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Some basic algebraic features of quasiparticle transforma-
tions are reviewed. Special nonlinear quasiparticle transformations
are introduced leading to the second quantized counterparts of
geminal-type (correlated) wave functions. Algebraic representa-
tions of strong and weak orthogonality are discussed, and these
issues are generalized to the case of non-orthogonal basis sets
leading to the concepts of strong and weak biorthogonality.

I. ONE-PARTICLE TRANSFORMATIONS

As introduction, we shall give a brief overview of linear quasiparticle
transformations, a standard tool in quantum chemistry and solid state physicsi.
Given a set of orthonormalized orbitals {x,}, the corresponding creation
(%,") and annihilaticn (x,) operators obey the fermion anticommutation rules

el #ole= i 25ly =0 (1a)

[Z.u.*’ ZVH]A,_ = 61.).\/ (lb)

Operators x," (x,”) create (annihilate) an electron on orbital x,. The creation
and annihilation operators are adjoints of each other.

Transformation of the elementary fermion operators x,” and x, leads
to new operators creating and annihilating »quasiparticles«. Such transfor-
mations can be called quasiparticle transformations.

Consider a general linear transformation

vi'= T (A 2, + By* 2) (2a)
W

Wf = 2 (Aip,* Xp,— oy Bi},t Zu) (2b)
w

the asterisks indicating complex conjugates. Algebraic properties of the trans-
formed operators are defined by their commutation rules which can be
derived by substituting Eqgs. (2) into the relevant commutators:

i wi'ly = = (44, B * + By* Ay) (32)
w
[lf)i_) 7/)l;] £ = = (Aiu* ka. i Bip, Aku*) (32)

w
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[zpi+7 u}k"] g 5= 2 (Aiu Aku* 4 Biu* Bku) (33‘
w

Transformation (2) is said to be canonical if the transformed fermion operators
obey the same commutation properties as the untransformed ones to:

vl =y w1, =0 (43)
i wil, = 0 (4D)

It is seen from Eqg. (3) that the general transformation (2) is canonical if
certain conditions for thansformation coefficients A and B are satisfied.
Namely, in matrix notations:

AB" " =0 (5a)

(AA*+BB) =1 (5b)

where the dagger indicates the adjoint of the matrix. Egs. (5) are sufficient
conditions for transformation (2) to be a canonical transformation.

It is to be emphasized that operator ¢;* does not generally create an
electron; it creates a quasiparticle. Such quasiparticles are widely applied
in theoretical physics to describe elementary excitations and similar quantum
phenomena?® Second quantization is essential to describe the mathematical
properties of quasiparticles and to deal with them.

Three important special cases of the general quasiparticle transformation
in Eq. (2) are to be distinguished.

(i) If all the coefficients B are zero, Eq. (2) reduces to a simple linear
transformation of the orbital space: ot

yi =2 Ay 7, ' (6a)
w
w=2A% 0 (61)

W

This is not really a quasiparticle transformation since ¢;* creates and
electron on the transformed orbital ¢;. The canonical condition of Eq. (5a)
is automatically fulfilled while (5b) reduces to

AA"=1
that is, matrix A should be unitary in order to Eq. (6) to be a canonical trans-

formation preserving the commutation rules.
(ii) If all coefficients A are zero, we have

wit = ZByf (7a)
w

=2 By, };u* (7b)
i

It is seen that the role of creation and annihilation operators is reversed
by transformation (7). One can say that operator ¢;* (¢;") creates (annihilates)
a hole. Eq. (7) is called a particle — hole transformation3:*.

(iii) In general, Eq. (2) mixes together particle- and hole-creation ope-
rators. Transformation of this type are called Boguliobov transformations
and are often utilized in the theory of superconductivity and superfluidity!.
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II. TWO-PARTICLE TRANSFORMATIONS

We turn now to a less standard chapter in the theory of quasiparticle
transformations which are non-linear in fermion,operators. The aim of the
present paper is to discuss some formal freatures of. the two-electron
transformation of the following form: ‘

'l,l}; =X C',wi Z|1.+ Zv+ (8a)
p<y

wo= 2 C g = (8b)
u<v

where the summation restriction <V avoids double counting of electron
pairs. Coefficients C,/ are assumed to be real.

