<td>24,62</td>
<td>22,93</td>
<td></td>
</tr>
<tr>
<td>SK V A</td>
<td>25,17</td>
<td>22,65</td>
<td>26,45</td>
<td>22,14</td>
<td></td>
</tr>
<tr>
<td>SK VI A</td>
<td>25,75</td>
<td>25,59</td>
<td>26,91</td>
<td>24,52</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 6 — Prosječna težina klipa kod raznih single i double crosseva kukuruza u raznim gustoćama sklopa

<table>
<thead>
<tr>
<th>Single cross</th>
<th>Double cross</th>
<th>35.715 bilj./ha</th>
<th>41.666 bilj./ha</th>
<th>50.000 bilj./ha</th>
<th>62.500 bilj./ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupa 300, 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZP 348</td>
<td></td>
<td>256</td>
<td>231</td>
<td>227</td>
<td>225</td>
</tr>
<tr>
<td>Bc SK 3a</td>
<td></td>
<td>218</td>
<td>224</td>
<td>222</td>
<td>215</td>
</tr>
<tr>
<td>W 464</td>
<td></td>
<td>228</td>
<td>237</td>
<td>251</td>
<td>222</td>
</tr>
<tr>
<td>Bc 360</td>
<td></td>
<td>219</td>
<td>225</td>
<td>219</td>
<td>204</td>
</tr>
<tr>
<td>Bc 437</td>
<td></td>
<td>238</td>
<td>227</td>
<td>238</td>
<td>228</td>
</tr>
<tr>
<td>Grupa 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 530</td>
<td></td>
<td>248</td>
<td>233</td>
<td>251</td>
<td>226</td>
</tr>
<tr>
<td>Bc 596</td>
<td></td>
<td>317</td>
<td>289</td>
<td>326</td>
<td>290</td>
</tr>
<tr>
<td>Bc 550</td>
<td></td>
<td>275</td>
<td>250</td>
<td>257</td>
<td>253</td>
</tr>
<tr>
<td>Bc 580</td>
<td></td>
<td>262</td>
<td>256</td>
<td>262</td>
<td>255</td>
</tr>
<tr>
<td>Grupa 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK V</td>
<td></td>
<td>317</td>
<td>312</td>
<td>304</td>
<td>267</td>
</tr>
<tr>
<td>SK VI</td>
<td></td>
<td>373</td>
<td>347</td>
<td>363</td>
<td>309</td>
</tr>
<tr>
<td>Bc 590</td>
<td></td>
<td>295</td>
<td>287</td>
<td>290</td>
<td>258</td>
</tr>
<tr>
<td>WF 9 x M 14</td>
<td></td>
<td>321</td>
<td>304</td>
<td>341</td>
<td>284</td>
</tr>
</tbody>
</table>
Tabela 6a — Prosječna težina klipa (g.) kod nekih hibrida kukuruza u različitim gustoćama sklopa

