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Molecular orbital calculation of electronic transition energies
and oscillator and rotatory strengths in the random phase app-
roximation (RPA) is reviewed, and it is outlined how the three
mechanisms contained in Kirkwood’s theory of optical rotatory
power and other features of the excitations may be extracted
from such calculations. The method is applied to the chiroptical
properties of cis,trans-(1,3)-cyclooctadiene and bicyclo[2.2.1]hept-
5-en-2-one, both of which contain an extended chromophoric
system. The results for the diene support Sandstrom’s assignment
of P helicity to the (—)-enantiomer despite the prediction of
simple Diene Rule, and structural and spectral similarities to
(—)-trans-cyclooctene are strong. The enone calculations confirm

5
the model assumptions about the predominance of a u—m rota-
tory strength mechanism whereas the analysis of the bond con-
tributions and of the transition moment direction differs signi-
ficantly from the assumptions governing the -chirality rule of
Schippers and Dekkers and other models.

INTRODUCTION

Despite over 60 years of theoretical development, the elucidation of the
relationship between molecular structure and optical rotatory power has
continued to proceed along two largely disjoint lines. In the first of these,
approximate models have been formulated,’>? making extensive use of empi-
rical data and parameters and avoiding or minimizing actual calculations of
molecular wave functions.*® The second line of approach, namely the explicit
computation of electronic wave functions as basis for direct calculations of
chiroptical properties, was initiated much later®% with the advent of digital
computers.

The most general formulation of the model approaches was given by
Kirkwood,* who formally assumed a division of a given molecule into non-
overlapping parts with no electrecn exchange between the individual parts.
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Rewritten in terms of the rotatory strength for the 0-- q’th electronic tran-
sition in a chiral molecule,! the Kirkwood formulation can be expressed in
the form

e
Ri=(0|u|a) <a|m|0} (1a)
— — - -
=SRi(u,m)+ = R'(u,m) + = R(u,u) (1b)
a ) azh

.
where (0| |q) and (q|m|0) are the electric and magnetic dipole transition
moments for this excitation,” and where a and b label the individual parts of

the molecule so that i, and m, designate local electric and magnetic transition
moments. The individual contributions to the total rotatory strength are
excitation specific, as indicated by the superscript q.

Eq. (1b) displays three characteristic contributions or mechanisms.!®» The
first term is a sum of local rotatory strengths which we refer to as intrinsic
contributions. The assumption that a single one of these contributions domi-
nates the entire rotatory strength forms the basis of the one-electron or
static-perturbation model of Condon, Altar and Eyring.’ The second term, the
1 —m mechanism,® contains couplings between local electric and magnetic
transition moments in different parts of the molecule, and the third term,
the p— p mechanism, contains couplings between local electric dipole tran-
sition moments. The third term, taken alone, leads to the polarizability
models,*%%10 and the last two terms, which are also referred to as dynamic
couplings, are the mechanisms of exciton and independent system appro-
aches.!:»!1 Specific expressions for the various terms in eq. (1) within our
own approach are given in Section III.

Practically speaking, the models are attractive because they can rationalize
experimental data and, in many cases, provide concrete structural assignments
with little or no computational effort, even for molecular systems of a size
well beyond the systems tractable by the ab initio methods discussed below.
Even ignoring theoretical misgivings about the rather drastic assumptions
behind the models, however, the weakness of these approaches is that the
individual models tend to focus solely on either the intrinsic contribution or
on one or both of the dynamic coupling contributions. Since the different
terms are not treated on the same footing, it is difficult to improve these
approaches in a systematic way or to assess the range of their validity and
the actual importance of the various mechanisms for any given transition
in a given molecule.

Reliable quantum-mechanical calculation of the relevant transition mo-
ments in eq. (1), on the other hand, depends upon the adequate solution of
a number of problems. In the first place, the effects of electron correlation
(in the sense of going beyond a simple orbital description) intrude already
in a first-order treatment,'” whereas ground state expectation values of
one-electron operators are sensitive to correlation only in second order.!* This
can be readily seen for the case of a two-electron, two-orbital system, in
which a Hartree-Fock ground-state single determinant [A) is built from one
doubly-occupied orbital. An improved wave function is [0) =|A) + A |DE},
where [DE) is the doubly excited configuration, and A is a mixing parametel,
while an excited state | |q) can be described approximately as equal to 'SE\
the spin-adapted smgly—exmted configuration. A transition moment (0] f!q,
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of a one-electron operator f is then given by (A|f|SE) + A (DE|f|SE) +
+ O (M. The corresponding ground-state expectation value (0|f|0) is simply
{A|f|A) + O (M), since the one-electron nature of f guarantees that terms
linear in M must vanish. This suggests, and experience indicates, that a con-
figuration interaction (CI) calculation involving only single excitations would
not be expected to be adequate for calculations of optical activity except in
semiempirical methods where the parameters incorporate correlation effects.

