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This paper describes a generalized and extended treatment of
the preceding papers in which the maximum overlap method was
employed but the results were limited by the. condition that the
number of Iigands surrounding the central atom should be two,
that is, k = 2 in molecule MLko Based on the special assumption.
that the angles < LpMLq = a between any two M-Lj bonds in
molecule MLk are equal, many general formula s related to the dia-
gonal matrix D (Jo), unitary matrix U", overlap matrix Sl and the
bond strength F are derived. The properties of matrix SST are
also discussed.

1. ASHORT REVIEW

In the preceding papers of this series'.", we began with the maximum
overlap method proposed by Murrell" and simplified and developed by
Golebiewski+, Lykos and Schmeising", and Maksić et al.6.7, according to the
concept of bond strength pointed out by Mulliken". The bond strength, bond
angle and the composition of a given orbital with orbital angular momentum
quantum number l of a hybrid atomic orbital (RAO) were discussed for
molecule MLk where k equals two. In the present case, the treatment will
be extended to k > 2.

The same notation is used as in the preceding papers. For the type of
molecule MLk which is constructed by simple (J bond M--Lj, the atomic
orbitals (AO) of the central atom are represented by xi>its RAO by </Ji.Both
of them are real and orthonormal wave functions and are denoted by row
matrices X = (XI... Xn) and 1[/ = (</JI'.. </Jn),respectively. We have

'1' = XAT (1)

where A is a coefficient matrix of order n which is self-adjoint (AA'!' = I),
T means a transpose and I is the unit matrix. The AOs of k ligands LI, ... , Lk
are denoted by WI wk> respectively, and may also be represented by a
row matrix n = (0)1 Wko ... O) in which k:5 n.

In the practical procedure of using the maximum overlap method, the
first step is to find a k X n overlap matrix between the AOs of ligands
and AOs of the central atom, as shown below:

I (WI.XI> (U\Xn>

I (Wk:XI> (wkXn>
S= (2)
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Then, a symmetric matrix SST of order k is obtained, which can be diago-
n;.•.lized by a similarity transformation yielding a diagonal matrix D (},)
with elements of AJ, ... , Ak. Taking the positive values of the square root
of these diagonal elements, an overlap matrix between the AOs of ligands
and the RAOs of the central atom

(3)

can then be obtained where SI has the maximum trace. Furthermore, using
matrix SI-I, the combination coefficients of AOs to form RAOs of the central
atom can be determined.

Since the bond strength Fj of bond M-Lj is, according to Mulliken",
equal to the overlap integral between the orbital of ligand L, and the corre-
sponding best RAO of central atom M, we have an universal formula of
the bond strength which may be expressed in the Iollowing form:

k

Fj = (SI)jj = «(Oj 1Pj> = (SST)j/" = [U"· D ("Fi) Ulj; = ~ Y J'n Un/

n=l
(4)

j = 1, 2, ... , k

2. COMMENT ON MATRIX S8T

We have seen in the procedure outlined above that the most important
step is to find an unitary matrix for the diagonalization of the symmetric
matrix SS1'. After this step is completed, the successive steps will be easy.
We l10W discuss the elements of matrix SST under some approximations
for the case of k > 2. The spherical function Y1m (i), <p) is utilized in its com-
plex forrn. We sha11 consider aHermitian matrix of order k constructed by
overlap matrix S (Eq. (2)):

r ,~,I (w",) I'

SS+ = I i (w2x) (wjx)*

l'~("ce,) (w",)'
i=l

n n

1
~ (wlx) (w2x)* ~ (wlx) (WkX)*
i=l i=1

n n

~ 1 (W2X) 12 ~ (W2X) (WkX)* I (5)
i=1 i= 1

J
n n
~ (Wk7.) (W2X)* ~ 1 (WkX) 12
i=l i=l

whsre symbol + means a complex-conjugate transpose.
Assume that the radial parts of Xi are all equal and could be neglected,

that is, only their angular parts of atom M are to be considered. We set

Xi = Y 4n Yi (19), rp) = Y 4n Y1m (19); rp), i = 1, 2, ... , n (6)