Algebraic properties of the transformed operators are quite interesting?.
By substitution, the following commutation rules are found:

[yl =[pSLy =0 (9a)
[yy"s W{{]T = Qi (9b)

where operators @ are defined as

Qik =z prj prk + 2 Cu)»i cv)vk Xp,+ X (10)
nlv VA ;
where the convention C,}!= —C,[ is introduced. The first thing we realize

is that we have commutators, instead of anticommutators, in Eqgs. (9). This
is quite natural since ¢ (¢7) creates (annihilates) a pair of electrons. The
relevant quasiparticles are, therefore, bosons.

Next, operators Qi are to be discussed. If one deals with elementary
bosons, J; should stand in replacement of Q. The presence of @ reflects
the composite nature of the bose quasiparticles':" 9. Operators @;. in the
form of Eq. (10) complicate tremendously the algebra of the quasiparticles.
Since Qix is a matrix of operators, it is hard to find an efficient theory for
dealing with them. Under certain conditions, however, the structure of the
quasiparticle commutators can be simplified leading to a practically appli-
cable theory.

The first simplification arises if one requires the geminals (two-electron
wave functions) to be orthogonal to each other:

(vac | iy | vac) = &, (1n

This equation is the second quantized representant of the so called »weak
orthogonality« condition which is commonly expressed as

T @, ) i (@, ) diey dixy = Oy an
Substituting the quasiparticle transformation from Egps. (8) into Eq. (11),
one gets the weak orthogonality condition in terms of coefficients
2 C,) CL = 0y 12)
By

By this result, the quasiparticle operators of Eq. (5) under weak orthogo-
nality take the form
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Qik = 6ik + = Cp,)ui Cv)»k Zu+ Xy (13)

VA
This apparent simplification, as compared to Eq. (10), does not make the
algebra of quasiparticle operators much simpler, since one still cannot trans-
pose different creation and annihilation operators. However, it has the

interesting feature
Qi ‘ vac) = 0, ‘ vac ) (14)

This means that the quasiparticle operator ¢;~ is a true annihilator with
respect to ¢;" since

wiw | vae) = 1+ pt ) J vac) = |vac).

As mentioned above, the main problem consists of transposing ¢;* and ¢y
for i # k. This difficulty can be handled under the so called »strong ortho-
gonality« requirement which is commonly given as

S (@, ) wy (e, ) dey =0 for ik (15)
In terms of coefficients the same condition writes

¥C, Cui=0 fori=k ; (16)
"
Using Eq. (16), the quasiparticle commutators under strong orthogonality
become ;
Q=0 1+ = Cu' Cpf 1 7] 17)
VA
which is an essential simplification, as compared to Eq. (10) or Eq. (13),
since it enables algebraic manipulation e. g.

W w | vac) = 9y | vac) (18)

where Eq. (14) was also used.

It is to be noted here that commutators ®; at the diagonal cannot be
eliminated from the theory: they reflect the physical fact that the Bose-type
particles in question are composite quasiparticles.

The essential importance of strong orthogonality resulting in Eq. (17)
lies in the fact that it results in exactly the same algebra as that for
elementary bosons. Operators @; do not enter the formalism when calculating
matrix elements, and any standard rules (Wick’s theorem, etc.) remain valid.
A natural form of an N-electron wave function can be written as

V=ypfy, o pi l vac ) 19)

which is a straightforward generalization of the Hartree-Fock single deter-

minantal wave function
Purp =22 [ vac ) (20)

while Eq. (20) corresponds to the model of independent electrons, Eq. (19)
specifies the model of independent pairs. (We mention only in passing that
the internal structure of composite particles can be affected by interpair, e.g.
inductive, interactions®.)