Besides the general problem of accuracy just described, calculations of
optical activity, like other magnetic properties, are subject to the inherent
origin-dependence of the angular momentum operator, so that the magnetic
dipole transition moment depends upon an arbitrary displacement d through

— - —
(0]x—d) X Vig)=10]rX V]|q)—dX (0] Vig). The dipole velocity
expression in eq. (2) below ensures origin independence of the rotatory
strength, but numerical results calculated with length (eq. (1a’) below) and
velocity expressions often do not agree.! Again, proper treatment of electron
correlation turns out to be necessary to ensure that the two versions of the
electric dipole transition moment are equivalent, as they must be for exact
wave functions.

The status of ab initio all-electron computational methods for chiroptical
properties is now that quite satisfactory results can be obtained for medium-
sized molecules (see e.g. references in Section II). In Section II we outline
the particular method we have found effective in addressing the problems
outlined above.

The results of all-electron full-molecule calculations show little or no
immediate kinship with the mechanisms visualized in the models. Each
molecule becomes a case by itself, and meaningful analyses into contributions
from individual parts of the molecules are thwarted by the use of delocalized
molecular orbitals (MO’s), often expanded in bases containing very diffuse
atomic arbitals, and by extensive configuration interaction masking the
individual orbital contributions. Previous atom and bond decomposition
schemes for computed rotatory strengths (see references in'4'%) either lack
generality in terms of arbitrary basis sets or have not actually established
a connection to the mechanisms in the Kirkwood theory. However, as outlined
in Section III the use of localized MO’s allows us to express the resulting
intensities in contributions of the same form as the terms in eq. (1b).}47
In this formulation, which requires no approximations beyond those entering

the general computational scheme, the local electric and magnetic transition
—
moments i, and m, are well-defined and refer to excitations out of the indi-

vidual localized orbitals. This approach therefore provides a consistent extrac-
tion and comparison of individual Kirkwood mechanisms, and by the same
token a well-defined analysis of the computed intensities into structural terms
is expressed as bond and bond-bond coupling contributions.

In Section IV the approach is illustrated by computation and analysis of
the chiroptical properties of two chiral systems with extended chromophores
of long-standing interest, namely a twisted diene chromophore in the form of
cis,trans-(1,3)-cyclooctadiene and a coupled-chromophore model system, bi-
cyclo[2.2.1]hept-5-en-2-one. Section V contains concluding remarks.
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II. CALCULATION OF ROTATORY STRENGTHS

In this and the following section, we shall present the theoretical expres-
sions necessary to establish our notation. For the present purpose we shall
evaluate the rotatory strength, eq. (1), in the so-called »velocity« form'7?

R,V = (2c 0™ {0 ! 3 |q> - {0 ] r X g | Q) 2)

(in atomic units), and for the oscillator strength we shall use the »mixed«
expression!:?

fo= @3 0|V |- ©r|a) ®

-
Here (0|r|[q) and (0| V |q) are the length and velocity versions of the
electric dipole transition moment,” and @, is the transition energy. Other
theoretical expressions are available for the intensities,! including eq. (1a)
which can be written in the »length« form?

Ry = (2010 ! r|q)-<0|rx 9 | - 1a)

For exact wave functions, all of them give identical results; addressing the
problems mentioned in the Introduction for approximate calculations was a
major motivation in selecting the particular approach described below. For
purposes of analysis into individual mechanistic terms, egs. (2) and (3) turn
out to be more suitable than their formally equivalent alternative forms.!*

We limit ourselves here to molecules for which an MO description in the
form of a Hartree-Fock wave function for the ground state is an adequate
starting point. Singly, doubly, etc. excited configurations with respect to the
ground state are denoted |¢—>m), |&—>m,B8—>n) etc, where & and 8
label the occupied and m and n label the unoccupied (virtual) orbitals. As
indicated in the Introduction, CI including only singly excited configurations
omits first-order correlation effects on the calculation of electronic inten-
sities.!®1? Including doubly and higher excited configurations within con-
ventional CI methods, cf. e.g. ref. 20—23 and references therein, is one way
of dealing with these effects, but these methods optimize the wave functions
for the individual electronic states, whereas the method we prefer for the
calculation of transition energies and intensities, namely the Random Phase
Approximation (RPA),! directly optimizes the description of the excitation
process.

The RPA method is often presented within the more general framework
of linear response theory.?*2¢ However it can be considered a non-variational
CI approach!?” which includes the effect of doubly excited configurations in
such a way that the transition energies and transition dipole moments are
correct to first order in electron correlation. Indeed, the method can be
derived by imposing the equivalence of the various intensity expressions and
the fulfilment of, e.g., the Condon sum rule for rotatory strengths, as con-
ditions on the CI coefficients.?” The RPA method describes transition properties
at the same general level of accuracy as the Hartree-Fock method describes
the ground state.