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gustoća sklopa bilj./ha</th>
<th>35.715</th>
<th>41.666</th>
<th>50.000</th>
<th>62.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupa 200, 300, 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 210</td>
<td></td>
<td>174</td>
<td>167</td>
<td>156</td>
<td>116</td>
</tr>
<tr>
<td>Bc 230</td>
<td></td>
<td>172</td>
<td>164</td>
<td>159</td>
<td>128</td>
</tr>
<tr>
<td>Bc 361</td>
<td></td>
<td>301</td>
<td>276</td>
<td>225</td>
<td>175</td>
</tr>
<tr>
<td>Bc 464 A</td>
<td></td>
<td>290</td>
<td>288</td>
<td>206</td>
<td>141</td>
</tr>
<tr>
<td>Bc 410</td>
<td></td>
<td>241</td>
<td>238</td>
<td>196</td>
<td>151</td>
</tr>
<tr>
<td>Bc 420</td>
<td></td>
<td>285</td>
<td>273</td>
<td>215</td>
<td>167</td>
</tr>
<tr>
<td>Bc 444</td>
<td></td>
<td>237</td>
<td>254</td>
<td>210</td>
<td>167</td>
</tr>
<tr>
<td>Bc 348</td>
<td></td>
<td>239</td>
<td>230</td>
<td>214</td>
<td>171</td>
</tr>
<tr>
<td>Grupa 500, 600, 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 530</td>
<td></td>
<td>327</td>
<td>302</td>
<td>245</td>
<td>169</td>
</tr>
<tr>
<td>Bc 550</td>
<td></td>
<td>316</td>
<td>300</td>
<td>245</td>
<td>187</td>
</tr>
<tr>
<td>Bc 580</td>
<td></td>
<td>302</td>
<td>268</td>
<td>239</td>
<td>135</td>
</tr>
<tr>
<td>EH 286</td>
<td></td>
<td>362</td>
<td>331</td>
<td>275</td>
<td>177</td>
</tr>
<tr>
<td>EH 296</td>
<td></td>
<td>359</td>
<td>334</td>
<td>278</td>
<td>186</td>
</tr>
<tr>
<td>Bc 590</td>
<td></td>
<td>332</td>
<td>361</td>
<td>270</td>
<td>172</td>
</tr>
<tr>
<td>SK V A</td>
<td></td>
<td>379</td>
<td>354</td>
<td>291</td>
<td>196</td>
</tr>
<tr>
<td>SK VI A</td>
<td></td>
<td>457</td>
<td>424</td>
<td>327</td>
<td>218</td>
</tr>
</tbody>
</table>

Tabela 7 — Težina kukuruzovine (q/ha) kod nekih hibrida kukuruza u različitim gustoćama sklopa

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gustoća sklopa bilj./ha</th>
<th>35.715</th>
<th>41.666</th>
<th>50.000</th>
<th>62.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupa 200, 300, 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 210</td>
<td></td>
<td>67,78</td>
<td>69,58</td>
<td>48,00</td>
<td>40,41</td>
</tr>
<tr>
<td>Bc 230</td>
<td></td>
<td>84,86</td>
<td>63,75</td>
<td>60,66</td>
<td>55,00</td>
</tr>
<tr>
<td>Bc 361</td>
<td></td>
<td>135,55</td>
<td>118,75</td>
<td>102,00</td>
<td>73,33</td>
</tr>
<tr>
<td>W 464 A</td>
<td></td>
<td>125,42</td>
<td>114,72</td>
<td>79,16</td>
<td>59,58</td>
</tr>
<tr>
<td>Bc 410</td>
<td></td>
<td>123,19</td>
<td>117,09</td>
<td>91,00</td>
<td>61,66</td>
</tr>
<tr>
<td>Bc 420</td>
<td></td>
<td>111,25</td>
<td>88,47</td>
<td>73,33</td>
<td>70,83</td>
</tr>
<tr>
<td>Bc 444</td>
<td></td>
<td>118,05</td>
<td>109,44</td>
<td>81,00</td>
<td>78,75</td>
</tr>
<tr>
<td>ZP 348</td>
<td></td>
<td>130,97</td>
<td>93,89</td>
<td>90,67</td>
<td>71,66</td>
</tr>
<tr>
<td>Grupa 500, 600, 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc 530</td>
<td></td>
<td>124,16</td>
<td>110,27</td>
<td>124,00</td>
<td>76,25</td>
</tr>
<tr>
<td>Bc 550</td>
<td></td>
<td>142,14</td>
<td>125,56</td>
<td>127,66</td>
<td>100,62</td>
</tr>
<tr>
<td>Bc 580</td>
<td></td>
<td>119,04</td>
<td>101,66</td>
<td>116,00</td>
<td>72,70</td>
</tr>
<tr>
<td>EH 286</td>
<td></td>
<td>136,19</td>
<td>123,60</td>
<td>130,50</td>
<td>92,50</td>
</tr>
<tr>
<td>EH 296</td>
<td></td>
<td>155,47</td>
<td>140,00</td>
<td>164,00</td>
<td>113,54</td>
</tr>
<tr>
<td>Bc 590</td>
<td></td>
<td>115,12</td>
<td>106,52</td>
<td>124,00</td>
<td>77,50</td>
</tr>
<tr>
<td>SK V A</td>
<td></td>
<td>168,57</td>
<td>121,11</td>
<td>144,33</td>
<td>80,63</td>
</tr>
<tr>
<td>SK VI A</td>
<td></td>
<td>196,67</td>
<td>183,05</td>
<td>173,50</td>
<td>127,91</td>
</tr>
</tbody>
</table>
Tabela 8 — Broj polomljenih i polegnutih biljaka (u %) kod nekih hibrida kukuruza u različitim gustoćama sklopa