The second approximation is that the projection method is employed, i. e.
the function of ligand L, is only to determine the direction of bond M-Lp,

to define the projected value of Xi in that direction and the actual value
of the overlap integral (Wp)(i > is not necessary, then
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lV (t-m)!
= (2t + 1) ---- P/u (cos 'P) c imcpp

. U + ml! p

Now the off-diagonal element of matrix SST is

(7)

Il

(SS+)pq = L (wpX) (wqX)*
i=l

Il

~ 4Jr Yi ({}p, 'Pp) Yi* ({}q> 'Pq)
i = 1

U-ml!
~ (2t + 1) --- P m (cosč' ) P on (cos(j. ) e im ((1),,-(1),,)
i= 1 (l + m)! I p I q

The symbol of summation means that it is necessary to sum up all AOs
which participate in the RAO. If a group of orbitals with definite orbital
angular momentum quantum number 1 is chosen to participate in RAO, there
are (2l + 1) AOs contained in the sum, but all AOs of 1 = O through to
1 = lmax need not be taken into account, namely

n I
~ = ~ L
i=l lm=-l

(8

Hence, we write

= ~ (2t + 1) Pl (cosal,
I

where a = < LpMLq is the angle between the bonds of M-Lp and M-Lq,
i. e. the anglebetween the orientations of (!Jp, ({Jo) and (({Jq, ({Jp) and it satisfies
the trigonometric identity

(9)

(10)

We have used the addition formula of spherical harrnonics'' to deduce Eq. (9),
which is a general relationship and applicable to all off-diagonal elements
of matrix SS+.

The off-diagonal elements of SS+ are real since they are composed of
Legendre polynornials. The value of (SS+)pq is only determined by bond
angle a = < LpMLq under the approximations mentioned abave. Therefore,
:f the angles between any two M-Lp and M-Lq bonds in molecule ML,;
are equal, the off-diagonal elements of matrix SS+ have the same value.

Considering the diagonal elements of SS+, in this situation, !Jp = !Jq,

({Jp = ({Jq, a = 0, cos a = 1 and PI (1) = 1. Eq. (9) becomes

(SS+)pp = ~ (2t + 1).
l

Thus, the diagonal elements are independent of the bond angle. In fact,
they are equal to the number of AOs tak ing part in the hybridization. We

(11 )
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also see that diagonal elements of SS+ are real, implying that the matrix
is real and symmetrieal. In faet, we usually use the real form of AOs, so
that matrix SS+ may be generally written as SST.

3. DIAGONALIZATION OF SST

Let's assume that the angles between any two bonds M-Lp and M-Lq

are equal. Setting

n
(SS'r)pp = ~ (wpxY = ~ (2I + 1) = a,

i~1 I

n
(SST)pq = ~ (WpX) (WqX) = ~ (2I + 1) Pl (cos a) = c

i~l I
(12)

matrix SST has the same form as that of the determinant eonsidered in
Eq. (A-l) (See Appendix):

c
a

c .
c ~I

aj
(13)

c c (k).

In order to find the eigenvalues A of SST, we take

x -1 -1 -1
-1 x -1 -1
-1 -1 x --1

= O, (14)

-1 -1 -1 x (k)

where x = (a - A)/(-e) or the eigenvalue A= a + ex. Using Eq. (A-2) (See
Appendix) we have

and Xi = -1, (i = 2, 3, ... , k)

thus, from the relationship of A and x, we find:

{

}'l = a + (k - 1) c

}'2 = }'3 = ... = 2k = a - c
. (15)

Renee, the eorresponding diagonal matrix takes the following form:

D (2) = ( a + (k - 1) c O (16)
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and

r
va + (k-l)c --

va-c
D (v2) = I

~ o

(17)

where the sign of square roots y--r is taken as positive to satisfy the
requirement of the maximum overlap principle, and we obtain

Tr Sj = Tr D (v2) = va + (k-1) c + (k-1) va-c = maximum (IR)

Since equivalent hybridization is considered, HAas have the same bond
strength but differ only in the direction in space, and one gets:

Fj = F2 = ... = Fk = F
and therefore

1 1 - --
F = - Tr Sj = - [v a+ (k - 1) c + (k - 1) va - ej.

k k
(19)

Parameter k: is the number of ligands, and a is the total number of AOs
taking part in the HAas. Both of them are constants, but the value of c,
from Eq. (12), is a variable depending on the bond angle a if the appro-
ximation of the projection method is adopted. VIe may take the condition
of oF/oc = O to find the characteristic angles at which the bond strength
has a maximum. The results shows that the value of F reaches a maximum ii

c = ~ (2t + 1) Pl (cos a) = O
l

(20)

is satisfied, so that
Fmax = VU = -rz (2L + 1). (21)

The value of Fmax is determined only by the number of Aas used in eon-
structing the HAas. All the results obtained in the previous work for k = 2
are effective for the systems of k > 2.

4. MATRIX OF EIGENVECTORS

Inserting the first eigenvalue Aj into matrix equation OI SST

(S ST) UjT = J'jU]T, J'j = a + (k -1) c

and using the condition of normalization
Je

Uli" + U2j2 + ... + Uk1
2 = ~ ui1

2 = 1,
i=1

this result is readily obtained:

and therefore

1
Ui1 = vk (22)
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in which the positive sign has been taken, and the first eigenvector is

IN k ... IN k).

Since from the second to the k-th all eigenvalues are of the same value,
A2 = a-c, after inserting }'2 into the matrix equation of SST, it becomes
a matrix composed of c for every element. This means that the basis vectors
may be chosen as (1-10 ... O), (10 -1. .. O), (10 0-1. .. O), '" (1OO... -1),
and an arbitrary vector in the vector space can be expressed by the linear
combination of the basis. We use the Schmidt orthogonalization process to
form the eigenvectors of U2T, U3T, ... UkT, the j-th row vector being

Uj = (IN j(j - 1) IN j (j -1) ... IN j (j -1) - Y(j -l)/j O... O) (23)

and the whole matrix of the eigenvectors is

( ~k

1 1 1 1 1 \
Y-2 Y6 Y12 y20 yk (k-l)

1 -1 '1 1 1 1

yk y-2 YB Y12 Y20 yk (k-l)

1 -2 1 1

yk
O

YB Y 12 Y20 yk (k-I)

UT = 1 -3 1 1 (24)
Yk

O O
Y12 Y20 Yk (k-I)

1 -4 1

yk
O O O

Y20 yk (k-I)

1 k-1 )

" yk

O O O
yk (k-I) (k).

From Eq. (3), we obtain

(Y}'l \
Y}'2 I

Sl = Ul' I Y j'2

I U,
I

·y}.J

"

{
YAl = Ya + (k -1) ~

.YA2=Ya-c

the diagonal elements in the resultant matrix Sl are in the same form as

Y j't - [1 1 1 1 1 ]--+Y}'2--+--+--+--+ ...+----
k 2 . 1 3 . 2 4 . 3 5 . 4 k (k - 1)

Comparing this with Eq. (A-3) (See Appendix) yields

YJ; (k - 1) _ 1 _ _
(St)jj = ~- + k- Y A2 = k- [Y}'l + (k -1) YA2l (25)
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The off-diagonal elements of SI have similar forms to

o: - [ 1 1 1 1 1 ]-- + v A - -- + -- + -- + -- + ... + (- p = 2)
k 2 2 . 1 3 . 2 4 . 3 5 . 4 k (k - 1) .'

-n: _ [ 2 1 1 1 1 ]
__ I + V A2 - -- +-- + -- + -- + ... + , (- p = 3)

k 3 . 2 4 . 3 5 . 4 6 . 5 k (k - 1)

vJ:; - [ 3 1 1 1 1 ]-- + V A2 - -- +-- + -- + -- + ... + , (- p = 4)
k 4 . 3 5 . 4 6 . 5 7 . 6 k (k - 1)

Comparing the above results with Eq. (A-4) (See appendix), we have
1 _ _

(St)ij(i""j) = k (v AI- V}'2)'