Specifically, the RPA yields the following expressions for the three dipole
transition moments required in eq. (2, 3).28

(0|rfq>=2‘/22§‘.<a[r[m>smlq (4)
o m
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(0[V]q>:2‘/2EE<aIVIm>Tm,q (5)
Orx V|a)=2:33(a|rX V [m) Tpmq ®
o m

The right-hand-sides of these relations contain single-electron transition mo-
ments summed over all the orbital excitations e — m. The coefficients Sym, 4
and Tym,q are determined together with the excitation energies w, from the
RPA equations!?®

23 (A + By ym Sumq = 9q Tong (72)
o m

B 23 (A— By um Tamq = ©q Sang (7b)
Rl e, o m

Here A is an energy matrix whose elements Ag, ,m represent the interaction
between singly excited configurations (3 —n) and (@ — m), and the B matrix
has elements Bg, ,m representing the interaction between the Hartree-Fock
ground state and doubly excited configurations (B —n, & —> m). The matrices
A £ B can hence be labelled by indices referring to single excitations, even
though the B matrix explicitly introduces electron correlation through the
interaction with doubly excited configurations. Explicit expressions for the
matrix elements are given in ref. 1. The coefficients fulfill the orthonormality

relation
%3S T =0 (8)

oam,q = om,p 4P
o m

so that a single orbital excitation o¢— m contributes the amount

w, =S T 9)

om,q om,q ~ am,q
to the normalization of the excitation 0— q. Similarly the quantity

Woo=2w,., (10)

m

@ q

measures the total contribution from all excitations out of occupied orbital
o to the normalization of this transition. Neglect of the B matrix would
make S,m q = Tum,q and the method would reduce to conventional singly
excited CI. In RPA itself the difference between the S and T coefficients is
usually small but important for the accuracy of the computed results.

Recent applications include the chiroptical properties of thioketones,*
trans-cyclooctene, methyl-cyclopentene and methyl-cyclobutene,’* methyl-cy-
clopropanes,®* adamantanones,!® and a-substituted cyclohexanones.?* In addition
we have applied the RPA to the study of the ordinary electronic spectra of
planar mono-olefins,?® and the cyclohexadiene system.’® Other applications of
the RPA to calculating optical rotatory power have also been reported,’*%3
and a general survey of recent RPA calculations is given in ref. 26. In our own
RPA calculations we have included up to about 2000 singly excited con-
figurations, and hence indirectly through the B matrix, up to nearly 2,000,000
doubly excited configurations. The solution of egs. (7) for this number of
configurations requires the use of iterative methods.?8:36
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IIT. ANALYSIS OF ROTATORY STRENGTHS

The Hartree-Fock wave function for the ground state and the RPA for-
malism in eqgs. (4—10) are invariant with respect to a transformation from
delocalized to localized MO’s.*” We can thus assume that our occupied orbitals
are localized, e.g. by the Foster-Boys method,?% with centroids

_gu= (a|r]a). 1)

Localizing the orbitals allows us to define the following bond transition

moments:
Tq=2"Z{a|rim)S,, (12)
m

Pq=2"32{a|V]m)T,,, (13)
m

=5
l,q =22 (a | rx V ‘m> Tym.q
m

— -
=Ty q - 04 X VM (14)
with
— - _
Vog=2"2(a|(r—0) X Vim) T, . 15)
o v

The index m is again summed over all virtual orbitals. These bond moments

therefore represent the contributions to a particular total transition moment

due to excitations out of the individual localized bond orbitals. 1’, 4 of eq. (15)

specifically represents the local magnetic dipole transition moment for exci-

tations out of orbital & with the origin for the magnetic dipole moment ope-

rator at the centroid for this orbital. Within the present approach the local
—

moments defined by egs. (12, 13, 15) take the role of the 1, and m, transition
moments which were left undefined in the presentation of eq. (1). The
summation over all virtual orbitals makes it immaterial for this purpose
whether the virtual orbitals are localized.

These bond moments can be employed in egs. (4—6) and subsequently
in egs. (2, 3) to yield

Rq = (2¢ a)q)‘1 b By l’m'q + (2¢ cuq)‘1 EB Dy ° 1’5’q +
o

— — a
+ (dcw™ T (0,—0p) * (0,4 X Py ) ~ (16a)
azf !
= 3 R, (16b)
a, B d

and
fq=@3)Zp, |
o

T+ (13 T (Dyq FpqtPag Tugd= = Yy am
azf a, B
for the two intensities.!* Eq (16a) has exactly the form of the Kirkwood
expression of eq. (1), and eq. (17) provides a similar decomposition of the
oscillator strength, where the bond-bond terms are symmetrized with respect
to length and velocity contributions. Each individual term in the decom-
position of the rotatory strength in eq. (16a) is independent of the choice of
origin for the molecular coordinate system, because all the transition mo-
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ments involved are purely local and the last term contains only distances
between the centroids.