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>Gostoća sklopa bilj./ha</th>
<th>Vinkovci, 1967. god.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35.715</td>
<td>41.666</td>
</tr>
</tbody>
</table>

Grupa 200, 300, 400

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>35.715</th>
<th>41.666</th>
<th>50.000</th>
<th>62.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bc 210</td>
<td>10,13</td>
<td>6,89</td>
<td>17,56</td>
<td>60,68</td>
</tr>
<tr>
<td>Bc 230</td>
<td>8,84</td>
<td>8,84</td>
<td>16,32</td>
<td>41,37</td>
</tr>
<tr>
<td>Bc 361</td>
<td>1,38</td>
<td>0,66</td>
<td>2,00</td>
<td>4,82</td>
</tr>
<tr>
<td>Bc 464</td>
<td>2,54</td>
<td>5,17</td>
<td>8,47</td>
<td>48,27</td>
</tr>
<tr>
<td>Bc 410</td>
<td>0,66</td>
<td>2,05</td>
<td>2,01</td>
<td>17,00</td>
</tr>
<tr>
<td>Bc 420</td>
<td>1,37</td>
<td>1,34</td>
<td>1,35</td>
<td>11,18</td>
</tr>
<tr>
<td>Bc 444</td>
<td>4,39</td>
<td>3,42</td>
<td>5,17</td>
<td>6,30</td>
</tr>
<tr>
<td>ZP 348</td>
<td>2,65</td>
<td>9,40</td>
<td>6,78</td>
<td>19,10</td>
</tr>
</tbody>
</table>

Grupa 500, 600, 700

<table>
<thead>
<tr>
<th>Hibrid</th>
<th>35.715</th>
<th>41.666</th>
<th>50.000</th>
<th>62.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bc 530</td>
<td>1,13</td>
<td>—</td>
<td>2,50</td>
<td>8,77</td>
</tr>
<tr>
<td>Bc 550</td>
<td>—</td>
<td>0,85</td>
<td>0,85</td>
<td>6,19</td>
</tr>
<tr>
<td>Bc 580</td>
<td>—</td>
<td>3,42</td>
<td>0,85</td>
<td>14,91</td>
</tr>
<tr>
<td>Bc 286</td>
<td>1,75</td>
<td>1,34</td>
<td>1,38</td>
<td>6,99</td>
</tr>
<tr>
<td>Bc 296</td>
<td>—</td>
<td>2,66</td>
<td>2,03</td>
<td>7,29</td>
</tr>
<tr>
<td>Bc 590</td>
<td>—</td>
<td>1,69</td>
<td>1,79</td>
<td>8,66</td>
</tr>
<tr>
<td>SK V A</td>
<td>—</td>
<td>1,71</td>
<td>—</td>
<td>9,00</td>
</tr>
<tr>
<td>SK VI A</td>
<td>—</td>
<td>—</td>
<td>0,67</td>
<td>3,52</td>
</tr>
</tbody>
</table>

ZAKLJUČCI

Na temelju prikazanih rezultata u tabelama 1—8 mogu se izvesti slijedeći zaključci:

1. Lisna površina po ha kod različitih gustoća sklopa i hibrida ukazuje nam na reakciju pojedinih hibrida u odnosu na gustoću sklopa. Ispitivani hibrid Bc 444 povećavao je lisnu površinu do gustoće sklopa 50.000 a zatim dolazi do smanjenja lisne površine. Sličnu tendenciju pokazuje i hibrid W 464 A. Međutim, svi ostali ispitivani hibridi (Bc 530, Bc 550, Bc 580, Bc 590 i SK 5A) pokazuju znatno povećanje lisne površine od sjednjih do gušćih sklopa (tab. 1).

2. Koncentracija soka u stabljici (tab. 2) pokazuje izričitu tendenciju opadanja povećanjem sklopa iznad 50.000 biljaka po ha kod svih ispitivanih hibrida izuzev Bc 444, gdje se koncentracija soka zadržala jednako kod svih sklopa od 40.000—62.500 biljaka po ha.

3. Prirodi zrna ispitivanih hibrida grupe 200, 300, 400 (tab. 3) pokazuju da se prinosi približavaju maksimalnim vrijednostima (vrijedi za ispitivani slučaj) već kod gustoće od 41,666 i stagniraju do 50.000 biljaka po ha. Gotovo svi ispitivani hibridi pokazuju tendenciju jačeg opadanja prinosa kod gušćeg sklopa tj. od 62.500 biljaka po ha. Istu tendenciju pokazuju hibridi grupe 500, 600 i 700. Ovi rezultati nas upučuju da gustoća sklopa i lisna površina po hektaru ne moraju biti u pozitivnoj korelaciji sa povećanjem priroda. Međutim, izgleda da je koncentracija soka u znatno bližim korelacijskim odnosima sa visinom priroda u odnosu na reakciju hibrida prema gustoći sklopa.

4. Povećanjem gustoćom sklopa smanjuje se postotak oklaska gotovo kod svih ispitivanih hibrida. Postotak vlage u zrnu također je smanjen.
kod gušćih sklopova u odnosu na rjeđe sklopove. Prosječna težina klipa povećanjem sklopa do 50.000 biljaka po ha ima tendenciju blagog opadanja, međutim, iznad 50.000 biljaka prosječna težina klipa je u jačem opadanju (tab. 6).

5. Ukupna težina kukuruzovine po hektaru je u znatnom opadanju kod gustih sklopova. Najveća težina po hektaru kukuruzovine dobivena je u sklopowima do 41.666 biljaka po ha kod grupa 200, 300 i 400 a kod grupa 500, 600 i 700 od 41.666 do 50.000 biljaka po ha. Iznad ove gustoće prirod kukuruzovine se naglo smanjuje, a povećava se postotak polomljenih i poleglih biljaka.

6. Postotak polomljenih i polegnutih biljaka u grupi hibrida 200, 300 i 400 najmanji je kod hibrida Bc 361, Bc 444 i Bc 420 a najveći kod Bc 210, 230 i W 464.

U grupi 500, 600 i 700 najveći postotak polegnutih i lomljenih biljaka nađen je kod Bc 580, 14,91%, dok je kod svih ostalih taj postotak bio ispod 10%, a najotporniji pokazao se je Bc SK VI A, Bc 550, Bc 286 i Bc 296.

7. Svi ispitivani hibridi bez obzira na vegetacijsku grupu u pogledu priroda nisu dali signifikantne razlike u odnosu gustoće sklopa od 50.000 biljaka po ha prema gustoći sklopa iznad 60.000 biljaka. Međutim rezultati ispitivanih hibrida ukazuju da povećanjem gustoće sklopa single — crossi imaju veću reakcijsku normu u odnosu na dobule crosse. Naime sve ispitivane komponente s povećanjem sklopa u znatno manjoj mjeri variiraju kod single crosa u odnosu na double cross.