Thus, the whole matrix of SI is

r vj, + (k - 1) vI; vJ, - v1,
SI = .~ lV}'I: V}.2 V~ + :k-1) ...j}'2

vll - V A2 V }'I - V A2

V }'I- V}'2 J
VAI- V~

. (27)

vJ:; ~ (k - 1) v' )'2

and therefore the bond strength for every single bond is
1 _ _

F = - [VAl + (k-1) VA2]k

1 _
= --- [va + (k -1) c + (k -1) »[ a - c],

k
(28)

this is in accordance with Eq. (19) for the case of equivalent hybridization.
It should be noted that identical bond angles imply equivalent hybridization,
but we cannot inversely say that the bond angles should be identical given
equivalent hybridization. For example, in octahedral coordination the hybrid
orbitals of the central atom may be equivalent, but the bond angles are
different (the angles between the bonds at neighbouring sites are 90° while
the angle between the bonds at the opposite sites is l80e).

The equations derived above are quite general and may be useful in
some other theoretical work, but in practice, there are few kinds of mole-
cules that satisfy the condition that the bond angles should be identical.
Among these are the trigonal pyramid, including trigonal planar geometry,
for k = 3, and tetrahedral geometry for k = 4.

AcknowLedgements. - We are greatly indebted and honoured by Prof. L. Pau-
ling's inter est in our work. We also wish to thank Dr. Z. S. Herman for his helpful
comments on the manuscript.

REFERENCES

1. F. L i u and C. G. Z han, Int. J_ Quan. Chem. 32 (1987) 1.
2. C. G. Z han, F. L i u, and Z. M. H u, Int. J. Quan. Chem. 32 (1987) 13.
3. J. N. Mu r r e l l, J. Chem. Phys. 32 (1960) 767.
4. A. Gol e b i e w s k i, Trans. Faraday Soc. 57 (1961) 1849.
5. P. G. L Yk o s and H. N. Seh mei s i n g, J. Chem. Phys. 35 (1961) 288.
6. Z. B. Ma k s i ć and A.' R u b č i ć, J. Amer. Chem. Soc. 99 (1977) 4233.



702 F. LIU AND C.-G. ZHAN

7. Z. B. Ma k s i ć, Pure & AppL Chem. 55 (1983)307.
8. R. S. Mu Il ike n, J. Amer. Chem. Soc. 72 (1950)4493.
9. D. He n der s o n, in PhysicaL Chemistry: An Advanced Treatise, (H. E y r i n g,

D. He n der s o n, and W. J o s t, eds.) Vol. XIA, p. 310 (1975),Academic
Press, New York.

APPENDIX

First let us consider a determinant

a c c ... cl
c a c ... clc c a ... c

D= . ,

. I
c c c ... a I (n)

(A-1)

the characteristic of which is that n-I off-diagonal elements in every row are
equal to the same value of c, except for the diagonal ones. Adding the second, third,

and n-th columns to the first column yields

1
i 1
i 1

D = [a + (n - I} cl

c
a
c

c c
c c
a c

1 c
·1

c ... a (n)

Multiplying the first row by (-1) and adding it to every other rows gives

1 c c c
O a-c O O
O O a-c O

D = [a + (n - 1) cl

O O O a-c I (n)

D = [a + (n - 1) c] (a - c)n-l. (A-2)

Second, we consider the sum of a series:

k 1 1 1 1 1~ =--+-- +-- +...+
j=2 j(j-l) 2·1 3·2 4·3 k(k-l)

1
=1--

k

k-1

k
(A-3)

In the same way, we obtain

1 k 1 1 1 1 1--+ ~ =--+ + +...+
p j = p + 1 j (j -1) p p (p+1) (p+2)(p+1) k (k-1)

=(1- -;-) + (~ - p: 1) + (-p: 1 - p: J +...+ (k 1 1 ~) 1

1 1
=1---1=--,

k k
(A-4)
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SAŽETAK

Hibridizacija u ML. (k > 2) sustavima

Frank Liu i Chang-Guo Zhan

Razmatrana je matrična metoda maksimalnog prekrivanja (Murrell) raz-
jašnjena mnoga posebna svojstva matrica koje se koriste u računima.