We thus have a computationally well-defined procedure for the extraction
of terms mimicking the various mechanisms of optical rotatory power. The
terms appear on an equal footing and are hence directly comparable. Moreover,
the formalism does not invoke neglect of overlap and electron exchange
since the local moments refer to localized MO’s, which are born orthonormal,
and electron exchange is explicitly included in the calculation through the
evaluation of the elements of the matrices A and B of eq. (7).

Besides the overall mechanistic information, the decomposition expressed
in eqgs. (16, 17) also provides analysis into structural terms, such as inherent
bond contributions and bond-bond couplings, and allows identification of
effective chromophores. For some purposes the analyses expressed by egs.
(16, 17) are too detailed to be useful and more coarse-grained pictures can be
obtained by introducing effective bond contributions defined through

Ri'=3 [waz + 1/2 X (unB + Rqﬁ(x)] =3 Rqa,eff (18)
o g % '
fq = [fqazx + 1/2 pY (fqaﬂ + fqﬁrz)] =3 fqu,eff (19)
a 8 -

The summation over virtual orbitals in the definition of the local bond
moments in eqgs. (16—19) has obliterated a number of details in the description
of the excitations, such as distinctions between local and charge-transfer
excitations and between degenarate and non-degenerate exciton couplings.
Some indication of these features can be gleaned from the normalization
contributions wym, 4 0f eq. (9), if the virtual orbitals are localized.?® If desired,
more informative representations of the nature of the excitations can be
obtained from population analyses or contour plots of charge rearrangments
and transition densities,’* and from changes in the effective size of the electron
distribution in the excitation.??

IV. APPLICATIONS
Conjugated Dienes

In non-planar, cisoid conjugated dienes, the twisted diene group can
adopt either a right-handed (P) helicity or a left-handed (M) helicity. Expe-
rimental evidence supported by T-electron calculations led to an early diene
rule® according to which the lowest (N— V) transition in a cisoid diene
with P helicity will show a strong positive rotatory strength (R), while M
helicity leads to negative R. The sign of the N —V, transition is expected
to be opposite. The rule accounted for the structure of a number of molecules,
but systematic exceptions indicated that the so-called allylic axial bonds can
contribute in a significant, often sign-determining way;**3% see ref. [33] for 2
survey of the history of the diene rule.

Notwithstanding the prediction of this rule, Sandstréom et al.*' have pro-
posed that (—)-cis,trans-1,3-cyclooctadiene (»CTCO«, Figure 1), for which they
have observed a long-wavelength CD band at 230 nm with R =~ —48 X 1070
cgs, has an absolute configuration with right-handed (P) helicity for the diene
moiety. The CD spectrum also exhibits a second negative band at » <190
nm. The two bands correspond to allowed UV bands at the same locations.
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Figure 1. PLUTO plot of the geometry of cis,trans-1,3-cyclooctadiene (CTC'O),
viewed along an axis passing through the midpoint of the C3=Cy bond, showing
the numbering of the carbon atoms.

In order to provide a theoretical assessment of this assignment, we per-
formed an extended-basis set RPA calculation’? on CTCO, using the MM2-
-optimized geometry.i! The basis set we employed was a Dunning-Hay [3s2p/2s]
valence double-zeta basis®® (with STO-5G on the non-chromophore H atoms),
augmented with two sets of diffuse s and p-type single Gaussian functions
(og = .0437, .0173; o, = .04, .016) on each of the four carbons of the diene
moiety, for a total of 120 basis functions. This same basis was used previously
to good effect in a study of (—)-trans-cyclooctene.!* SCF molecular orbitals
were generated on the GAUSSIAN 80 program system,* yielding an SCF
energy of —309.749514 hartrees. The full set of 1980 excitations out of valence
occupied MO’s was used in the subsequent RPA calculation.

TABLE I

Overall computed RPA results for cis,trans-1,3-cyclcoctadiene (CTCO). Experimental
values are shown in parentheses

Excitation AE® v Rb.d RVt A {r2)° Nature
1 5.97 17 —35 —29 9.1 D))
(5.4) (.09) (—48)
2 6.32 .00 13 16 64.4 me—>Ryd.
3 6.63 .02 —12 10 62.9 me—Ryd.
4 6.68 .02 —21 —22 81.4 me—Ryd.
5 7.00 .02 —3 —3 89.2 me—Ryd.
6 7.12 12 —86 —11 31.2 n—ng (50%%0)
(>6.5) =)