8. Kod svih ispitivanih hibrida grupe 200, 300, 400 i 500 pokazalo se da je znatno lakše postići srednju vrijednost za optimalnu gustoću sklopa u odnosu na kvalitetne i kvantitativne pokazatelje za prirod u odnosu na grupu 600 gdje su znatno sužene variabilnosti za određivanje raspona srednjih vrijednosti za postizavanje optimalnih gustoća sklopa.

Dr Josip Gotlin
Ing. Aleksandar Pucarić
Institute of plant breeding and plant production
Faculty of Agriculture University of Zagreb

CONCLUSIONS

On the basis of results set out in Tables 1—8 the following conclusions are to be drawn:

1. The leaf area per ha. at various plant population and in different hybrids points to the response of individual hybrids in relation to the plant population. The investigated hybrid Bc 444 was increasing its leaf area up to the plant population of 50,000 plants/ha, whereafter the leaf area decreased. Similar tendency is also being exhibited by the hybrid W 464 A. However, all other examined hybrids (Bc 530, Bc 550, Bc 580, Bc 590 and SK 5 A) show from low to high population a considerable increase of the leaf area (Tab. 1).

2. Sap concentration in the stalk (Tab. 2) displays a pronounced tendency of decrease with increasing plant population over 50,000 plants/ha. in all the investigated hybrids excepting Bc 444, where the sap concentration remained equal at all plant population ranging from 40,000 to 62,500 plants/ha.
3. The yielding of grain of investigated hybrids of groups 200, 300, 400 (Tab. 3) show that the yields already approach the maximum values (concerning the case in question) at a density of 41.666 and proceed to stagnate up to 50,000 plants/ha. Almost all the hybrids investigated show a tendency of stronger decrease of yields at a denser population, viz. at 62,500 plants/ha. The same tendency is being exhibited by the hybrids of groups 500, 600 and 700. These results suggest that the plant population and leaf area per ha. need not be in positive correlation with the increasing yields. However, it would seem that the sap concentration were in a correlation considerably closer to the yields considering the hybrid response to the plant population.

4. With the plant population increasing the percentage of cobs in almost all investigated hybrids decreases. The moisture percentage of grain is likewise smaller at denser population than at thinner ones. Even increasing the plant population up to 50,000 plants/ha. The average ears weight has the tendency of decrease. At plant population about 50,000 plants/ha. however, the average weight of the ears decreases more strongly (Tab. 5).

5. The total weight of corn stover per ha. decreases considerably at dense population. The highest weight per ha. of corn atalks was obtained at plants densities up to 41.666 plants/ha. in groups numbered 200, 300 and 400, while in groups numbered 500, 600 and 700 this occurred at densities from 41.666 to 50.000 plants/ha. Beyond these densities the yield of corn stover decreases rapidly, while the percentage of broken and lodged plants increases.

6. The percentage of broken and lodged plants in hybrid groups 200, 300 and 400 was lowest in hybrids Bc 361, Bc 444 and Bc 420, and highest in Bc 210, 230 and W 464.

In groups 500, 600 and 700 the highest percentage (14.91%) of lodged and broken plants was found in Bc 580, while in all others this percentage was below 10%. Most resistant were found to be the hybrids Bc SK VI A, Bc 550, Bc 286 and Bc 296.

7. Not all of the investigated hybrids — regardless of the vegetational group concerning the yield — gave significant differences when comparing the stocking density of 50,000 plants/ha. with that of 60,000 plants/ha. However the results of the investigated hybrids show that by increasing the plant density the single crosses possess a greater reaction norm in relation to double crosses. Namely, with the plant density increasing all investigated components vary to a considerably lesser extent in single crosses than in double crosses.

8. In all investigated hybrids of groups 200, 300, 400 and 500 it proved to be much easier to attain the mean value for the optimal plant density — considering the quality and quantity indices for the yield — in relation to group 600, where the variabilities for determining the mean value range in order to attain the optimal plant population were considerably limited.