The formal analogy between one-electron models and geminal-type
schemes was realized a long time ago.''™'® The present discussion based on
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the second quantized formalism sheds some more light onto this connection,
emphasizing the algebraic importance of the strong orthogonality condition.

Strong orthogonality can be ensured in two ways. (i) Either as an auxiliary
condition at the variational determination of coefficients C,}, or (ii) by
expanding the geminals in mutually exclusive orthogonal subspaces. Way
(i) is essentially the method of antisymmetrized product of strongly orthogonal
geminals (APSG)', while (ii) results in strictly localized geminals (SLG).>8
As it was shown by Arai!s, these two ways are mathematically equivalent
since for an APSG-type wave function there exists a transformation of the
underlying one-electron basis set so that the transformed basis functions
obey the condition of point (ii).

III. THE NON-ORTHOGONAL CASE

In practical applications, one is often faced with the problem that the
original basis of one-electron functions {y} is not orthonormalized. The
relevant anticommutation rules for fermion operators are then read!:57.16.:7

it i=dy o wrthy =iy =0

w20t = Sy (21)
2wl =6,
where %, = (%)' but the true annihilation operators y,” are not adjoints
of x,5. Instead, the following relation holds:
1, =B S 22)
)

Using creation operators x," and annihilation operators x,” one works in
the same algebra as in the orthogonal case. The non-orthogonality is reflected
by the fact that the adjoin relation does not hold. This leads to certain diffi-
culties in evaluating matrix elements which can be most conveniently solved
by consistent use of the biorthogonal formalism.” Anyway, since the basic
algebraic rule are preserved, the quasiparticle transformations discussed in
Sect. II. can easily be generalized to the non-orthogonal case mutatis mutandis.
The basic transformation of Eq. (8) becomes

wi'= 2 Cr 2 (232)
p<lv

Fra i ety e Oy (23b)
p<v

The transformed quasi-boson operators obey the commutation rules
exactly in the same form as given in Eq. (9), while the quasiparticle commu-
tator in the general case is given by

Qik = X C}lvi Cuvk + X Clil‘ Cv)yk Zu.+ 7\:/» (24
p<v ) PV )
As a generalization of the weak orthogonality defined in Eq. (11), one can
formulate the requirement of »weak bi-orthogonality« as

(vac|y;p'|vac) =0 (i = k) (25)
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which, in terms of coefficients C,.}, leads again to the same expression of
Eq. (12). Consequently, the quasiparticle commutator under weak biorthogo-
nality simplifies to

Qik 7 bik + = Cg)»i Cv)»k Zu; v (26)
BvA

Further simplification is possible by requiring the »strong bi-orthogo-

nality« of ¢ and QZ, which results again in Eq. (16) for the coefficients. The
quasiparticle commutator reduces to

Qu =0ull + = Cu' CoFz, 2,1 @
UV

which is the generalization o. Eq. (17).

IV. CONCLUSIONS

In this paper we aimed to review the second quantized representation
of geminal type wave functions, using the language of quasiparticle trans-
formations. The formal similarity between the wave functions of idependent
electron models and those of separated pair theories was studied. It was
shown that these two models can be described by the same algebraic stru-
cture provided that strong orthogonality is fulfilled for the geminals in
orthonormalized metrics. If the basis set is overlapping, a biorthogonal for-
mulation turns out to be conveninent and one can define strong and weak
biorthogonality. In this case the algebra of quasiparticles is similar to the
algebra of electrons if the strong biorthogonality condition is fulfilled. The
formal considerations of this paper are useful theoretical backgrounds of the
applications to chemical bond theories® as well as various geminal type
models such as APSG!114,
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SAZETAK
Metoda elektronskih parova vs. priblizenje nezavisnih cCestica:
Kvazi¢esti¢ne transformacije

Péter R. Surjdn

Prikazana su neka osnovna svojstva kvazicesti¢énih transformacija. Uvedene
su nelinearne kvaziCesticne transformacije koje daju korelirane valne funkcije
geminalnog tipa. Razmatrana je koncepcija jake i slabe biortogonalnosti.