® Excitation energy in eV. ® Rotatory strength, in cgs X 10%. ¢ Eq. (2). ® Origin-
independent part of R', eq. (1a’). See Ref. [1]. © Change in expectation value of
r? during excitation, Ref. [32], in (a.u.)%

Table I shows the results obtained for the lowest few singlet excitations.
It is seen that the overall agreement with experiment is reasonable, and that
the calculations support the assignment of P helicity to the (—) enantiomer
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of CTCO. Two intense bands are predicted, with an energy separation of
1.15 eV, in accord with the experimental band separations of at least 1.1 eV.
The present calculations are comparable in quality to our earlier calculations
on (—)-trans-cyclooctene,’* and also show the same systematic overestimation
of the individual excitation energies by 0.5 eV or so. This discrepancy is due in
part to the fact that the basis set is not yet saturated as far as the RPA goes,
and also to the neglect of higher-order effects in our method. On the basis
of contributions to the normalization of the excitation eigenvector [eq. (9)],
charge rearrangement populations, and changes in the expectation values of
(r?) during the excitation,®® the lowest excitation is assigned as a valence-like
transition out of m, into an effective virtual orbital (EVO) made up of a
linear combination of the canonical virtual orbitals dominated by the m;* MO.
In a localized orbital picture in which a set of valence-like, antibonding loca-
lized virtual orbitals has been constructed to correspond to the valence
localized occupied orbitals,*® the transition is depicted as consisting largely
of a local m—T* excitation within C;=C,;, with lesser contributions from
7 (C;=Cy) > * (C;=C;) and = (C;=Cy)— 7*(C;=C,;). The next four singlet
excitations are computed to be of Rydberg type, as evidenced by their large
A (r?) values.?® The sixth excitation is again a valence-type transition, arising,
in a delocalized picture, from the T, orbital, again into an EVO of about 50%
m;* character. The A (7?) value of 31.2 (a.u.)* suggests that the upper state
is less compact than for N—V; but still much less diffuse than the Rydberg
excitations. The localized picture shows the largest contribution to be m—7*
within C;=C,, with lesser contributions from = (C;=C,;) and = (C;=C,) into
7* (C3=C,), but many other terms also appear. The two valence excitations
determine the overall appearance of the CD spectrum, since computer simu-
lations based upon assigning a Gaussian band shape to each computed rota-
tory intensity show that the contributions from the Rydberg excitations
largely cancel.

TABLE II

Mechanistic analysis for rotatory strengths of N->V; and N—V, excitations in CTCO

Fragment R (intr.) R (u—m) R (u—uw) R (total)
N—-V;

entire +22.7 —39.5 —11.7 —28.5
1 (C3=Cy) only +16.9 —22.5 +39.4 +34
Ci—Cy4 chain +22.6 —27.0 +17.5 +3
»butadiene«* +22.6 —39.9 +4.9 —12.4
N—V,

entire +6.1 —32.9 —44.0 —170.8
nt (C3=Cy) only —1.8 —13.4 —42.6 —57.7
C1—Cy4 chain +-6.4 —38.9 —47.4 —179.9
»butadiene«* +5.9 —37.0 —42.9 —76.7

* Includes all the sigma and pi bonds corresponding to a butadiene molecule, with
C—C bonds replacing C—H bonds where appropriate for CTCO.

The oscillator strength of the N—V, band is revealed by the decompo-
sition in eq. (17) to consist primarily of a local m—>7* (C;=C,) contribution
of 0.23 and a local ®—7* (C;=C,) contribution of 0.07, paralleling the weights
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of © (C3=Cy) and = (C;=C,) in the normalization, together with a host of small
couplings within the rest of the molecule that act to reduce the total oscillator
strength to 0.17. For the N—V, band, the total computed oscillator strength
of 0.12 is dominated by local ®—>7* contributions of 0.15 for C;=C, and 0.04
for C;=C,, with smaller terms as above. Again, discrepancies of up to ca. 20%
would be expected for the intensities at the RPA level, even for much larger
basis sets, due to neglect of second-order terms.

Applying the localized analysis of egs. (16, 18) to the calculated rotatory
strengths, we see in Table II that no clear candidate emerges for the dominant
intensity mechanism in either valence excitation. Interestingly, the intrinsic
contribution for the N—V,; excitation obeys the Diene Rule, but the net R
is dominated by the #—m and u—pu terms which violate it. Table II also
shows the analysis of R for the two valence excitations in terms of groups of
contributing bonds, according to eq. (18), and reveals that the largest single
contribution to R (total) comes from = (C;=C,), albeit with its sign opposite to
that of R (total). Nearly the entire intrinsic contribution in N—V; comes
from the four-carbon chain comprising the w-system. Adding the other sigma
bonds appropriate for a »butadiene« moiety does not change the intrinsic
term, but accounts for the full amount of the ¢ —m mechanistic contribution,
whereas the ¢ —u terms for the fragments up to and including »butadiene«
are opposite in sign to the total ©— u term for the molecule. The remainder,
nearly all of p—u type, is contributed by bonds throughout the molecule.

For the short-wavelength valence band (N — V;), the main contribution
to R also comes from the trans-substituted C;=C; bond, even though the
normalization favors the © (C;=C,) bond by over 2:1. In this case the rest
of the diene moiety also contributes to a negative R value, so that the total
intensity is very large and negative. Once again, the intrinsic terms sum to
a small, positive R value, while both the #—m and g —p terms are large
and negative. The extrachromophoric part of the molecule contributes very
little, either to the excitation normalization or to the intensities, in marked
contrast to the nature of the N — V; band.

Our calculations thus not only reproduce the overall features of the
experimental spectrum but also confirm the estimates made by Sandstrém
et al. of the importance of different parts of the molecule for the total rota-
tory intensities. The major role played by the trans-substituted C;=C, bond
invites comparison between the spectroscopic properties of CTCO and those
of trans-cyclooctene (TCO),!* since the view of CTCO in Figure 1 indeed
shows a striking structural similarity to TCO as shown in Figure 2 of ref. [14].
Also the overall rotatory intensity of the N—V; band in CTCO correlates
well with that of the m—7* band in TCO, and in terms of the normalization
of the transition, eq. (9), both bands are dominated by the trans-substituted
C=C bond. However, the mechanisms for generating the intensities differ
somewhat, since although the y—m and p—u terms in the two molecules are
similar in sign and magnitude, the non-trivial intrinsic terms are of opposite
sign. Moreover, as noted above, the © (C;=C,) orbital itself contributes a large
positive R value, which must be offset by the rest of the molecule, unlike
the behavior of the ethylenic fragment in TCO. The N—V, band of CTCO
is of course of T—>T* character, in contrast to the c—n* band in TCO, although
the former does have some sigma character with respect to the C;=C4 bond.
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The spectroscopic properties of CTCO are thus intermediate between
those of a »normal« cisoid diene and those of a twisted mono-olefin. On the
one hand, the twist of the C;=C; bond introduces a major perturbation into
the diene system, while on the other hand, the C;=C, chromophore exerts a
significant electronic, if not geometric, effect on the twisted double bond.

Unsaturated Ketones

A particularly interesting example of the sensitivity of circular dichroism
to structural perturbations is found in the compound (1S,4S)-bicyclo[2.2.1]-
hept-5-en-2-one (»HEO«, Figure 2), especially as compared with the cor-
responding saturated ketone.*>46 The latter compound absorbs weakly near
290 nm and, in the enantiomer (Figure 2, mutatis mutandis), gives a weak
positive CD band (A¢ =~ + 0.25 at 305 nm), whereas the enone HEO shows
a strongly negative band (Ae = —18.8, R =~ —51.1 X 107 cgs) with no con-
comitant wavelength shift.*> The simple Octant Rule picture cannot account
for these differences, and an extended Octant Rule was therefore proposed.*¢
An early semiempirical calculation?” indicated that a pg—m exciton (coupled
chromophore) model can account correctly for the sign and magnitude of
the 300 nm CD band in 8,y-enone systems, and indicated that overlap and
charge transfer effects were of minor importance. Recently Schippers and
Dekkers*® have proposed a chirality rule based upon the cosine of the angle
¢ between the C=C bond and the C=0 bond. The latter authors also assume
a coupled chromophore model, with electric and magnetic dipole transition
moments contributed exclusively by the olefinic T™—T* excitation and the
carbonyl n—7* excitation, respectively, but they avoid specific assumptions
about the nature of the coupling. Experimental support for this chirality rule
has been recently provided.*

Figure 2. Numbering scheme and leading effective bond contributions. R..:, eq.

(18), to the n—= rotatory strength of bicyclo[2.2.1]hept-5-en-2-one (HEO). Bond

contributions not marked sum to less than 1 X 10 cgs. The two hydrogens marked
explicitly are referenced in the discussion.

We have performed ab initio RPA calculations on HEO and have analyzed
the results in terms of the decompositions in Section III. The basis set con-
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sisted of 112 atomic orbital basis functions: [3s2p] plus a single set of diffuse
s and p functions (C: a, = 0.023, a, = 0.021; O: a; = 0.032, a, = 0.028) on each
heavy atom and STO-5G on H,*® which yielded a Hartree-Fock ground state
energy of — 344.440470 hartrees. This basis generated 1743 singly-excited
configurations out of the valence occupied orbitals.

The computed and experimental intensities and the leading decomposi-
tions are shown in Table IIT and in Figure 2. The calculation yields a tran-
sition energy of 4.51 eV, compared to an experimental band maximum at
4.1 eV.* The overall agreements between calculated and experimental results
are thus quite satisfactory, and the deviations are typical of RPA calculations
in atomic basis sets of this size.

For the oscillator strength Table III shows that the local contribution
from the olefinic chromophore is quite large, but bond-bond couplings to the
rest of the molecule almost counterbalance this contribution. This hypochromic
effect of the extrachromophoric part of the molecule was also observed in
our work on mono-olefins!* and dienes.!”33 The calculations also show that
neither the C=C electric dipole bond transition moment, eq. (12, 13), nor
the total electric dipole transition moment for this excitation lie along the
C=C bond direction. In the velocity (V) form the bond and total moments
form angles of respectively 42° and 50° with the C=C bond; in the length
form (r) the total moment forms an angle of 36° with the C=C direction.
This difference between the length and velocity predictions of the polarization
properties of weak transitions is common for calculations in basis sets of
the present size.

TABLE III

Computed intensities and leading decompositions for the n—x* transition in
bicyclof2.2.1]hept-5-en-2-one (HEO)

R/10% cgs f

total u—m H—L
ve —30 —25 —6 .002
T —32 .003
rv? .002
expt.” —51 .006
n/n®? 5.2 2.1 1.0 .000
n/1—6 —11.6 —9.6 —1.9
n/1—17 23.6 19.4 4.1
n/5—6 —70.7 —58.8 —11.9
n/3—4 5.4 43 1.1
n/3-H 5.9 4.6 1.3
n/7-H 8.4 7.0 1.4
n/others 8.4 7.3 1.1
5—6/5—6 —1.5 —1.5 .0 .007
5—6/others® —76.4 —60.7 —15.7 —.006

* ¥V, r, and rV indicate velocity, length and mixed forms of the intensity expres-

sions, see eqgs. (2—1a’) and ref. [1]. ® From ref. [45] converted to present enantiomer.

¢ Bond-bond couplings R.;* and f.?, eqgs. (16, 17). ‘n stands for the non-bonding

oxygen orbital plus bonds 1—2 and 2—3, and these contributions are summed

accordingly. See Figure 2 for atomic numbering. ¢ Includes the 5—6/n=n/5—86
coupling.
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The decompositions in Table III show, as expected, that the rotatory
strength of this excitation is strongly dominated by the g—m mechanism.
The total intrinsic contribution is only about 1 X 107 cgs, and intrinsic con-
tributions are therefore omitted in the Table. The p—u contributions, which
however are of some importance, in all cases follow the u—m contributions
in sign and general magnitude. These trends agree with our observations for
saturated ketones.?! The difference lies in the enhancement apparent in the
coupling labelled n/5—6 between the extended nonbonding orbital system
and the olefinic double bond, where the contributions to this coupling from
orbitals 1—2 and 2—3 account for half its total magnitude.”® We note also
that the olefinic chromophore couples almost exclusively to the non-bonding
system, whereas the non-bonding system couples to a number of bonds. The
latter terms follow the octant rule in sign and expected magnitude and con-
tain a number of large contributions which reduce the overall R value notably.
This asymmetry in the extrachromophoric rotatory strength couplings for the
olefinic group and the non-bonding system is evident in the gross bond terms
displayed in Figure 2, making the C=C bond the apparent main contributor
to the rotatory strength. Figure 2 also illustrates the octant rule behavior
of the extrachromophoric contributions, in particular the zigzag effect!® making
the 1—7—H bond contributions large.

To establish the connection to earlier approaches, we emphasize that
although the above analysis confirms the leading role played by the u—m
contribution containing a C=0 magnetic bond transition moment and a C=C
electric bond transition moment, it does not address the question of the nature
of the coupling between the two chromophores. This follows because the
definition of the bond moments, eqgs. (12—15) leads to a loss of distinction
between local and charge transfer character of the excitations, as discussed
in Section III. Some features of the nature of the excitation can be studied,
however, by performing an analysis in which we localize one virtual orbital
per bonding occupied orbital, as in our discussion of CTCO above. Reassuringly,
this analysis confirms that it is primarily an n-—>7* transition since 75%0
of the normalization calculated according to eq. (9) is contributed by exci-
tations out of the extended non-bonding system into the local C=0 7* orbital.
More importantly, it shows that although the total normalization contribution
arising from excitations out of the C=C = orbital is 5.6%,%° only 0.6%
comes from the local C=C w—T* excitation whereas 3.4% comes from a
charge transfer excitation from the C=C = orbital into the C=0 =* orbital.
Hence the assumption inherent in many models and qualitative treatments
that the local C=C w=7* excitation is essentially the sole contributor to the
total electric dipole transition moment is not supported by the present ana-
lysis, and it appears that this charge transfer excitation plays an important
role in twisting the transition moment away from the C=C direction, as
noted above. Charge transfer from the non-bonding system into the C=C =*
orbital amounts to only 1.2/ and is hence not significant. The fact that
excitations out of extrachromophoric bonds provide the remaining ca. 20%
of the normalization accounts for the significant contributions from those
bonds shown in Figure 2.
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The Schippers and Dekkers chirality rule*® is based on the expression
R/VD = |m|cos 6 (20)

relating the rotatory strength R and the dipole strength D to the magnitude
of the magnetic dipole transition moment and the angle ¢ between the electric
and magnetic transition moments. By assuming that the two moments are
directed along the C=C and C=O bonds, respectively, ¢ is identified with
the angle & between the bond directions, and by further assuming a value
of 1.10 X 1672 cgs for | m |, eq. (20) provides a direct link between the expe-
rimental observables R and D and the structural parameter §. From the
experimental data for HEO, eq. (20) yields a value of —48° for 0 in the
enantiomer shown in Figure 2, compared with a structure angle & of —55°
obtained from a Dreiding model.*® Inserting our computed intensities and
magnitude of m in eq. (20) we obtain 4 values of —45° and — 42° from the
dipole length and dipole velocity results, respectively, and we note that our
optimized geometry provides a value of —52° for & Hence in terms of
overall results, the present approach agrees with the model proposed by
Schippers and Dekkers, whereas the results of our more detailed analysis, in
particular concerning the direction of the electric dipole transition moment
and the involvement of the extrachromophoric parts, do not support the
assumptions behind that model.

V. CONCLUDING REMARKS

The mechanistic and structural analyses expressed in egs. (16, 17) pre-
suppose an all-electron calculation of the transition energies and total inten-
sities. It is important for the formulation that this computational scheme
allows the total transition moments to be expressed as linear combinations
of simple occupied into virtual orbital excitations (single particle-hole terms)
as given by egs. (4—86), and that the occupied orbitals can be localized. The
Random Phase Approximation employed here is not the only candidate for
such a scheme, but it has a number of attractive formal features,’»**" including
the built-in invariance with respect to the transformation to localized orbitals,*
and we have found that it is an effective and economical procedure which
can provide quite satisfactory results for a variety of molecules.

Relative to the model approaches it should be noted that, although the
present analysis helps clarify the relative importance of the various mecha-
nisms, and hence can assist in construction and improvements of such ap-
proaches, an important difference remains. In exciton-type calculations,’?®!*
the transition energies and the ordinary and rotatory intensities are all deter-
mined by the local energies and transition moments, either by simple expres-
sions like egs. (V. 24, 25) of ref. [1] or by more elaborate multipclar expansions.?
Because of the a posteriori nature of our analysis no such direct coupling
between energetics and intensities is implied in the present approach. A study
of the possibility of extracting transferable local energies and transition
moments, and of the relationship between such derived local properties and
the computed overall transition properties, remains to be done.

In application of the above analysis to the extended chromophore systems
of the present paper, we find that all three mechanistic types occur, however
the intrinsic contribution is large only for the long-wavelength excitation in
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the twisted diene, but its sign is opposite to that of the total rotatory strength.
The p—m and p—i mechanisms are both important in all the excitations
considered here, and they consistently agree in sign with each other and with
the overall R value. This trend for the dynamic couplings follows our pre-
vious observations,* as does the lack or correlation of the sign of the intrinsic
contribution to that of the entire rotatory strength.
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SAZETAK

Ab initio racuni i mehanisticka analiza optitke aktivnosti organskih molekula

s produzenim kromoforima
Thomas D. Bouman i Aage E. Hansen

Dan je pregled molekulsko-orbitalnih rac¢una energija elektronskih prijelaza,

te snage oscilatora i rotacijske snage, prema »random phase« aproksimaciji (RPA),
i pokazano je kako ova tri mehanizma koja su sadrzana u Kirkwoodovoj teoriji
opticke rotcijske snage, i druge pojave vezane uz elektronsku pobudu mogu biti
izvedene iz takvih rac¢una. Metoda je primijenjena na kiropticka svojstva cis-trans-
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-(1,3)-ciklooktadiena i bisiklo[2,2,1]Thept-5-en-2-ona, koji posjeduju produZeni kro-
moforni sustav. Rezultati za dien podupiru Sandstromovo pripisivanje P-heliciteta
(—)-enantiomeru, uprkos suprotnom predvidanju jednostavnoga dienskog pravila
te znatnih strukturnih i spektralnih sli¢nosti s (—)-trans-ciklooktenom.

Rac¢uni za enon potvrduju modelnu pretpostavku da prevladava wu-m meha-
nizam za rotacijsku snagu, dok se analiza doprinosa veza i pravca prijelaznog mo-
menta znatno razlikuje od pretpostavki na osnovi kiralitetnog pravila Schippersa
i Dekkersa, i drugih modela.





